
A Tool Framework for Static and Dynamic Analysis
of Object-Oriented Software with Templates

Kathleen A. Lindlan, Janice Cuny, Allen D. Malony, Sameer Shende
Department of Computer and Information Science

University of Oregon, Eugene, OR 97403
{klindlan, cuny, malony, sameer}@cs.uoregon.edu

Bernd Mohr
Zentralinstitut für Angewandte Mathematik

Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
B.Mohr@fz-juelich.de

Reid Rivenburgh, Computer Research and Applications Group
Craig Rasmussen, Advanced Computing Laboratory

Los Alamos National Laboratory, Los Alamos, NM 87545
{reid, rasmussn}@lanl.gov

Abstract
The developers of high-performance scien-

tific applications often work in complex computing
environments that place heavy demands on program
analysis tools. The developers need tools that interop-
erate, are portable across machine architectures, and
provide source-level feedback. In this paper, we
describe a tool framework, the Program Database
Toolkit (PDT), that supports the development of pro-
gram analysis tools meeting these requirements. PDT
uses compile-time information to create a complete
database of high-level program information that is
structured for well-defined and uniform access by
tools and applications. PDT’s current applications
make heavy use of advanced features of C++, in par-
ticular, templates. We describe the toolkit, focussing
on its most important contribution -- its handling of
templates -- as well as its use in existing applications.

1 Intr oduction
Increasingly, high-performance scientific

applications are being developed for complex comput-
ing environments where parallel and distributed code
executes across heterogeneous platforms. The pro-
grams may use multiple languages, frameworks,
libraries, and run-time systems, and they often depend
on state-of-the-art hardware and software configura-
tions that are constantly changing. The Advanced
Computing Laboratory (ACL) [2] at Los Alamos
National Laboratory (LANL) is typical of such envi-
ronments. Its researchers are using advanced software

technology (including object-oriented frameworks,
scalable run-time systems, and component architec-
tures) to develop a robust programming environment
for computationally-intensive scientific simulations.

Software developers at ACL need program
analysis tools that provide, at a minimum, the static
and dynamic analysis capabilities (compilation facili-
ties, debuggers, profilers,etc.) found in traditional
sequential environments. They must also function
across a diverse set of application programs, and inte-
grate easily with new tools as they are developed. Port-
ability across a variety of platforms is important.
Further, program analysis should be performed at a
level of abstraction that matches the programming
models used and gives feedback in terms of source
code constructs.

In this paper, we describe a tool infrastructure,
the Program Database Toolkit (PDT), that supports the
development of program analysis tools satisfying these
requirements. PDT uses compile-time information to
create a complete database of high-level program
information that is structured for well-defined and uni-
form access by tools and applications. The high-level
program information enables the construction of tools
that operate at an appropriate level of abstraction. The
use of compile-time, machine-independent intermedi-
ate representations enables the construction of tools
that are portable. The uniform access mechanisms
enable the construction of tools that can interoperate
with other tools and applications.

PDT is targeted to the current-generation pro-

0-7803-9802-5/2000/$10.00 (c) 2000 IEEE.

gramming languages commonly used in scientific
computing: C++, Fortran 90, and Java. The use of C++
for the development of ACL software frameworks pre-
sented a critical test case for PDT. Thus, the first ver-
sion of PDT includes analysis of the advanced object-
oriented constructs of C++, such as multiple inherit-
ance, namespaces, and template instantiations and spe-
cializations. Templates posed challenging analysis
problems, and their treatment is a focus of this paper.

In Section 2, we discuss the difficulties in sup-
porting C++ template analysis. In Section 3, we
describe the toolkit and its handling of templates.
Existing applications of PDT are presented in Section
4. In Section 5, we discuss research related to PDT
and, finally, in Section 6, we assess the results of our
work and outline future directions.

2 Challenges of Template Analysis
Templates are important constructs for object-

oriented software because they permit compile-time
polymorphism and generic programming. Consider
the templated code (shown in Figure 1) that defines a
Stack class to be created with any basic or user-
defined type (e.g., double or Integer) by substitu-
tion of theObject parameter. Each instantiation of a
template yields object code that handles one particular
type. Creation of template entities requires handling

that works not only for single instantiations of arbi-
trarily complex types, but also for multiple instantia-
tions and specializations.

