UH
_i_ti_
.23 Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Report

Student Cluster Competition 2022

written by

Christian Griineberg, Niclas Schroeter, Lukas Schulte,
Frederic Voigt, Christian Willner and Johannes Wiinsche

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Supervision UHH: Jannek Squar
OvGU: Michael Blesel

Co-Supervision UHH: Anna Fuchs
OvGU: Michael Kuhn

Hamburg, October 29, 2022



Contents

1 Introduction

2 Team Cluster

2.1 Hardware . . . . . . . . . . e
2.2 Operating system . . . . . . . ..o
2.3 Storage and file system . . . . . ... oL
2.4 Problems and difficulties . . . . .. ... 0oL
2.4.1 Software and driver problems . . . . . ... ...
24.2 Power Cables . . . . . . . ...
24.3 GPUtopology . . . . . . . . . .
244 CPU . ...
3 Online Competition Clusters
3.1 Niagara . . . . . ...
3.2 Thor . . . .
3.3 Bridges-2 . . ..
4 Microbenchmarks
4.1 HPL . . . .
4.2 HPCG . . . . .
4.3 HPCC . . . o
5 ICON
5.1 Building and configuration . . . . . .. .. ... . 0oL
5.2 Compilers and dependencies . . . . . . . . ... ...
5.3 Runtime parameters . . . . . . . . . ...
5.4 Final configurations for the online competition . . . . . . . .. ... ...
5.5 Profiling . . . . ..
5.6 On-site competition . . . . . . . . . ... L
6 NWChem
6.1 Tuning . . . . . . ..
6.1.1 Scripts . . . . . .
6.1.2 Input Tuning . . . . .. ... . . Lo
6.2 Results. . . . . . .
6.3 Profiling . . . . .. ..



7 Xcompact3D
7.1 Online Competition . . . . . . . . . ...
7.2 Coding Challenge . . . . . . . . . . .. .
7.3 On-site competition . . . . . . . . ...

8 Secret Application - FALL3D
9 Learnings

Bibliography

Appendices

List of Figures

List of Tables

34
36
43
44

45
a7
49
51
52

54



1 Introduction

Authors:Frederic Voigt, Christian Willner

This is the report for SCC 2022 of the Team Elbe. SCC is the abbreviation of the Student
Cluster Competition — a friendly comparison of the HPC skills between university teams
around the world. Co—organized by the HPC-AI Advisory Council and the ISC group,
the competition takes place on the exhibitor floor during the ISC High Performance
Conference. The 2022 edition was held in Hamburg, Germany.

As a consequence of the ongoing COVID-19 epidemic, the SCC was restructured into
a two—part event. First there was a digital part that was open for applicants of all
universities worldwide. The on-site event was restricted to teams in Europe.

As a steady participant in the SCC, the UHH has applied for the 2022 edition with a
new twist. This year, the team would be a joint-venture with the OvGU Magdeburg.
Due to their former involvement at the SCC and the university of Hamburg, Michael
Blesel and his thesis advisor Michael Kuhn in Magdeburg gave this construct more than
one good reason to be tried.

With the general teaching and studying experiences during the pandemic, the team was
sure that the distance between the universities would not hinder good communication
and co—working. After some very populated first meetings with more than 30 interested
students, six came forward to become the on-site team.

The first step showed success, as the Team Elbe was selected as a participant in both
the digital and the on-site part of the SCC!. There were 17 teams, from six continents,
in total to participate in the online event. The other four on-site teams were from
Heidelberg, Edinburgh, Ziirich and Barcelona.

To even out the playing field, the clusters of the digital event were provided by the
organizers. Every qualified team had to optimize different applications on three different
HPC architectures.

A very interesting part of the on—site event is the diversity of the student teams’ clusters.
Team Elbe is strongly connected to the DKRZ in Hamburg and therefore also to their
hardware provider Atos. Atos was kind enough to supply the student team with two
powerful nodes for the time of the competition. At the time of the planning, the challenges
had not been posted and the student team was sure that GPUs would be a big part

"https://www.businesswire.com/news/home/20211209005803/en/HPC-AI-Advisory-Council-a
nd-ISC-Group-Announce-2022-Student-Cluster-Competition-Roster


https://www.businesswire.com/news/home/20211209005803/en/HPC-AI-Advisory-Council-and-ISC-Group-Announce-2022-Student-Cluster-Competition-Roster
https://www.businesswire.com/news/home/20211209005803/en/HPC-AI-Advisory-Council-and-ISC-Group-Announce-2022-Student-Cluster-Competition-Roster

of the upcoming event. Due to the renaming of the advisory council of the SCC into
HPC-AI, the team was also confident that at least some of the tasks were related to
artificial intelligence (AI). For these reasons the 3 kW power budget was invested in
four powerful NVIDIA N100 GPU cards (Section 2.1). A bet many other teams in the

competition joined in on.

The following text will first discuss the hardware used by our team on-site, as well as
the hardware provided for the online competition. After that, the microbenchmarks will
be described, followed by the individual applications that were handled in the course of
the competition. In the end we will summarize our learnings and discuss problems for
future teams to avoid.



2 Team Cluster

Authors: Lukas Schulte

2.1 Hardware

Thanks to our industry partner Atos/Bull', which currently sets up the new supercom-
puter at DKRZ — Levante? —, we will again have access to powerful hardware. During
the last years, we have tried many different systems, including CPU-only, GPU-based,
Xeon Phi systems and vector machines. This year we got a well balanced system using
both powerful GPUs and CPUs, very fast SSDs and lots of RAM split up into only two
nodes as shown in Figure 2.1. This has the advantage that it does not need any switches
or other network equipment and allows for high speed communication using the 200Gb
Infiniband NICs.

