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Abstract
Recent versions of the Lustre parallel distributed file system have introduced the
progressive file layout (PFL) feature. This enables a single file to have an evolving
striping configuration allowing files to be stored with a growing number of stripes as the
file grows. Determining and setting a decent PFL configuration is non-trivial. Scientific
computing jobs are generally submitted to clusters running a scheduling software such as
SLURM which already exposes a number of tweakable parameters to end users to control
job execution.
This project explores the possibility of automatically setting a usable PFL configuration
on cluster job submission depending on job information like the number of requested
nodes and the type of application. Apart from this the plugin considers environmental
cluster information such as the bandwidth between compute nodes and Lustre storage
backend. The project shows that setting a PFL configuration through a SLURM job
submission plugin is possible. Additionally it discusses considerations to be made when
determining the PFL configuration and limitations encountered when setting this via a
plugin.
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1 Introduction

1.1 Slurm
The Simple Linux Utility Resource Management (SLURM) is an open-source highly
scalable resource management system for large high performance computer clusters
[YJG03]. SLURM was originally developed at Lawrence Livermore National Laboratory
but has since been adopted in a wide range of commercial and research HPC clusters. As
an example the system is used for both the Perlmutter and Cori supercomputers in the
National Energy Research Scientific Computing Center at LLNL [Cen23], as well as the
Levante supercomputer located at the Deutsches Klimarechenzentrum (DKRZ). These
supercomputers are ranked 8, 45 and 53 respectively in the TOP500 list of November
2022 [Pro22].

A SLURM cluster is composed of a single primary node running the SLURM controller
daemon slurmctld and a set of compute nodes running the SLURM daemon slurmd
as outlined in Figure 1.1. End users can query the cluster and submit jobs via a set of
client command line tools, most prominently srun for individual jobs and sbatch for
batch scripts. Batch jobs and individual job steps are then allocated among the compute
nodes by the controller according to the job allocation rules configured in the cluster.

Figure 1.1: SLURM Architecture [YJG03]
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1.2 Lustre
Lustre is a common file system choice in High Performance Computing (HPC) deploy-
ments as it answers to the high scalability requirements while being open source and
configurable to suit a wide number of deployment options. Lustre is a distributed file
system meaning data is stored in a distributed fashion across a number of storage targets
and offers a parallel storage API allowing parallel file I/O operations through APIs like
MPI-IO. A Lustre deployment is general composed of three high level system components
as illustrated in Figure 1.2 [Bra19].

• Lustre Clients running the Lustre filesystem

• Object Storage Targets (OSTs) storing the actual end user data

• Metadata Servers (MDS) storing object metadata like permissions, the directory,
filenames and the individual object location information

Figure 1.2: A typical distributed Lustre deployment [OE23]

A typical write operation on a Lustre file system is therefore composed of two stages
as illustrated in Figure 1.3. First the metadata server is contacted to allocate the layout
of the requested objects on the OSTs. Secondly the client then writes the stored objects
to the respective OSTs by interacting with the relevant Object Storage Servers. It is
easy to see that due to the distributed nature of the storage on the OSTs a client can
theoretically benefit from the aggregated bandwidth of all OSTs involved in the file
operation assuming sufficient bandwidth is available between the client and the OSSs.
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Figure 1.3: Lustre File Write Operation [OE23]

1.2.1 Striping
The Lustre filesystem supports striping of the data of a single file across multiple Object
Storage Targets. This feature provides the following benefits

• ability to store files that are larger than the total (or remaining) physical capacity
of a single OST

• enable higher bandwidth access to a file than a single OST (or OSS) is able to
provide

Striping is configured via two main parameters: the stripe size and stripe count [OE23].
The stripe size determines the number of bytes stored before moving on to the next
stripe (on the next OST) with the stripe count determining the total number of OSTs
the file should be striped across. Figure 1.4 illustrates this with File A being striped
across three OSTs while File B and C are only striped across a single OST.

Figure 1.4: Lustre File Striping [OE23]

Choosing the right striping configuration is not trivial, as it depends largely on the I/O
pattern of the given application. A poor striping configuration can have adverse effects
on performance not just for the given application, but for the entire storage cluster, as
there may be increased disk contention by multiple processes across the (shared) cluster
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resources. It is therefore important to evaluate the performance at cluster level analyzing
the aggregate storage performance for all users.

For example, striping very small (≤1GB) files across many OSTs will increase contention
of those disks and incur a high overhead leading to poorer performance than if those small
files would be striped across just one or two OSTs. Therefore it is generally recommend
to stripe small files over a single OST, especially if the number of clients is larger than
the number of OSTs [Bra19].

In contrast large files typically benefit the most from striping allowing an application
to use the aggregated bandwidth of many OSTs across multiple client processes each
reading different parts of the file. Similarly, if there are only a few active client processes,
it is useful to stripe across as many OSTs as practical to ensure the available bandwidth
between the clients and OSTs is properly used [Bra19]. Striping appropriately also ensures
that the different OSSs and OSTs are used equally and that the storage utilization is
balanced across the cluster avoiding situations where individual, very large, files create
fragmentation in the storage pool.

In Lustre the striping layout of a file is configured either via system or directory wide
defaults or manually at file creation time. Once a file has been created the striping
configuration can only be changed by completely rewriting the entire file (effectively
creating a new one).

1.2.2 Progressive File Layout
Lustre 2.10 introduced the ability to specify striping in a more dynamic fashion with
a feature called „Progressive File Layout (PFL)“. This enables the specification of a
sort of template consisting of multiple components (called extents) describing how the
striping behavior should adapt as the file grows. Concretely this enables defaults set at
cluster or directory level to be better matched to an adequate striping configuration for
a wider variety of application use cases and file sizes. Consequently the striping defaults
no longer have to „choose“ between being practical for small or large files.