Knowledge of template class definitions is
useful for certain static source analyses, but other anal-
yses will need to know how templates are instantiated.
Unless the front end or compiling system makes this
information available, it will be difficult for tools to
determine the instantiation results from object code.
Unfortunately, because templates are one of the more
recent and complex C++ features, their support by
compilers and analysis toolkits is frequently missing
or inadequate [9]. In addition, most compilers do not
provide easy access to intermediate program informa-
tion.

The Edison Design Group (EDG) [1][12] C++
Front End is production-quality software that is nearly
up-to-date with the C++ standard [6][18] in its support
of templates, namespaces, exception handling, and
pragmas. The EDG Front End outputs a high-level
intermediate language (IL) that preserves the informa-
tion available in source code, including original names
and locations. By default, the EDG Front End instanti-
ates templates with an automatic scheme. Compiling
source files generates object files and template infor-
mation files indicating potential instantiations. At link
time, when the prelinker encounters references to

template <class Object>
class Stack {
public:

explicit Stack(int capacity = 10);

bool isEmpty() const;
bool isFull() const;
const Object & top() const;

void makeEmpty();
void pop();
void push(const Object & x);
Object topAndPop();

private:
vector<Object> theArray;
int topOfStack;

};

template <class Object>
bool Stack<Object>::isFull() const {

return topOfStack == theArray.size() - 1;
}

template <class Object>
void Stack<Object>::push(const Object & x) {

if(isFull())
throw Overflow();

theArray[++topOfStack] = x;
}

template <class Object>
Object Stack<Object>::topAndPop() {

if(isEmpty())
throw Underflow();

return theArray[topOfStack--];
}

int main() {
Stack<int> s;

for(int i = 0; i < 10; i++)
s.push(i);

while(!s.isEmpty())
cout << s.topAndPop() << endl;

return 0;
}

Figure 1. C++ template definitions for an array-basedStack class and some member functions [19].

undefined template entities in object files, instantia-
tions are assigned to instantiation request files. The
source files needed for instantiation are then re-com-
piled. These steps continue until all templates are
instantiated. Unfortunately, this process does not
record and instantiate templates in the IL, where infor-
mation is accessible by an analysis tool. The EDG
Front End does, however, provide additional mecha-
nisms for more precise control of the instantiation pro-
cess. The “used” instantiation mode, enabled via a
command-line option, provides the alternative needed
by PDT. All template entities used in the compilation
are instantiated and represented in the IL; unused
member functions and static data members are not
instantiated unnecessarily, minimizing compilation
time and the size of the IL. Given the access to needed
information for even the advanced language features,
the EDG IL provides a useful starting point for PDT.

3 Program Database Toolkit
PDT provides applications easy access to

high-level language constructs used in source code. It
accomplishes this by filtering and reorganizing the
information represented in the intermediate language
trees produced during compilation by the EDG C++
Front End. Figure 2[4] shows the PDT framework and
its primary components. The first component, the IL
Analyzer [3][14], walks the IL tree, extracting the
high-level interface and outputting item descriptions to
a program database. These descriptions characterize
the program’s functions and classes, including tem-
plate instantiations, as well as templates, other types,
namespaces, macros, and source files. The second
component, the DUCTAPE (C++ program Database
Utilities and Conversion Tools APplication Environ-
ment) [3] library, provides an API to the database.

PDT is designed to support different program-
ming languages by utilizing multiple language-specific
front ends and IL Analyzers. The program database

Figure 2. Source code is parsed by compiler front ends. PDT’s IL Analyzers process the resulting intermediate language trees.
PDT’s DUCTAPE library makes the contents of PDB files available to applications. Existing applications are shown in the
right half of the figure.

format is intended to support common structures
across languages as well as language-specific con-
structs. The PDT architecture as it exists for C++ is
described further in this section.

