
A Performance Analysis of Modern Parallel Programming
Models Using a Compute-Bound Application

Duy Dung Nguyen

25.01.2022

Seminar Supercomputer: Forschung und Innovation

Arbeitsbereich Wissenschaftliches Rechnen

Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften

Universität Hamburg

Table of contents

1. Introduction
• Modern parallel programming models
• miniBUDE as a benchmark

2. Performance Analysis

3. Results of the performance analysis
• CPUs
• GPUs

4. Towards achieving performance portability / Summary

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
2/32

Introduction

Modern Parallel Programming Models

• A set of program abstractions for fitting parallel activities from the
application to the underlying parallel hardware.

• Shared memory and threads.

• The C++ language.

• OpenMP (for CPU and offload), OpenCL, CUDA, OpenACC, Kokkos and
SYCL.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
4/32

Performance portability

• What is Performance portability?

→ “Performance portability means the same source code will run
productively on a variety of different architectures" (Larkin)

• Portability is a common concern for developers—and users—of modern
programming models.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
5/32

miniBUDE as a benchmark

• A mini-app created from the core
computation kernel for BUDE
(Bristol University Docking
Engine).

• Each subdirectory contains a
separate C/C++ implementation.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 6/32

miniBUDE is a compute-bound application

Compute-bound (CPU bound)

▪ means the rate at which process
progresses is limited by the speed
of the CPU.

▪ Example: multiplying small
matrices.

Memory-bound

▪ means the rate at which a process
progresses is limited by the
amount memory available.

▪ Example: multiplying large
matrices.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
7/32

Performance Analysis

Hardware platforms and compilers used

• Aggressive compiler
optimization flags to the level of
–march=native -0fast.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 9/32

25.01.2022 Seminar Supercomputer: Forschung und Innovation 10/32

Performance Analysis

• On CPU platforms, hardware counters were accessed through the built-in
Linux perf tool.

• On GPUs, NVIDIA CUDA profiler and the OpenCL intercept layer were
used.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
11/32

Results of the performance analysis

OpenMP, Kokkos und SYCL

CPUs

OpenMP - Introduction

• An Application Program Interface (API)

• Gives parallel programmers a simple and flexible interface for developing
portable parallel applications.

• The API is specified for C/C++ and Fortran

• API components:

➢ Compiler Directives

➢ Runtime Library Routines

➢ Environment variables

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
14/32

OpenMP - Performance on CPUs

• There is no OpenMP
implementation that works
optimal on every single platform.

• AMD seems to be a good choice.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 15/32

OpenMP - Performance on CPUs

• Cache-aware roofline for the
Cascade Lake platform showing
the achieved performance for
miniBUDE.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 16/32

Kokkos - Introduction

• Parallelism expressed via the idiomatic Kokkos:: parallel_for function.

o ParallelFunctor functor;

Kokkos::parallel_for(numberOfIterations, functor);

• A C++ compiler is the only requirement.

• Kokkos lets you write algorithms once and run on many architectures,
including both CPUs and GPUs.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
17/32

Kokkos – Performance on CPUs

• The results shows a strong
correlation compared to the
OpenMP implementation
results.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 18/32

SYCL - Introduction

• Enables code to be written in a “single-source” style using completely
standard C++.

• The kernel is a direct port of the OpenCL version.

• For comparison, a separate kernel that is closer to the OpenMP was
implemented.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
19/32

SYCL - Performance on CPUs

• Only results on platforms where
at least two implementations
were supported.

• The Skylake platform is missing
from these results.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 20/32

Open CL, CUDA, OpenMP Offload, Open ACC, Kokkos und SYCL

GPUs

Low-level: OpenCL and CUDA

OpenCL

• A framework for writing
programs that execute across
heterogeneous platforms
consisting of CPUs, GPUs and
other processors.