In the example illustrated in Figure 1.5 the PFL specifies

• the first 2MB to be striped across one OST with a stripe size of 1MB (leading to
two stripes being created on the same OST)

• the following 253MB to be striped across four OSTs with a stripe size of 1MB
(leading to 253 stripes being created spread across four OSTs)

• the remainder of the file to be striped across 32 OSTs with a stripe size of 4MB

On a running system the PFL configuration of a file or directory can be retrieved with
the lfs getstripe command as seen in Listing 1.1. In this case the first gigabyte is
striped across one OST, the following three gigabytes are striped across four OSTs and
the remainder of the file is striped across sixteen OSTs.

1 $ lfs getstripe / scratch /k/ k203168
2 / scratch /k/ k203168
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Figure 1.5: Lustre Progress File Layout [OE23]

3 lcm_layout_gen : 0
4 lcm_mirror_count : 1
5 lcm_entry_count : 3
6 lcme_id : N/A
7 lcme_mirror_id : N/A
8 lcme_flags : 0
9 lcme_extent . e_start : 0

10 lcme_extent .e_end: 1073741824
11 stripe_count : 1 stripe_size : 1048576

↪→ pattern : raid0 stripe_offset : -1
12
13 lcme_id : N/A
14 lcme_mirror_id : N/A
15 lcme_flags : 0
16 lcme_extent . e_start : 1073741824
17 lcme_extent .e_end: 4294967296
18 stripe_count : 4 stripe_size : 1048576

↪→ pattern : raid0 stripe_offset : -1
19
20 lcme_id : N/A
21 lcme_mirror_id : N/A
22 lcme_flags : 0
23 lcme_extent . e_start : 4294967296
24 lcme_extent .e_end: EOF
25 stripe_count : 16 stripe_size : 1048576

↪→ pattern : raid0 stripe_offset : -1

Listing 1.1: Retrieving the Lustre PFL definition
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1.2.3 Real Life Systems
Prior to the implementation of Progressive File Layouts in Lustre, analysis of large scale
deployments performed at the Oak Ridge and Lawrence Livermore National Laboratories
show that the majority of users and applications on HPC systems tend not to choose
a reasonable striping layout for their use case [WSHO17]. The authors showcase that
depending on the type of data stored on such a system a reasonable striping configuration
may look different. As an example the Lustre deployment at Lawrence Livermore used a
stripe count of one (1) as on this system around 88% of files are ≤1MB in size meaning
these files would span only one stripe. On this system files with a size of less than 1GB
make up roughly 57% of data stored. For comparison the Lustre deployment at Oak
Ridge used a stripe count of four (4) with only around 15% of data stored being taken
up by files less than 1GB in size [WSHO17].

More recent Lustre deployments, like the all-flash storage supercomputer Perlmutter
at the National Energy Research Scientific Computing Center, make use of the PFL
feature in Lustre. The Perlmutter supercomputer is configured with a default setting
of 1 stripe count for data ≤1GB, a stripe count of 8 for data ≤10GB, a stripe count
of 24 for data ≤100GB and a stripe count of 72 for data larger than 100GB [GEK+22].
The authors note that this default layout, in their experiments, shows „at least near
best write performance among all the Lustre configurations [...] explored“[GEK+22]. In
practice their experiments show that the PFL feature is applicable to both, disk based
and flash based, Lustre deployments.

The Levante (HLRE-4) supercomputer recently deployed at the DKRZ is equipped
with a 130 Petabyte storage cluster running Lustre [Kli23]. Here the users’ scratch and
project’s work volumes are by default configured with a stripe size of 1MB and a striping
setup of

• the first 1GB to be striped across one OST

• the the following 3GB to be striped across 4 OSTs

• the remainder of the file to be striped across 16 OSTs
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2 Implementation
The goal of this project is to create a mechanism that automatically sets an appropriate
Lustre PFL configuration in a more granular fashion than is possible with cluster level
defaults. This configuration should take into account the storage model of the application,
the available bandwidth within the cluster and the resources requested by the job. In
order to have access to the resource requests and job description the implementation
was chosen to be integrated in the SLURM cluster workload manager via the available
plugin API. This enables the plugin to be automatically called upon job submission with
the respective job information and avoids having to fork and create a custom version of
SLURM. While forking SLURM would have allowed for more intricate control of the
scheduling decisions for this project the information available via the lua plugin API is
sufficient and results in a more portable and maintainable solution.

2.1 Local Development Setup
In order to perform the development of the lua job submit plugin a local SLURM setup
is used. This enables easy debugging of the lua plugin code and the lua specific SLURM
configuration. The local setup is realized using a set of Docker containers run via
docker-compose mostly based upon [Tor22]. The code for the customized version of
this is available at https://github.com/fpusch/slurm/tree/master/docker.

The cluster is composed of five individual containers each running a single component.