3.1 IL Analyzer
The IL Analyzer processes an IL file to pro-

duce a human-readable “program database” (PDB)
containing information on high-level source constructs
(including source code locations). To do this, it
traverses the IL tree, reporting information on desig-
nated, high-level constructs as they are encountered.
Separate traversals for source files, routines, types,
classes, namespaces, templates, and macros allow
selection of the constructs to be reported, and prepend-
ing of distinguishing prefixes for common item
attributes.

In processing a node, all related nodes are pro-
cessed as well, so that a construct’s attributes are com-
pletely summarized in one entry. For example, in order
to report the functions a routine calls with other infor-
mation on the routine, the file’s IL tree is traversed
until a routine declaration is encountered, at which
time traversal switches to that routine’s tree. Consider-
able processing is required for some constructs. Calls
for constructors and destructors are not treated as stan-
dard routine calls by the Front End, since these rou-
tines are associated with objects having “lifetimes.”
PDT must process all contexts in which the lifetimes
are handled in order to determine the calling locations.
In some cases, extra processing is needed because the

IL was designed as input to a compiler back end, not
the IL Analyzer. Locations for some constructs are
maintained in supplemental data structures that must
be scanned, since they are not directly connected to the
IL constructs being processed.

Templates must be handled carefully. An EDG
instantiation mode that forces instantiation at compile
time is used so that instantiation information can be
available to PDT. IL subtrees are incorporated in the
IL tree for each instantiated class and routine, which
are then accessible to the IL Analyzer. The IL subtrees
indicate that an entity has been instantiated, not the
template from which it is derived. To compensate for
this, the IL Analyzer creates a list of templates in
advance, and then scans it to determine the template
corresponding to an instantiation’s locations. Because
the location of a specialization is not within the associ-
ated template’s definition, it is currently not possible
to determine the originating template for a specializa-
tion. To remedy this, template IDs would have to be
included in the IL constructs for instantiations and
specializations, which would require modification of
the EDG Front End.

3.2 Program Database
The IL Analyzer outputs item descriptions for

relevant programming language entities: source files,
routines, classes and other types, templates,
namespaces, and macros. Each description identifies
an item and lists its features. The identifier prefix indi-
cates the type of language construct:e.g., “ro#7 ”

Item Type Attributes of Item Prefix
all ITEMs source position
HEADER <PDB 1.0>
SOURCE FILES files included by source file so
ROUTINES template from which instantiated, parent class or namespace, access mode,

signature, functions called, characteristics specifying linkage, storage class,
virtuality, etc.

ro

CLASSES template from which instantiated, parent class or namespace, access mode, direct base
classes, friend classes and functions, characteristics, member functions, information on
other members, including access, kind, and type

cl

TYPES parent class or namespace, access mode, various characteristics, depending on type:e.g.,
for function types, return type, parameter types, presence of ellipsis, and exception class
IDs

ty

TEMPLATES parent class or namespace, access mode, kind, text of template te
NAMESPACES members of namespace or alias na
MACROS kind, text of macro ma

 Table 1: Program Database (PDB) Item Types, Attributes, and Prefixes

specifies routine 7. The subsequent sequence of lines
specifies the values of pertinent characteristics: for
example, attributes of a routine include parent class,
signature, the template from which it was instantiated,
and the routines it calls. Attributes for the different
item types are summarized in Table 1.The program
database is stored in a relatively compact and portable
ASCII format. Figure 3 shows excerpts from the PDB
file for the templatedStack code in Figure 1.

3.3 DUCTAPE Library
DUCTAPE is a C++ library that provides an

object-oriented API to PDB files produced by the IL
Analyzer. Each item type of the PDB format is repre-
sented by a class having a corresponding name. All
information about these items is accessible through
member functions of the DUCTAPE classes. Common
attributes were factored out into generic base classes,
resulting in the class hierarchy shown in Figure 4. The
root class of the hierarchy is pdbSimpleItem .
pdbSimpleItem s have two attributes, their name

