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Due to the need to compute enormous 

computer resources (time, memory).

→ Parallel Computing:

- Solving a task by simultaneous use of

multiple processors, which are components

of a unified architecture.

- There might be disturbances such as

system and network noise, delays caused

by one-off events, etc.

1. Introduction 
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What are idle waves?

- Long one-off delays from one process cause periods of idleness, which

later ripple through the system and affect other processes.

- Idleness: a state of delay, where the process needs to wait for information.

Consequences:

- Delay performance of the application

- Desynchronization among processes

→Automatic communication overlap
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Goals of the study: 

- Analytic modelling of the propagation speed of Idle waves 

in scalable code with respect to: 

- Communication topology

- Communication concurrency. 

- Interaction of idle waves with MPI collectives.

- Initiation of idle wave decay and analyse of decay rate:

- Topological Decay

- Noise-induced Decay
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Interprocess communication: 

- Processes executing concurrently in the operating system 

may be independent or cooperating processes. 

- Independent: Processes not affecting each other

- Cooperating: Processes share data with each other and thus have 

effects on each other. 

- Advantages of cooperating processes: Information sharing, 

computation speedup, convenience, modularity. 

2. MPI
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- Cooperating processes require an interprocess 

communication (IPC) mechanism that allows exchanging 

data and information. 

- Two fundamental models: 

- Shared memory 

- Message passing 
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Process A 

Shared memory

Process B 

Kernel 
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Shared Memory: Exchanged 

Data are written and read on 

the shared memory region. 

Message Passing: 

Communication takes place by 

means of messages exchanged 

between processes. 

2. MPI
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MPI : Message-passing library interface specification

- A standardized and portable message-passing standard 

designed to function on parallel computing architectures. 

- Useful in distributed memory environment, where 

communication processes located on different computer 

nodes. 

- Language bindings: C, C++, Fortran 
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- Two main operations: 

- Send(messages) and Receive(messages)  
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- Synchronous or asynchronous communication: 

- Synchronous (Blocking) : Send and receive must be completed before 

conducting another process

- Asynchronous (Non-Blocking) : Computation and communication 

can be conducted at the same time ( MPI_Wait , MPI_Test to see if 

the communication is finished)

- Rank is a unique identifier for each processor.
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3. Test bed and experimental methods

- Three clusters Emmy, SuperMUC-NG and Hawk

- Process-core affinity was enforced and multiple 

characteristics are adjusted in order to conduct the study. 

- Process scalability: latency-bound communication and 

compute-bound workload

- One-off idle periods are deliberately generated by 

massively expanding one computational phase via doing 

extra work on one random MPI process, usually rank 5 in 

this study. 
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3. Test bed and experimental methods

- Barrier free bulk synchronous parallel programs

- Distributed-memory parallel system using one MPI 

process per contention domain (typically ccNUMA)

Compute

Sync

Exchange

Figure 1: Hybrid architecture with shared-memory nodes 

(typically ccNUMA) (4) 
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4. Related works

Figure 3: The delay propagation 

mechanism in the most simple 

setting (3)
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Figure 2: Physical mechanism for 

the generation of idle waves in 

computation in 9 processes (2)



5.1. Execution Characteristics 

- Traditional memory-bound algorithms such as stencil updates or 

SpMV with one MPI process per contention domain (ccNUMA 

node) 

- In-core workload

5. Idle Wave Propagation Velocity for 

Scalable code 
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5.2. Categorization of communication characteristics 

- Assuming P2P Homogeneous Situation

Communication Topology: A consequence of the physical 

problem underlying the numerical method and of the 

algorithm(discretization, geometry). 

- Compact Topology: 

- Each process communicates with a dense, continuous array of 

neighbours with distances d (±1, ±2, ±3, …. ±12)

- Noncompact Topology: 

- Each process communicates with processes that are not continuous 

block d (±1,±12)
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Figure 4: Communication topology with bidirectional open chain characteristics (1)
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5. Idle Wave Propagation Velocity for 

Scalable code 
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Communication concurrency: 

- The number of P2P communications are grouped and subject to completion 

via MPI_Waitall.

Cartesian Communicator example:  Dim [1] = 4

Dim[0] = 3

rank

(row, column)

source/des

Figure 5: Example Cartesian communicator (6)
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5. Idle Wave Propagation Velocity for 

Scalable code 

Assuming that all P2P communication is nonblocking

Table 1: Selected algorithms for communication concurrency in the MPI Microbenchmarks (1)
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5. Idle Wave Propagation Velocity for 

Scalable code 

5.3. Analytical Model of Idle Wave Propagation 

- Propagation speed of an idle wave is the speed, in ranks per 

second, with which it ripples through the system. 