• a SLURM Controller running slurmctld

• two SLURM Compute Nodes c1,c2 running slurmd

• a Database instance running mysql

• a SLURM Database daemon running slurmdbd

2.1.1 Usage
All SLURM Docker containers are started from the same Docker image which can be built
by executing docker build -t slurm-docker-cluster:<tag> . with tag specifying
the target SLURM version Docker tag to use. The docker image itself is built from
the rockylinux:8 baseline to be easily portable to Red Hat Enterprise Linux based
installations. The detailed build script is defined in the Dockerfile. On a high level
the build performs the following steps
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Volume Name Mount Path Usage
etc_munge /etc/munge Munge Config
./slurm (bind) /etc/slurm SLURM Config
slurm_jobdir /data Shared Data Directory
var_lib_mysql /var/lib/mysql Database Data Directory
var_log_slurm /var/log/slurm SLURM Logs

Table 2.1: Docker Volumes

1. Install prerequisite packages

2. Clone SLURM repository

3. Configure and build SLURM

4. Copy entrypoint

The Docker cluster is defined using Docker compose in docker-compose.yml. The
cluster is started by running docker-compose up and stopped by running docker-
compose down. The cluster uses the Docker volumes described in Table 2.1 to persist
state across restarts. The volume definition of the etc_slurm volume is setup as a
bind mount to enable modifications to the job submission plugin code to be available
immediately without having to restart the cluster or rebuild the image. The cluster can
be completely reset by running docker-compose down -v which will also remove any
data stored in the volumes.

After the cluster is started jobs can be submitted by logging into any SLURM container.
1 $ docker exec -it c1 bash
2 [ root@c1 /]# cd /data/
3 [ root@c1 data]# sbatch --wrap=" hostname"
4 sbatch: slurm_job_submit : hello world
5 Submitted batch job 1
6 [ root@c1 data]# cat slurm -1.out
7 c1

Listing 2.1: Submitting a Job on the local cluster

2.1.2 Noteworthy Modifications
Support for SLURM job submission plugins written in lua is enabled at compilation time
by having the lua development libraries lua-devel present during ./configure. This
check is performed by an autoconf macro in auxdir/x_ac_lua.m4 and checks for the
presence of packages named lua-<major>.<minor> or lua<major>.<minor>. In Red
Hat Enterprise Linux based distributions, like RockyLinux which is used for the local
Docker setup, the lua development libraries do not follow this convention. To circumvent
this issue the package configuration files lua.pc are symlinked to the expected names.
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In addition to compiling SLURM with lua support the main configuration files /etc/s-
lurm/slurm.conf needs to be modified to enable job submission plugins to use lua.

1 # PLUGINS - enable lua plugin support
2 JobSubmitPlugins =lua

Listing 2.2: Enabling lua support in slurm.conf

Afterwards, upon start, the SLURM Controller will look for a file named /etc/slur-
m/job_submit.lua which should contain the lua plugin code.

2.2 Setup on Test Cluster
As the local setup using Docker containers to run a SLURM cluster does not support
the Lustre parallel and distributed filesystem a test cluster of five compute (west[1-5])
and five storage (sandy[1-5]) nodes was provisioned. The compute nodes were equipped
with 24 core CPUs and a Gigabit/s Ethernet networking link to the storage nodes.

2.2.1 Installing SLURM
The installation and configuration of SLURM is done via a number of scripts available
at https://github.com/fpusch/slurm/tree/master/wr-cluster

The SLURM controller is setup by installing the package dependencies, cloning the
source code repository and then building SLURM similarily to what is done in the Docker
based setup.

1 #!/usr/bin/env bash
2 set -e
3 apt install munge libmunge -dev lua5 .3 liblua5 .3-dev -y
4 git clone -b slurm -21 -08 -6 -1 --single -branch --depth =1

↪→ https :// github.com/ SchedMD /slurm.git
5 cd slurm
6 ./ configure --enable -debug --sysconfdir =/ etc/slurm
7 make install
8 groupadd -r slurm
9 useradd -r -g slurm slurm

10 mkdir /var/spool/slurmd \
11 /var/spool/ slurmctld \
12 /var/run/slurmd \
13 /var/lib/slurmd \
14 /var/log/slurm
15 chown -R slurm:slurm /var/spool/slurmd
16 chown -R slurm:slurm /var/spool/ slurmctld
17 chown -R slurm:slurm /var/run/slurmd
18 chown -R slurm:slurm /var/lib/slurmd
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19 chown -R slurm:slurm /var/log/slurm
20 chown -R slurm:slurm /usr/local/lib/slurm
21 chown -R slurm:slurm /etc/slurm/

Listing 2.3: Installing SLURM Controller Node on Test Cluster

The compute nodes are setup in the same way.
1 #!/usr/bin/env bash
2 set -e
3 apt install munge libmunge -dev lua5 .3 liblua5 .3-dev -y
4 git clone -b slurm -21 -08 -6 -1 --single -branch --depth =1

↪→ https :// github.com/ SchedMD /slurm.git
5 cd slurm
6 ./ configure --enable -debug --sysconfdir =/ etc/slurm
7 make install
8 groupadd -r slurm
9 useradd -r -g slurm slurm

10 mkdir /var/spool/slurmd \
11 /var/run/slurmd \
12 /var/lib/slurmd \
13 /var/log/slurm
14 chown -R slurm:slurm /var/spool/slurmd
15 chown -R slurm:slurm /var/run/slurmd
16 chown -R slurm:slurm /var/lib/slurmd
17 chown -R slurm:slurm /var/log/slurm
18 chown -R slurm:slurm /usr/local/lib/slurm
19 chown -R slurm:slurm /etc/slurm/

Listing 2.4: Installing SLURM Compute Node on Test Cluster

2.2.2 Configuring Munge
SLURM uses munge for authentication between the nodes of a cluster. In the subsec-
tion 2.2.1 munge was installed from the package repositories. To properly configure
munge the munge.key file must be identical on all hosts participating within the cluster
[Dun23]. Therefore the file is generated via mungekey on the slurm controller node and
then transferred to all compute nodes via scp.