<PDB 1.0> (1)

so#66 StackAr.h (2)
sinc so#71
sinc so#72
sinc so#73

so#71 /pdt/include/kai/vector.h
(3)

so#72 dsexceptions.h (4)

so#73 StackAr.cpp (5)

so#75 TestStackAr.cpp (6)
sinc so#66

te#559 Stack (7)
tloc so#66 23 15
tkind class
ttext template <class Object>

class Stack {...};
tpos so#66 22 9 NULL 0 0

so#66 23 9 so#66 40 9

te#566 push (8)
tloc so#73 72 14
tkind memfunc
ttext template <class Object>

void Stack <Object>::
push(const Object & x) {...}

tpos so#73 71 9 NULL 0 0
so#73 72 9 so#73 77 9

ro#7 push (9)
rloc so#73 72 29
rclass cl#8
racs pub
rsig ty#2058

rlink C++
rstore NA
rvirt no
rtempl te#566
rcall ro#32 no so#73 74 17
rcall ro#33 no so#73 76 21
rpos so#73 72 9 so#73 72 52

so#73 73 9 so#73 77 9

ro#32 isFull (10)
rloc so#73 27 29
rclass cl#8
racs pub
rsig ty#2054
rlink C++
rstore NA
rvirt no
rtempl te#562
rcall ro#31 no so#73 29 43
rpos so#73 27 9 so#73 27 43

so#73 28 9 so#73 30 9

ty#5 int (11)
ykind int
yikind int

cl#8 Stack<int> (12)
cloc so#66 23 15
ckind class
ctempl te#559
cfunc ro#6 so#73 7 24
cfunc ro#8 so#73 17 29
cfunc ro#32 so#73 27 29
cfunc ro#766 so#66 30 28
cfunc ro#767 so#66 32 18
cfunc ro#768 so#66 33 18
cfunc ro#7 so#73 72 29
cfunc ro#9 so#73 85 31

cmem theArray
cmloc so#66 38 28
cmacs priv
cmkind var
cmtype cl#63
cmem topOfStack
cmloc so#66 39 28
cmacs priv
cmkind var
cmtype ty#5
cpos so#66 23 9 so#66 23 19

so#66 24 9 so#66 40 9

ty#9 bool (13)
ykind bool
yikind char

ty#14 void (14)
ykind void

ty#49 const int & (15)
ykind ref
yref ty#439

ty#439 const int (16)
ykind tref
ytref ty#5
yqual const

ty#2054 bool () const (17)
ykind func
yrett ty#9
yqual const

ty#2058 void (const int &) (18)
ykind func
yrett ty#14
yargt ty#49 F

Figure 3. Excerpts from the PDB file for theStack code. The header fileStackAr.h (so#66 at (2)) “includes” the
implementation fileStackAr.cpp (so#73 at (5)), so that templates are instantiated in the PDB file. These files define the
class templateStack (te#559 at (7)). (Strings containing template definitions have been partially deleted here.) The
Stack<int> class (cl#8) instantiateste#559 . Attributes and members of the class are given at (12). TheStack<int>
functionpush() (ro#7) instantiates a function template (te#566 at (8)). Attributes ofpush() , and the routines it calls, are
specified at (9). The function signature (ty#2058) reveals return and parameter types at (18).

pdbFile

pdbSimpleItem

pdbItem

pdbMacro

pdbClass

pdbNamespace

pdbType pdbFatItem

pdbTemplateItem

pdbRoutine

pdbTemplate

pdbClassField

Table 2: DUCTAPE Utilities

Utility Functionality
pdbconv converts files in the compact PDB format into a more readable format
pdbhtml automatically creates web-based documentation that enables navigation of code via HTML links
pdbmerge merges PDB files from separate compilations into one PDB file, eliminating duplicate template instantia-

tions in the process
pdbtr ee displays file inclusion, class hierarchy, and call graph trees

and PDB ID. Derived from pdbSimpleItem s are
pdbFile s and more complex pdbItem s, which
have a source code location, possibly a parent class or
namespace, and an access mode.pdbItem s arepdb-
Macro s, pdbType s, or so-called “fat” items.pdb-
FatItem s have a header and a body, and attributes
describing the source location of these parts.pdb-
FatItem s include pdbTemplate s, pdb-
Namespaces, and pdbTemplateItem s.
pdbTemplateItem s are entities that can be instan-
tiated from templates. The internal base classes are
useful in DUCTAPE application programs when heter-
ogeneous lists of items must be processed or stored
(for example, list<pdbTemplateItem> can
store a list of all template instantiations).