CUDA

• Is a parallel computing platform
and programming model
developed by Nvidia for general
computing on its own GPUs.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 22/32

Low-level: OpenCL and CUDA

• On the NVIDIA V100: the CUDA implementation was 18% faster than the
OpenCL code.

• Both versions also ran on the AMD Radeon VII, but OpenCL was 1.6×
faster on this platform.

• CUDA and HIP cannot be used on the Intel GPU.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
23/32

Directives-Based: OpenMP Offload and OpenACC

OpenMP Offload

• In OpenMP API 4.0, the
specification provides a set of
directives to instruct the
compiler to offload a block of
code to the device.

OpenACC

• A programming standard for
parallel computing on
accelerators (mostly on NIVDIA
GPU).

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
24/32

Directives-Based: OpenMP Offload and OpenACC

• Virtually identical performance on the V100.

• The directives-based approach showed about 0.4× the performance of
the optimized CUDA code.

• On the Radeon, OpenACC was two orders of magnitude slower than
OpenMP, which in turn only reached 0.3× the performance of the fastest
model, OpenCL.

• On the Intel GPU, OpenMP target reached only 0.2−0.3× the
performance of the fastest model (SYCL).

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
25/32

High-level: Kokkos and SYCL

• Kokkos and SYCL both run on all the GPUs studied, but only one
implementation, hipSYCL, runs on AMD and NVIDIA.

• Kokkos: the code run on the GPU platforms was unchanged from the
version run on CPUs.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
26/32

Performance of the GPU implementations

• A direct performance
comparison between these
platforms is not useful.

• CUDA (V100) = 2× OpenCL
(RadeonVII) = 14× SYCL (Iris
Pro580)

25.01.2022 Seminar Supercomputer: Forschung und Innovation 27/32

Towards achieving performance portability -
Summary

Achieved performance across all programming models

• No programming model can
currently achieve optimal
performance on all platforms.

• Kokkos was the only framework
that was able to support all CPU
and GPU platforms in one
package.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 29/32

Towards achieving performance portability

▪ Performance was lower with hipSYCL compared to Kokkos or plain
OpenMP.

▪ Portability between CPUs and GPUs remains a concern.

▪ When running several iterations of a benchmark, the first run was usually
up to 2× slower than subsequent runs.

25.01.2022 Seminar Supercomputer: Forschung und Innovation 30/32

Summary

▪ True performance portability is still out of reach.

▪ On GPUs, low-level APIs continue to provide the highest possible
performance.

▪ Kokkos emerged as a reliable choice, and OpenMP remains in a strong
position.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
31/32

References

1. Andrei Poenaru , Wei-Chen Lin and Simon McIntosh-Smith, et al.: A Performance Analysis of Modern Parallel
Programming Models Using a Compute-Bound Application. https://research-
information.bris.ac.uk/en/publications/a-performance-analysis-of-modern-parallel-programming-models-
usin.

2. Copyright 2018 OpenMP Architecture Review Board: OpenMP 5.0 API Syntax Reference Guide.
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-111802-web.pdf.

3. Aleksandar Vitorović, Veljko M. Milutinović, et al. in Advances in Computers, 2014: Manual Parallelization
Versus State-of-the-Art Parallelization Techniques. https://www.sciencedirect.com/topics/computer-
science/parallel-programming-model.

4. Prof. Dr. Thomas Ludwig, et al.: Hochleistungsrechnen – Vorlesung im Wintersemester 2021/2022.
https://wr.informatik.uni-hamburg.de/teaching/wintersemester_2021_2022/hochleistungsrechnen.

25.01.2022
Seminar Supercomputer: Forschung und

Innovation
32/32

https://research-information.bris.ac.uk/en/publications/a-performance-analysis-of-modern-parallel-programming-models-usin
https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-111802-web.pdf
https://www.sciencedirect.com/topics/computer-science/parallel-programming-model
https://wr.informatik.uni-hamburg.de/teaching/wintersemester_2021_2022/hochleistungsrechnen