2.2.3 Configuring SLURM
SLURM is configured via the /etc/slurm/slurm.conf file present on all machines that
are part of the cluster. The configuration file used was generated via the configurator
tool available at https://slurm.schedmd.com/configurator.html
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1 # slurm.conf file generated by configurator .html.
2 # Put this file on all nodes of your cluster .
3 # See the slurm.conf man page for more information .
4 #
5 ClusterName = cluster
6 SlurmctldHost =west1
7 JobSubmitPlugins =lua
8 MpiDefault =none
9 ProctrackType = proctrack / linuxproc

10 ReturnToService =1
11 SlurmctldPidFile =/ var/run/ slurmctld .pid
12 SlurmctldPort =6817
13 SlurmdPidFile =/ var/run/slurmd.pid
14 SlurmdPort =6818
15 SlurmdSpoolDir =/ var/spool/slurmd
16 SlurmUser =slurm
17 StateSaveLocation =/ var/spool/ slurmctld
18 SwitchType =switch/none
19 TaskPlugin =task/ affinity
20 # TIMERS
21 InactiveLimit =0
22 KillWait =30
23 MinJobAge =300
24 SlurmctldTimeout =120
25 SlurmdTimeout =300
26 Waittime =0
27 # SCHEDULING
28 SchedulerType =sched/ backfill
29 SelectType =select/ cons_tres
30 # LOGGING AND ACCOUNTING
31 AccountingStorageType = accounting_storage /none
32 JobCompType = jobcomp /none
33 JobAcctGatherFrequency =30
34 JobAcctGatherType = jobacct_gather /none
35 SlurmctldDebug =info
36 SlurmctldLogFile =/ var/log/slurm/ slurmctld .log
37 SlurmdDebug =info
38 SlurmdLogFile =/ var/log/slurm/slurmd.log
39 # COMPUTE NODES
40 NodeName =west [2 -5] CPUs =24 Sockets =2 CoresPerSocket =6

↪→ ThreadsPerCore =2 State= UNKNOWN
41 PartitionName =debug Nodes=ALL Default =YES MaxTime = INFINITE

↪→ State=UP
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Listing 2.5: SLURM Configuration

After the configuration is setup on all machines SLURM can be started.
1 systemctl start munge # ensure munge is running
2 slurmctld -D

Listing 2.6: Starting slurmctld

1 systemctl start munge # ensure munge is running
2 slurmd -D

Listing 2.7: Starting slurmd

2.3 Job Submit Plugin
Any job submission plugin defines two functions: slurm_job_submit and slurm_job_-
modify. Both functions must be defined for the plugin file to be accepted. Job submission
plugins can be written using either the C or lua programming languages with roughly the
same method signatures [Sch23b]. A simple Hello World implementation of this using
lua can be found in Listing 2.8. For this project the implementation was done using lua
as this required very few changes to the SLURM build and installation process while
providing the functionality needed within this scope.

1 function slurm_job_submit (job_desc , part_list , submit_uid )
2 slurm.log_user (" slurm_job_submit : hello world")
3 return slurm.SUCCESS
4 end
5
6 function slurm_job_modify (job_desc , job_rec , part_list ,

↪→ modify_uid )
7 slurm.log_user (" slurm_job_modify : hello world")
8 return slurm.SUCCESS
9 end

10
11 slurm.log_info ("job submit plugin initialized ")
12 return slurm.SUCCESS

Listing 2.8: Hello World Job Submit Plugin

The data structure for the job_desc parameter matches the job_descriptor struct
defined in slurm.h [Sch23a].
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2.3.1 Requirements
The job submission script should

• detect the target directory to which the job needs to write data (i.e. using a flag,
environment variable or parameter)

• be able to be deactivated by the user (i.e. using a flag, environment variable or
parameter)

• set the PFL layout according to
– the detected application / job submission script and its I/O storage mode
– number of nodes / tasks requested by the job
– available maximum bandwidth between storage and compute nodes
– enforce a maximum number of stripes (to avoid striping across all available

nodes)

2.3.2 Setting the Progressive File Layout
The PFL configuration can be specified either at file or directory level with the lfs
setstripe command. Files automatically use the configuration specified in the parent
directory unless a file specific layout is provided. The lfs setstripe command accepts
the parameters (among others) outlined in Table 2.2.

Option Name Behavior
-E <offset> end offset of the following component (allows the use of -1 to

signify until end of file)
-c <stripe_count> number of OSTs to stripe the current component over (allows

the use of -1 to signify all OSTs)
-S <stripe_size> number of bytes within a single stripe

Table 2.2: lfs setstripe command

As an example the command in Listing 2.9 specifies the Levante default layout described
in Listing 1.1.

1 $ lfs setstripe \
2 -E 1G -c 1 -S 1M \
3 -E 4G -c 4 -S 1M \
4 -E -1 -c 16 -S 1M \
5 / scratch /k/ k203168 /demo

Listing 2.9: Configuring a PFL setup with lfs setstripe

In the lua code of the Job Submit Plugin the os.execute function is used to execute
the PFL command.
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2.3.3 Implementation Details
The code for the job submission plugin is available at https://github.com/fpusch/
slurm/blob/master/wr-cluster/job_submit.lua. The plugin code performs the fol-
lowing steps

1. establish global configuration, read SLURM job description and read cluster state

2. detect application storage mode

3. determine and set the progressive file layout

The global configuration is performed at the top of the plugin file via a set of constants
outlined in Table 2.3.

Name Behavior
DISABLE_FLAG Controls the name of the flag used to disable the plugin from

a job submission script. Placing the specified value anywhere
inside the job submission script skips any further actions by
the plugin for this job.

TOTAL_LUSTRE_-
NODES

Total number of Lustre object storage servers that are part of
the cluster.

TOTAL_SLURM_-
NODES

Total number of SLURM nodes that are part of the cluster.