In addition, there is a classPDB that represents
an entire PDB file. It provides methods to read, write,
and merge PDB files, and to get the source file inclu-
sion tree, the static call tree, and the class hierarchy. It
provides a list of all items contained in the PDB file as
well as lists of all defined types, files, classes, routines,

templates, macros, and namespaces. Attributes of
items representing references to other entities are
implemented in DUCTAPE by pointers to the corre-
sponding objects, allowing easy navigation through
the available program information.

With the DUCTAPE library, PDT provides
useful static analysis tools --pdbconv, pdbhtml , pdb-
merge, and pdbtr ee. Their functionality is summa-
rized in Table 2. These applications also serve as
examples of programming with the DUCTAPE library.
The primary routine thatpdbtr ee uses to display call
graphs, for example, is given in Figure 5. In relatively
few lines of code, a tool of some complexity was eas-
ily implemented using the DUCTAPE API.

4 Applications Using PDT
To demonstrate PDT’s range of utility and

ease of use, we report on two different applications --
the TAU (Tuning and Analysis Utilities) framework
[17] and the SILOON (Scripting Interface Languages
for Object-Oriented Numerics) toolkit [16] -- that uti-

Figure 4. DUCTAPE Class Hierarchy

lize PDT. TAU uses PDT to generate information
needed to automatically instrument C++ source code.
SILOON uses PDT in the generation of glue and skel-
eton code required in providing scripting language
access to scientific libraries.

4.1 TAU Performance Profiling
TAU provides performance instrumentation,

measurement, and analysis tools for the C/C++, For-
tran, and Java languages. Its profiling and tracing tool-
kit currently uses PDT for automatic instrumentation
of C++ source code. The TAU instrumentor iterates
through the PDB descriptions of functions and tem-
plates to rewrite the original source file, annotating the
functions with TAU measurement macros. The trans-
lated source code can subsequently be compiled and
linked with the TAU library. When the executable is
run, complete run-time statistics are collected, ana-
lyzed, and displayed via TAU.

Templates posed several problems in source-
level instrumentation. A source-level instrumentation
strategy for templates that is portable and independent
of compiler instantiation schemes requires generation
of a unique string for each template instantiation that
identifies, if possible, the type information of the tem-
plate parameters and return value along with the tem-
plate name. TAU accesses C++ type information for
instantiated templates at run time via theCT(obj)

macro, which returns a string containing the type of
the objectobj . For each template, TAU determines if
the given routine belongs to a class and that it is not a
static member function, as shown in Figure 6. If these
conditions are satisfied, then TAU inserts
CT(*this) , which returns the type of the object
with which the member function is associated. The
unique instantiation of the class can therefore be incor-
porated in the name of an instantiated template, as in:

template<class T>
class vector {
public:
vector(int size) {

TAU_PROFILE(“vector::vector()”,
CT(*this), TAU_USER);

...
}

}
The Program Database Toolkit has been in use

by TAU since early fall 1998, when it was applied to
the POOMA (Parallel Object-Oriented Methods and
Applications) [5] framework. POOMA uses templates
extensively to provide array-related algorithms and
manage allocation of system and network resources.
Using PDT’s predecessor (Sage++ [9]), automatic
instrumentation of POOMA code had been attempted
with TAU, but difficulties were encountered in parsing
POOMA’s complicated template entities. PDT’s use of

static void printFuncTree(const pdbRoutine *r, int level) {
r->flag(ACTIVE);
pdbRoutine::callvec c = r->callees();
for (pdbRoutine::callvec::iterator it=c.begin(); it!=c.end(); ++it) { (1)

const pdbRoutine *rr = (*it)->call();
if (level != 0 || rr->callees().size()) {

cout << setw((level-1)*5) << "";
if (level) cout << "`--> ";
cout << rr->fullName(); (2)
if ((*it)->isVirtual()) cout << " (VIRTUAL)";
if (rr->flag() == ACTIVE) {

cout << " ..." << endl;
} else {

cout << endl;
printFuncTree(rr, level+1); (3)

}
}

}
r->flag(INACTIVE);

}

Figure 5. Source code from DUCTAPE’s pdbtr ee utility displays the static call graph. Thefor loop (at (1)) iterates over
functions called by the current function, reporting them (at (2)) as well as the functions that they call, recursively (at (3)).
Functions instantiated from templates are automatically included in the vector of called functions.