- Restriction: Open boundary conditions across the MPI 

Processes 

→Affects the survival time and not the propagation speed of 

the wave 

20 / 41



Analytic Modeling of Idle Waves in Parallel Programs

5. Idle Wave Propagation Velocity for 

Scalable code 

Corner Cases:  

Minimum: Min Speed, Max Survival time 

- Simple direct next-neighbour communication ( d = 1 )

- 𝑇𝑒𝑥𝑒𝑐 and 𝑇𝑐𝑜𝑚𝑚: Execution and communication times of 

one iteration of the bulk-synchronous program 

→ The wave survives until system boundaries.
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5. Idle Wave Propagation Velocity for 

Scalable code 

Maximum: Max Speed, The wave dying out quickly in a 

minimum of one time step. 

𝑟𝑖𝑛𝑗𝑒𝑐𝑡 : The rank where the idle wave originated 

𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑚: The total number of MPI processes 
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5. Idle Wave Propagation Velocity for 

Scalable code 

Multi-neighbour Communication:

𝑘 is the distance (in processes) travelled by the wave in one time step 

(depending on communication topology and concurrency). 

𝑗 is the longest-distance communication partner of a process. 
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5. Idle Wave Propagation Velocity for 

Scalable code 

5.4. Experimental validation 

Microbenchmarks: 

- One-off idle wave originated at rank 5, dark blue

- Execution time = 13ms ( light blue) and a data volume of 1 

KiB per message. 
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5. Idle Wave Propagation Velocity for 

Scalable code 

Compact Communication: 

Figure 6: Validation for compact communication (1)
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5. Idle Wave Propagation Velocity for 

Scalable code 

Compact Communication: 

- Propagation speed of idle waves is independent of the number

of split-waits

- Higher speed:

o Communication distance goes up with increasing number of

communications of communication partners

o Number of dimensions spanned within each MPI_Waitall

- Higher 𝑘→ higher speed → shorter survival time.

- Slower wave propagation→ more waiting time

→ Resource utilization across processes.
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5. Idle Wave Propagation Velocity for 

Scalable code 

Noncompact Communication 

Figure 7: Validation for noncompact communication (1)
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5. Idle Wave Propagation Velocity for 

Scalable code 

Noncompact Communication 

- Difference between propagation speed of the “fast waves” and

that of the “secondary waves” → Only fast waves remain.

- Higher speed of residual waves:

o A larger number of split-waits

o A smaller number of communication dimensions spanned by each

MPI_Waitall

o A larger longest communication distance j

- The zigzag pattern dies out for MWSDim and MWMDim but

remains for SWMDim
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5. Idle Wave Propagation Velocity for 

Scalable code 

Heterogeneous Communication 

Figure 8: Idle wave propagation with heterogeneous compact communication characteristics 

(a) Topology matrix; (b) Idle wave propagation for SWMDim concurrency. (1)
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- MPI supports Point-to-Point communication and collective 

functions for communication among multiple computer 

nodes

- Not all MPI collective routines eliminate a traveling idle 

wave, some may be permeable to it, depending on the 

implementation. 

- Restriction: Intel MPI on Emmy

6. Idle Waves Interacting with MPI 

Collectives 
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6. Idle Waves Interacting with MPI 

Collectives 

Analytic Modeling of Idle Waves in Parallel Programs

- Globally synchronizing 

Primitives 

→ Destroy idle waves completely

- Globally Non-synchronizing 

Primitives

- MPI_Reduce

- MPI_Gather

- Implementation Variants 

- I_MPI_ADJUST_<opname>

Figure 9: Interaction of idle waves with 

MPI Collectives (1) 
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Idle wave decay is the phenomenon where idle waves are damped 

in time. 

7.1. Topological Decay

- Three benchmarks Hawk, Emmy, SuperMUC-NG have 

different features in respect to system topology. 

- Communication heterogeneities→ Fine-grained noise→ Idle 

wave decay. 

- Decay rate: Emmy has the strongest effect then Hawk and lastly 

SuperMUC-NG

7. Idle Wave Decay 

Analytic Modeling of Idle Waves in Parallel Programs 32 / 41



7. Idle Wave Decay 
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Figure 10: Topological idle wave decay on the benchmark systems. (1)

33 / 41



7.2. Noise-Induced Decay 

- Fine grained noise effects on idle wave decay with resource-

scalable code

- Noise eliminates the trailing edge of the wave

- A small idle period of duration 𝑇𝑛𝑜𝑖𝑠𝑒 shortens the next by 

the exact amount of 𝑇𝑛𝑜𝑖𝑠𝑒

→Cumulative process

- Only noise power and not the noise characteristics that has 

an impact on noise-induced decay rate. 
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Figure 11: Experiment comparing the average decay rate of an idle wave for 2 

different noise characteristics (1) 
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7.3. Experimental validation
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Figure 12: Decay rate of an idle period in s/rank, comparing 3 different noise patterns (1)

7. Idle Wave Decay 
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- Analytic model of idle wave propagation speed based on

communication topology and concurrency of resource-scalable

MPI.

- MPI collectives can be permeable to idle waves depending on

which collectives we use and how we implement or adjust them.

- System Topology → Fine-grained noise → Impact on idle wave

decay rate.

- Only noise power and not noise characteristics has an impact on

noise-induced decay rate.

8. Summary
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