MAX_OSS_OST_-
BANDWIDTH_MBITS

Maximum bandwidth (in Megabit/s) between a single object
storage server and its target, basically representing the sus-
tained speed of the target. This is limited by the storage
interconnect and disk technology (i.e. HDD / SSD / NVME).

MAX_COMPUTE_-
OSS_BANDWIDTH_-
MBITS

Maximum bandwidth (in Megabit/s) between a single compute
server and a single object storage server. This is limited by
the compute storage network interconnect (i.e. Ethernet or
Infiband).

EXECUTABLE_STOR-
AGE_MODE

Lua table containing the mapping of application / job script
name to storage mode (see Table 2.4).

Table 2.3: Plugin Global Constants

The plugin distinguishes three types of application storage modes as outlined in
Table 2.4. These modes are similar to the storage modes configurable via the -F flag of
the IOR benchmark further detailed in chapter 3 in that they distinguish jobs writing
to a single shared file from multiple processes to those where each process writes to
its own file. The plugin determines the appropriate storage mode purely based on the
name of the job submission script (in case of submission via sbatch) or the name of the
executable (in case of submission via srun).

The available bandwidth between compute nodes, object storage servers and object
storage targets is introduced as a configurable constant to capture multiple scenarios
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Name Code Behavior
Single Process Single File 11 Application is not parallelized and writes to

a single file
Multi Process Single File 21 Application is parallelized and all clients

write to a single file
Multi Process Multi File 22 Application is parallelized and all clients

write to their own file in a file per process
mode

Table 2.4: Plugin Storage Modes

depending on the network and storage architecture of the cluster. A simple example
can be visualized in Figure 2.1 with Ethernet being used for compute to object storage
networking and regular hard drives used for object storage targets.

C1

C2

C3

Ethernet

OSS1

OSS2

OSS3

HDDs

HDDs

HDDs

Figure 2.1: Simple Cluster Architecture

In order to enable decent utilization of the available resources it is important to
distinguish jobs based on the application’s storage mode listed in Table 2.4.

For single process single file type applications a striping configuration allowing maxi-
mum throughput to the storage cluster can be achieved by determining the number of
object storage targets a single compute node can saturate as is done in Equation 2.1.
This number is then capped by the total number of Lustre storage nodes (NL) available
in the cluster.

maxs11 = min(max(1, f loor( BWC_OSS

BWOSS_OST

)), NL) (2.1)

Taking a simple practical example using 1 Gigabit/s Ethernet compute to object
storage server links with hard drives allowing for 250 Megabyte/s write performance as
object storage targets shows that in this case the bottleneck is the Ethernet networking.
A single compute node’s available bandwidth is already saturated using a single object
storage target. In this case striping a file across multiple servers is not going to yield any
performance gain. Utilizing 10 Gigabit/s Ethernet instead would allow a single compute
node to benefit from the aggregate performance of multiple object storage servers yielding
a maximum stripe count of 5.
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A similar behavior is applicable for multi process multi file type applications as in this
case it is assumed that every process writes to its own file exclusively. Here every process
can be treated as an instance of a single process single file mode job. This estimation
is a „greedy“ upper limit in that it assumes all processes to run on their own compute
node, which is unlikely for nodes with multiple CPU cores. Should jobs be co-located on
the same node it assumes that these jobs do not perform I/O concurrently.

maxs22 = min(max(1, f loor( BWC_OSS

BWOSS_OST

)), NL) (2.2)

A more pessimistic approach could be taken by simply dividing the number of targets
by the number of processes co-located on any single node. This calculation could be
tricky to perform at job submission time, especially in clusters with non-homogenous
compute nodes with varying CPU core counts, and therefore the previous, optimistic,
calculation was chosen for this implementation.

For multi process single file applications it is assumed that all client processes write to
the same file. This scenario is the most interesting as it is the most likely to benefit from
striping, even in bandwidth limited scenarios. Here the maximum number of stripes can
be determined by taking into account the total number of compute nodes requested by
the job (NJ) as shown in Equation 2.3.

maxs21 = min(NJ ∗ maxs11, NL) (2.3)
Taking the same example of 1 Gigabit Ethernet and 125 Megabyte/s hard drives

as above now yields a varying number of maximum stripes depending on the nodes
requested by the job. An application parallelized across three nodes could benefit from
the aggregate bandwidth of three object storage targets when writing to the same file
striped across those targets.

Notably this scheme of assigning the maximum stripe count does not overreach in that
it stripes across as many targets as are necessary to maximize bandwidth but no more.
This can be desirable in cluster setups where the number of compute nodes is significantly
larger than the number of object storage targets in that it does not introduce additional
contention over those resources. In contrast using a scheme that always stripes across
the maximum number of available OSTs would cause every multi process single file job
to compete over all OSTs even if the job could not take advantage of the additional
bandwidth available.

Expanding on this the job submission plugin assigns striping layouts in the following
manner

• for single process single file and multi process multi file jobs
– first 16MB striped across 1 OST
– remainder of the file striped across maxs11 OSTs

• for multi process single file jobs
– first 16MB striped across 1 OST
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– remainder of the file striped across maxs21 OSTs depending on job allocation
request

The first extent threshold is taken to prevent jobs writing many small files from creating
unnecessary network and disk contention which would negatively impact performance
for all jobs without providing a meaningful benefit for the given job [MBOD16].
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3 Testing
LLNL’s IOR benchmark (v4.1.0) is used to perform a baseline of I/O tests on the
test cluster as it provides configuration options to perform parallel file I/O in both a
file-per-process and shared file mode [SAS08]. IOR writes data sequentially according
to a defined block (-b) and transfer (-t) size grouped into a number of segments (-s).
This pattern is visualized in Figure 3.1.