// Get the list of templates.
PDB::templatevec u = pdb.getTemplateVec();
for(PDB::templatevec::iterator te = u.begin(); te != u.end(); ++te) { (1)

if ((*te)->location().file() == file) {
pdbItem::templ_t tekind = (*te)->kind();
if ((tekind == pdbItem::TE_MEMFUNC) (2)
 (tekind == pdbItem::TE_STATMEM) ||
 (tekind == pdbItem::TE_FUNC)) {

// Templates need some processing.
// The target helps identify if we need to put a CT(*this) in the type.
if ((tekind == pdbItem::TE_FUNC) || (tekind == pdbItem::TE_STATMEM)) { (3)

// There's no parent class. No need to add CT(*this).
itemvec.push_back(new itemRef(*te, true));

} else {
// It is a member function, so add CT(*this) via “false” argument
itemvec.push_back(new itemRef(*te, false));

}
}

}
}
sort(itemvec.begin(), itemvec.end(), locCmp);

the EDG Front End eliminated the C++ parsing prob-
lems. Figure 7 shows profile displays of time spent in
POOMA’s Krylov Solver routines that were generated
with TAU automatic instrumentation.

4.2 SILOON
SILOON provides scientists with toolkits and

run-time support for building easy-to-use external
interfaces to existing high-performance libraries. The
external interfaces are orchestrated via scripting lan-
guages to create domain-specific problem-solving
environments. To achieve this, SILOON automatically
generates bridging code that allows users to interface
Perl and Python scripts with C++ libraries, as shown in
Figure 8.

The SILOON toolkit uses PDT to parse source
code from existing object-oriented class libraries and
extract information regarding the interfaces to func-
tions and class methods. This information is then used
to generate bridging code, which, when compiled, pro-
vides the run-time support for linking user scripts with
back-end computational engines. The code generation
builds language-specific wrapper functions and lan-
guage-independent bridging code. The wrapper func-
tions are written in the scripting language, and provide

a natural and convenient interface to the C++ library.
The wrapper functions call the lower-level bridging
functions written in C++ and accessible across all
scripting languages. These functions register user-des-
ignated library routines with SILOON’s routine man-
agement structures, and process function calls from
the scripting languages.

With PDT, users simply give their C++ source
code as input to SILOON, rather than specify their
interfaces in an interface definition language (IDL).
While there are applications similar to SILOON
(SWIG [8] being the most well-known), none offers
the same level of support for C++. Because PDT uses
an ANSI-compliant C++ parser, SILOON is able to
handle many of the complexities of C++ correctly,
including:

• templated classes and functions,
• virtual and static member functions,
• constructors and destructors,
• overloaded operators and functions,
• default function arguments,
• references,
• enumerations,
• typedef s, and
• the Standard Template Library (STL).

Figure 6. Using PDT, the TAU instrumentor ascertains that a template is a class member function before using run-time type
information (RTTI). The for loop iterates over all templates (at (1)). Theif condition filters out non-function templates (at
(2)). Theif-else statement specializes the processing of member and non-member functions (at (3)).

Without PDT’s capabilities, many of the above fea-
tures would not be available in SILOON.

Templates are treated the same as other enti-
ties by SILOON, with the exception that non-alphanu-
meric characters in the name are mangled (i.e.,
transformed to include information on types and quali-
fiers), so that they can be accessed in scripting lan-
guages. To handle templates in SILOON, it is
necessary to instantiate and compile into the SILOON
library any templates that the user wants to be avail-
able. Currently, the user must explicitly instantiate
such templates in the parsed code; only these instantia-
tions are included in PDT’s output. A useful extension
to PDT would be to provide access to all templates,
whether instantiated or not. SILOON could then
present a template list to the user, and automatically
generate instantiations of selected templates.