Figure 3.1: IOR Configuration Options [Aut23]

1 #!/bin/bash
2 # sample script running the IOR benchmark in file per

↪→ process mode to simulate a parallelized application
3 #SBATCH --ntasks =96
4 #SBATCH --ntasks -per -node =24
5 #SBATCH --partition=debug
6
7 # this is needed to run as root
8 export OMPI_ALLOW_RUN_AS_ROOT =1
9 export OMPI_ALLOW_RUN_AS_ROOT_CONFIRM =1

10
11 filename =`date '+%Y_%m_%d__%H_%M_%S'`
12 filename =" test_$filename "
13
14 # 96 tasks (24 per node)
15 # 1 megabyte transfer size
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16 # 64 megabytes block size
17 # 32 segments
18 # 5 iterations
19 mpirun -n 96 ior -t 1m -b 64m -s 32 -k -F -C -e -i 5 -o

↪→ $filename

Listing 3.1: IOR Benchmark Job Submission Script

3.1 Performance Baseline
A set of IOR benchmarks was run to establish a performance baseline of the storage setup
available on the test cluster for different job and stripe configurations. For these baseline
results IOR was called using a transfer size of 1MB and a blocksize of 16MB. Depending
on the task configuration the segment number was adjusted to yield an aggregate filesize
of 32GB ensuring the file does not fit into the operating system memory or cache. The
tests were run sequentially to avoid any cross-influence and executed with five iterations
(via the -i flag of IOR). Table 3.1 displays the mean read and write bandwidth results.

Configuration File-Per-Process Single-Shared-File
# Nodes Tasks Stripes Read Write Read Write
1 1 1 1 112 MB/s 111 MB/s 112 MB/s 111 MB/s
2 1 1 4 112 MB/s 111 MB/s 112 MB/s 111 MB/s
3 1 24 1 112 MB/s 111 MB/s 109 MB/s 111 MB/s
4 1 24 4 112 MB/s 111 MB/s 112 MB/s 111 MB/s
5 4 4 1 439 MB/s 432 MB/s 105 MB/s 110 MB/s
6 4 4 4 418 MB/s 433 MB/s 298 MB/s 268 MB/s
7 4 96 4 443 MB/s 440 MB/s 441 MB/s 430 MB/s
8 4 96 5 443 MB/s 443 MB/s 443 MB/s 437 MB/s

Table 3.1: Performance Baseline

The first two test results show that for non-parallelized tasks the IO bandwidth is
limited by the gigabit network link between a single compute node and the Lustre
objects storage servers. Increasing the number of stripes does not benefit throughput as
a single target is able to saturate the gigabit link. In these tests switching between a
file-per-process or a single-shared-file configuration leads to the same results as there is
only ever a single process running as part of the job.

The same behavior is noticeable for test results three and four which perform paral-
lelized IO from multiple tasks located on a single node. Here again the bandwidth is
limited by the network so adding additional tasks on a single node does not improve
pure I/O performance.

The test results for parallelized jobs across multiple nodes (tests five through eight)
show improved performance over the non-parallelized jobs. In the file-per-process mode
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tasks do not compete for access to a single file and as such this configuration better
simulates multiple separate jobs running in parallel on the cluster. Here the performance
is roughly equivalent to the number of nodes times the compute to storage bandwidth.

For parallelized jobs in a single-shared-file configuration the results are different,
showing no gain (over single node execution) in a single stripe configuration. This is
reasonable as all nodes compete over the gigabit network link between the respective
OST and any given single compute node. With tests six through eight as the stripe size
is increased to match the number of nodes the performance improves. It is noteworthy
that more than a single task per node is needed to reach equivalent throughput to the
file-per-process mode saturating the network bandwidth once again. In the same manner
adding a fifth stripe, as is done in test eight, does not improve performance due to the
bandwidth limitation.

3.2 Layout Selection
In order to verify that the plugin selects the desired layout the same tests where run
with the plugin enabled. Here the striping layout was not set statically ahead of time
but calculated by the plugin and as such is different depending on if the benchmark
was launched in file-per-process or single-shared-file mode. The results are displayed in
Table 3.2 and show the stripe size of the largest (last) extent. The tests include two
additional cases of 48 & 72 tasks across 2 & 3 requested nodes to demonstrate that the
selected layout is able to fully saturate the storage bandwidth available to the compute
nodes.

Configuration File-Per-Process Single-Shared-File
# Nodes Tasks Stripes Read Write Stripes Read Write
1 1 1 1 111 MB/s 110 MB/s 1 111 MB/s 109 MB/s
3 1 24 1 112 MB/s 111 MB/s 1 102 MB/s 110 MB/s
5 4 4 1 438 MB/s 425 MB/s 4 294 MB/s 252 MB/s
7 4 96 1 443 MB/s 439 MB/s 4 441 MB/s 426 MB/s
9 2 48 1 224 MB/s 221 MB/s 2 218 MB/s 218 MB/s
10 3 72 1 331 MB/s 328 MB/s 3 322 MB/s 325 MB/s

Table 3.2: Layout Selection

Listing 3.2 shows the job submission and script response for such a test.
1 root@west1 :/ mnt/lustre/work/tmp sbatch ior_mps .slurm
2 sbatch: slurm_job_submit : job from uid 0
3 sbatch: slurm_job_submit : job_desc .name ior_mps .slurm
4 sbatch: slurm_job_submit : job_desc . work_dir

↪→ /mnt/lustre/work/tmp
5 sbatch: slurm_job_submit : nodes in use 0
6 sbatch: slurm_job_submit : storage_mode 21

23



7 sbatch: slurm_job_submit : slurm_requested_nodes 2
8 sbatch: slurm_job_submit : no running jobs detected ,

↪→ mode=eager
9 sbatch: slurm_job_submit : pfl_cmd lfs setstripe -E 16M -c 1

↪→ -E -1 -c 2 /mnt/lustre/work/tmp
10 sbatch: slurm_job_submit : successfully set PFL

↪→ configuration for mode 21
11 Submitted batch job 167

Listing 3.2: Sample Execution for Test 9

Querying the striping layout of the created test file as is done in Listing 3.3 shows the
desired layout has been applied successfully by the script.