5 Related Work
Other systems that concentrate on high-level

language interfaces in software development exist.
The four with a focus most similar to the Program
Database Toolkit are discussed here. Sage++ [9] is an
object-oriented compiler toolkit that assists in con-
structing source-to-source translation tools. It uses a
three-step process: source code is parsed, the parse
tree restructured, and the restructured tree unparsed.

The Sage++ class library enables construction and
insertion of profiling objects at the beginning of rou-
tine structures during the second step. It was used in
previous versions of TAU, but does not adequately
support templates. The ASTLOG [10] language was
developed for an analysis and debugging tool. Like the
IL Analyzer, this tool extracts high-level interfaces
from C++ code, accessing the syntax tree via user-
defined node traversal and pattern matching predi-
cates, and accumulating query results using the under-
lying set predicates of Prolog. Unfortunately, the
ASTLOG tool does not provide information about
source code locations. In the Concert [7] distributed
system, compilation produces an intermediate repre-
sentation that is an interface definition language. Pro-
grammers annotate C or Fortran code (without
templates), enabling the Concert front end to derive
interfaces that become input for two back ends, a stub
compiler and an interpreter that “generate” marshal-
ling and unmarshalling of message signatures. The
resulting interfaces ensure the interoperability of dif-
ferent languages in a distributed setting, and can
describe implementation-related information, such as
order and memory layout of parameters. SUIF (Stan-
ford University Intermediate Format) [20] and its
extension OSUIF (Object SUIF) [11] provide compiler
infrastructure toolkits that enable optimization.

Figure 7. TAU automatically instrumented POOMA’s Krylov solver using PDT.Figure 7. TAU automatically instrumented POOMA’s Krylov solver using PDT.

Whereas SUIF’s goal was development of techniques
for parallelization, OSUIF’s focus is on compilation of
object-oriented languages. In OSUIF, high-level infor-
mation on object-oriented source language constructs
is accessible. However, OSUIF efforts are not aimed at
providing an infrastructure for tool development in the
manner of PDT. All of these systems had limitations
precluding their use in complex applications: limited
support for recent features of C++, lack of source loca-
tion information, manual specification of interfaces, or
lack of an appropriate infrastructure for tools.

6 Conclusions and Future Work
Version 1.3 of the Program Database Toolkit

for C++ has been released [3]. The distribution
includes the C++ Front End, the IL Analyzer, and
DUCTAPE, all of which process templates and instan-
tiations. In addition, the TAU performance instrumen-
tation tool, SILOON analysis support, and various
PDT processing tools (pdbmerge, pdbconv, pdbtr ee,
andpdbhtml) are available for use with PDT 1.3. All
handle template entities. The inclusion of KAI’s [13]
3.4c standard library header files has significantly
improved PDT’s robustness of parsing and analysis,
while increasing the scope of supported platforms and
simplifying configuration.

Support for multiple programming languages
is crucial in the high-performance environments in
which the Program Database Toolkit is used. We plan
to extend PDT’s scope to support the Fortran 90 and
Java languages. The challenge is to determine where

the C++ PDB constructs can be reused, and where they
must be extended to provide language-specific sup-
port. For instance, TAU must know the locations of
Fortran routine entry and exit points to insert profiling
instrumentation. A Fortran 90 IL Analyzer is currently
being implemented,1 and the structure of the program
database modified, to handle Fortran 90’s constructs.
Fortran derived types and modules will correspond to
C++ classes/structs/unions, while Fortran interfaces
will correspond to routines with aliases. Fortran array
features will be specified with new attributes. DUC-
TAPE will be enhanced to accommodate these
changes to the program database. We are also planning
to develop a Java IL Analyzer based on EDG’s Java
Front End, with the PDB and DUCTAPE enhanced to
accommodate Java’s constructs. In general, if the Pro-
gram Database Toolkit can make a language-specific
parse tree accessible in a uniform manner, static analy-
sis tools and other applications can be built that pro-
cess different languages in a uniform and consistent
way.

7 Acknowledgments
This work has been supported by DOE2000

grant #DEFC0398ER259986 and ASCI Level 3 grant
#03588-001-994R from the Department of Energy.

1 This IL Analyzer is derived from the Fortran 90
Front End distributed by Mutek [15], which was
based on the Fortran 77 Front End distributed
by EDG [12].

Figure 8. Using PDT, SILOON automatically generates code that links scripting languages with user libraries.

8 Bibliography
[1] J. S. Adamczyk and J. H. Spicer. Template

Instantiation in the EDG C++ Front End. Edison
Design Group Technical Report, 1995.

[2] Advanced Computing Laboratory/LANL. ACL
Research. http://www.acl.lanl.gov/research/,
1999.

[3] Advanced Computing Laboratory/LANL. PDT:
Program Database Toolkit. http://
www.acl.lanl.gov/pdtoolkit/, 1999.

[4] Advanced Computing Laboratory/LANL. PDT:
Program Database Toolkit. Supercomputing ‘99
flyer, Los Alamos National Laboratory Publica-
tion, LALP-99-204, November 1999.

[5] Advanced Computing Laboratory/LANL.
POOMA: Parallel Object-Oriented Methods and
Applications. http://www.acl.lanl.gov/pooma/,
1999.

[6] ASC X3. International Standard: Programming
Languages - C++. ISO/IEC 14882. Information
Technology Council (ITI), 1998.

[7] J. S. Auerbach and J. R. Russell. The Concert
Signature Representation: IDL as Intermediate
Language. SIGPLAN Notices, vol. 29, no. 8, pp.
1-12, August 1994.

[8] D. M. Beazley. SWIG: Simplified Wrapper and
Interface Generator. http://www.swig.org/, 1998.

[9] F. Bodin, P. Beckman, D. Gannon, S. Narayana,
S. Srinivas, and B. Winnicka. Sage++: A Class
Library for Building Fortran 90 and C++
Restructuring Tools. Proceedings OONSKI94,
the Second Annual Object-Oriented Numerics
Conference, pp. 122-138, April 1994.

[10] R. E. Crew. ASTLOG: A Language for Examin-
ing Abstract Syntax Trees. Proceedings of the
Conference on Domain-Specific Languages, pp.
229-242, October 1997.

[11] A. Duncan, B. Cocosel, C. Iancu, H. Kienle, R.
Rugina, U. Hoelzle, and M. Rinard. OSUIF:
SUIF 2.0 with Objects. Second SUIF Compiler
Workshop, August 1997.

[12] Edison Design Group. Compiler Front Ends for
the OEM Market. http://www.edg.com/, 1998-
1999.

[13] Kuck & Associates, Inc. KAI. http://
www.kai.com/, 1999.

[14] K. Lindlan, J. Cuny, A. D. Malony, S. Shende,
and P. Beckman. An IL Converter and Program
Database for Analysis Tools. Proceedings of 2nd
SIGMETRICS Symposium on Parallel and Dis-
tributed Tools, p. 153, August 1998.

[15] Mutek. Fortran 90 Front End Documentation.
http://www.mutek.com/, 1999.

[16] R. D. Rivenburgh, C. E. Rasmussen, K. A. Lind-
lan, B. Mohr, and P. H. Beckman. Automatic
Generation of Perl Extensions to C++ and For-
tran 90 Class Libraries. O’Reilly Open Source
Software Convention, July 2000.

[17] S. Shende, A.D. Malony, J. Cuny, K. Lindlan, P.
Beckman, and S. Karmesin. Portable Profiling
and Tracing for Parallel, Scientific Applications
Using C++. Proceedings of 2nd SIGMETRICS
Symposium on Parallel and Distributed Tools,
pp. 134-145, August 1998.

[18] B. Stroustrup. The C++ Programming Lan-
guage, Third Edition. Addison-Wesley, 1997.

[19] M. A. Weiss. Data Structures and Algorithm
Analysis in C++. Benjamin Cummings, 1994.

[20] R. Wilson, R. French, C. Wilson, S. Amaras-
inghe, J. Anderson, S. Tjiang, S.-W. Liao, C.-W.
Tseng, M. Hall, M. Lam, and J. Hennessey.
SUIF: An Infrastructure for Research on Paral-
lelizing and Optimizing Compilers. ACM SIG-
PLAN Notices, vol. 29. no. 12, pp. 31-37,
December 1994.