1 root@west1 :/ mnt/lustre/work/tmp lfs getstripe
↪→ test_2023_04_15__11_08_52

2 test_2023_04_15__11_08_52
3 lcm_entry_count : 2
4 lcme_id : 1
5 lcme_extent . e_start : 0
6 lcme_extent .e_end: 16777216
7 lmm_stripe_count : 1
8 lmm_objects :
9 - 0: { l_ost_idx : 4, l_fid: [0 x100040000 :0 x299e :0x0] }

10 lcme_id : 2
11 lcme_extent . e_start : 16777216
12 lcme_extent .e_end: EOF
13 lmm_stripe_count : 2
14 lmm_objects :
15 - 0: { l_ost_idx : 3, l_fid: [0 x100030000 :0 x298d :0x0] }
16 - 1: { l_ost_idx : 1, l_fid: [0 x100010000 :0 x2980 :0x0] }

Listing 3.3: Applied Layout for Test 9
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4 Conclusion

4.1 Discussion & Limitations
The baseline tests executed in Table 3.1 showcase that three factors are important in
choosing a relevant striping layout

• detecting the IO pattern and type of a given job: is the job executing IO in a
file-per-process or in a single-shared-file mode?

• raw bandwidth / network bottlenecks: in the absence of other jobs, is a single
object storage server able to saturate the network link to a single compute node
and vice versa?

• activity on the cluster: are other running jobs already saturating the capabilities
of the storage backend?

The job submission plugin introduced above is able to deal with the first two factors
in a relatively straight forward way via global parameters and „world knowledge“. It
is assumed that a single job submission script does not change storage modes post-
submission and that the engineers setting up the system know the types ahead of
time. Should this not be the case then the plugin could be extended by analyzing
past executions and pulling information from a job database as is done with DCA-IO
[KSW+19].

The third factor is significantly more difficult to adjust for in a job submission plugin
as the plugin is executed when the job is submitted to the cluster not when it starts
executing. It would be feasible to adjust for this to some extent by adding the logic to
determine the appropriate PFL configuration to a short helper script whose execution
the plugin places just before the MPI executions in the job script. This script could then
query the cluster state and apply the configuration. Unfortunately this would not solve
problems arising during the execution of the job. Lustre currently does not allowing
modifying a file’s PFL configuration without completely rewriting it, which would add
considerable IO to the job just to account for changes in the cluster environment. As
such, if the SLURM or Lustre cluster load changes drastically post submission, the
mechanisms explored here are not able to adjust.

Additionally, it is important to note that the job submission plugin proposed in the
project has some significant limitations.

• SLURM job submission scripts are executed as the slurm user and not as the user
submitting the job. This can create issues if the user running SLURM does not
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have write privileges in the target directory to which the job would need to write.
In this case the script cannot default the progressive file layout at all.

• The plugin currently only supports a single PFL layout per job. This could be
extended to enable nested jobs to trigger different layouts, however there would
need to be an external way to communicate to the plugin which sub-steps perform
IO for which file targets since the SLURM job descriptor only passes the working
directory on submission. It could be feasible to perform this via user submitted
parameters in the submission script or by keeping a mapping of applications to
storage directories externally.

• The plugin currently does not consider storage or compute cluster utilization
during execution in any way. Noticeable the plugin cannot adjust the configuration
depending on active load after submission.

4.2 Future Work
In order to create a utility which is able to add I/O aware characteristics into SLURM
in a production-ready setup additional work is required. The proposed implementation
here would benefit from moving much of the static configuration, currently performed via
constants in the script, to a dynamic setup read from a database. This implementation
could expand the ideas discussed in DCA-IO [KSW+19] by measuring past executions
performance and tweaking the execution parameters accordingly.

On the level of an individual job submission the simple I/O categorization performed in
this project does not capture timing characteristics of job execution. It is likely that jobs
perform compute and I/O intensive workloads in bursts, within the same job. Practically
it is easy to imagine a job reading the input dataset, then performing a large amount of
computation, writing a checkpoint, performing additional computation and eventually
writing out the job results. Depending on the stage the parallelization (and storage
mode) may be different and further analysis would be needed to accurately capture these
patterns.

Additionally the functionality could be enhanced, in a similar fashion, by performing
scheduling decisions based upon the current load of the storage cluster. In this way the
execution order of I/O intensive tasks by SLURM could be delayed in favor of compute
intensive tasks if the Lustre system is currently under heavy load. This could improve
the overall task throughput (in terms task execution time) of the cluster by spacing out
utilization more evenly over time.

26



Bibliography
[Aut23] IOR Authors. IOR - User Documentation. Online, 2023. https://ior.

readthedocs.io/en/latest/userDoc/tutorial.html.

[Bra19] Peter Braam. The lustre storage architecture. arXiv preprint
arXiv:1903.01955, 2019.

[Cen23] National Energy Research Scientific Computing Center. NESRC Documen-
tation - Running Jobs. Online, 2023. https://docs.nersc.gov/jobs/.

[Dun23] Chris Dunlap. Munge Installation Guide. Online, 2023. https://github.
com/dun/munge/wiki/Installation-Guide.

[GEK+22] Junmin Gu, Greg Eisenhauer, Scott Klasky, Norbert Podhorszki, Ruonan
Wang, and Kesheng Wu. Exploring large all-flash storage system with
scientific simulation. In Proceedings of the 34th International Conference on
Scientific and Statistical Database Management, pages 1–4, 2022.

[Kli23] Deutsches Klimarechenzentrum. DKRZ: HLRE-4 Levante. Online, 2023.
https://www.dkrz.de/de/systeme/hpc.

[KSW+19] Sunggon Kim, Alex Sim, Kesheng Wu, Suren Byna, Teng Wang, Yongseok
Son, and Hyeonsang Eom. Dca-io: a dynamic i/o control scheme for parallel
and distributed file systems. In 2019 19th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGRID), pages 351–360.
IEEE, 2019.

[MBOD16] Rick Mohr, Michael Brim, Sarp Oral, and Andreas Dilger. Evaluating
progressive file layouts for lustre. In Cray User Group Conference (CUG
2016), 2016.

[OE23] OpenSFS and EOFS. Lustre Software Release 2.x Operations Manual. Online,
2023. https://doc.lustre.org/lustre_manual.xhtml.

[Pro22] TOP500 Project. TOP500 - November 2022. Online, 2022. https://www.
top500.org/lists/top500/2022/11/.

[SAS08] Hongzhang Shan, Katie Antypas, and John Shalf. Characterizing and predict-
ing the i/o performance of hpc applications using a parameterized synthetic
benchmark. In SC’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pages 1–12. IEEE, 2008.

27

https://ior.readthedocs.io/en/latest/userDoc/tutorial.html
https://ior.readthedocs.io/en/latest/userDoc/tutorial.html
https://docs.nersc.gov/jobs/
https://github.com/dun/munge/wiki/Installation-Guide
https://github.com/dun/munge/wiki/Installation-Guide
https://www.dkrz.de/de/systeme/hpc
https://doc.lustre.org/lustre_manual.xhtml
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/


[Sch23a] SchedMD. Slurm: A Highly Scalable Workload Manager. Online, 2023.
https://github.com/SchedMD/slurm.

[Sch23b] SchedMD. Slurm: Job Submit Plugin API. Online, 2023. https://slurm.
schedmd.com/job_submit_plugins.html.

[Tor22] Giovanni Torres. Slurm Docker Cluster. Online, 2022. https://github.
com/giovtorres/slurm-docker-cluster.

[WSHO17] Feiyi Wang, Hyogi Sim, Cameron Harr, and Sarp Oral. Diving into petascale
production file systems through large scale profiling and analysis. In Pro-
ceedings of the 2nd Joint International Workshop on Parallel Data Storage
& Data Intensive Scalable Computing Systems, pages 37–42, 2017.

[YJG03] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Job Scheduling Strategies for Parallel
Processing: 9th International Workshop, JSSPP 2003, Seattle, WA, USA,
June 24, 2003. Revised Paper 9, pages 44–60. Springer, 2003.

28

https://github.com/SchedMD/slurm
https://slurm.schedmd.com/job_submit_plugins.html
https://slurm.schedmd.com/job_submit_plugins.html
https://github.com/giovtorres/slurm-docker-cluster
https://github.com/giovtorres/slurm-docker-cluster


Appendices

29



List of Figures
1.1 SLURM Architecture [YJG03] . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 A typical distributed Lustre deployment [OE23] . . . . . . . . . . . . . . 5
1.3 Lustre File Write Operation [OE23] . . . . . . . . . . . . . . . . . . . . . 6
1.4 Lustre File Striping [OE23] . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Lustre Progress File Layout [OE23] . . . . . . . . . . . . . . . . . . . . . 8

2.1 Simple Cluster Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 IOR Configuration Options [Aut23] . . . . . . . . . . . . . . . . . . . . . 21

30



List of Listings
1.1 Retrieving the Lustre PFL definition . . . . . . . . . . . . . . . . . . . . 7

2.1 Submitting a Job on the local cluster . . . . . . . . . . . . . . . . . . . . 11
2.2 Enabling lua support in slurm.conf . . . . . . . . . . . . . . . . . . . . . 12
2.3 Installing SLURM Controller Node on Test Cluster . . . . . . . . . . . . 12
2.4 Installing SLURM Compute Node on Test Cluster . . . . . . . . . . . . . 13
2.5 SLURM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Starting slurmctld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Starting slurmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 Hello World Job Submit Plugin . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Configuring a PFL setup with lfs setstripe . . . . . . . . . . . . . . . . . 16

3.1 IOR Benchmark Job Submission Script . . . . . . . . . . . . . . . . . . . 21
3.2 Sample Execution for Test 9 . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Applied Layout for Test 9 . . . . . . . . . . . . . . . . . . . . . . . . . . 24

31



List of Tables
2.1 Docker Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 lfs setstripe command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Plugin Global Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Plugin Storage Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Performance Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Layout Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

32


	Introduction
	Slurm
	Lustre
	Striping
	Progressive File Layout
	Real Life Systems


	Implementation
	Local Development Setup
	Usage
	Noteworthy Modifications

	Setup on Test Cluster
	Installing SLURM
	Configuring Munge
	Configuring SLURM

	Job Submit Plugin
	Requirements
	Setting the Progressive File Layout
	Implementation Details


	Testing
	Performance Baseline
	Layout Selection

	Conclusion
	Discussion & Limitations
	Future Work

	Bibliography
	Appendices
	List of Figures
	List of Listings
	List of Tables