2.2 Operating system

For the operating system, we went with Rocky Linux 8.6, which was a first for our team.
In previous years the operating system of choice was CentOS, a distribution that’s binary
compatible with RHEL and maintained by Redhat themselves. Unfortunately, Redhat
discontinued the CentOS project and ended all software support for CentOS 8 in 2021.
So we had to find a different distribution. We had only a few criteria to be met by the
distribution: First of all, we wanted a relatively recent kernel version for compatibility
reasons. Then we preferably wanted an RHEL-compatible system because of the great
hardware and software support for file systems, drivers, and applications. When Redhat
announced the discontinuation of CentOS many new RHEL-compatible distributions
emerged, trying to take CentOS’s place in the market. Two of the fastest-growing
alternatives are Alma Linux and Rocky Linux. We wanted to give one of them a try and
choose Rocky Linux 8 as our operating system.

Generally speaking, Rocky Linux did a great job and everything worked well and was
reliable. But, as discussed in Section 2.4.1, the release model of Rocky Linux turned out
to be not optimal for this kind of system where you don’t necessarily want to upgrade
the operating system version only to install additional software.

'https://atos.net/en/solutions/high-performance-computing-hpc
’https://docs.dkrz.de/doc/levante/


https://atos.net/en/solutions/high-performance-computing-hpc
https://docs.dkrz.de/doc/levante/

NVMe SSD
3.27TB

CPU AMD Milan 7713
64 Cores

CPU AMD Milan 7713
64 Cores

2.0 GHz
256 GB RAM
19.5 TFLOPS s.p.

GPU NVIDIA A100
1.9 TB/s bandwidth
80 GB HBM2e

IB
HDR 200Gb/s

Figure 2.1: Sketch of our cluster.

2.3 Storage and file system

Even though we had only two nodes, the storage architecture wasn’t necessarily straight-
forward. We knew that this kind of software typically produces large amounts of data
that is written to the drives, so we expected the storage system to have a great impact
on the overall performance. Moreover, since these applications made use of the MPI-10
libraries we needed a file system that supports this I/O standard. We decided to make
one of the nodes a storage node that handles all the files and metadata while being a
client too. Fortunately, Atos provided us with very fast NVMe SSDs so we were looking
forward to getting excellent throughput and latency results even with a single disk. We
put all three spare NVMe SSDs into the storage server and created a simple RAID 0
Volume using a software RAID through LVM. As the base file system, we did choose
XFS as a fast filesystem with very little overhead. Using a RAID 0 volume comes with a
lot of risks, but given that there was no important data stored in this volume, everything
was backed up to other places and the entire system had to work only for a few days, we
did choose the performance improvement over the better redundancy.

On top of all of that, we did choose BeeGFS as a parallel file system. BeeGFS is
a hardware-independent POSIX-compliant parallel file system that is designed with
performance and ease of use in mind. In previous competitions our teams already had
good experiences with BeeGF'S and so did we. Notably, the installation and configuration
were very easy and straightforward. Without any previous experience with this software,
we were able to install and configure the whole file system and network shares within
minutes.

One of the advantages of BeeGF'S is its scalability and most importantly its ability to
scale it down to a very small cluster. Usually, this kind of file system is designed with



many different nodes with different roles in mind. BeeGF'S uses a dedicated metadata
server, management server, multiple storage servers, and clients that can then access the
files stored on this distributed file system. In our case, one node was just a client and the
other node was metadata, management, storage server, and even client all at once, still
providing decent performance with all desired features of a parallel file system. Still, we
were not able to fully saturate the theoretical performance of our storage system through
the BeeGFS clients but we did not invest too much time into tuning the FS. Since we
already knew that all of our applications weren’t very limited by the I/O system and still
achieving multiple Gigabytes per second throughput, we didn’t invest much more time
into tuning. Luckily, at the on-site competition, we met some BeeGFS engineers who
gave us the hint that increasing the worker thread count might improve performance in
our case and indeed it did.

Even though our storage system is pretty much overkill for most applications, we think it
helped a lot in the secret application. As described in Chapter 8 the parallel 1O library
gave us a huge performance improvement. With the high throughput and low latencies
due to the SSDs and Infiniband connection, this setup turned out to be very capable.

2.4 Problems and difficulties

Unfortunately, this section is a rather long one since we encountered a lot of problems.
It all started very well. We got Atos as a sponsor who was willing to give us two very
capable nodes for the competition. Even though there was a global shortage of all
semiconductor products the hardware arrived very early and in theory we had plenty of
time to test and configure our systems. We set up our two machines with the network
connection and began the testing of the software. But only a few days in one of our
nodes died due to a hardware failure. We don’t know what exactly failed, probably a
mainboard defect. Therefore we had to proceed using only one node until we received the
replacement node which arrived just in time, one week before the competition started.
So we could neither test the Infiniband connection, the network file system or scaling of
the software beyond a single node.

2.4.1 Software and driver problems

Once we finally received our second node we tried to prepare as much as possible before
the competition started. But when installing the necessary drivers for the Infiniband
NICs one of the systems was completely bricked and we had to reinstall the whole
operating system and redo all configurations. In theory, we had scripts that automated
the installation and configuration of most parts. But unfortunately, there were two major
changes in the software these weeks which made our scripts pretty much useless. First of
all, there was a major version release of Redhat Enterprise Linux (version 8.6). Since
we went with Rocky Linux instead of RHEL or other binary-compatible distributions



(o HE—

200 Gb NIC

|
200 Gb NIC
[

Figure 2.2: Initial system topology.

this was a problem for us, because Rocky Linux immediately shuts down all support
for a major release version once a new one is released. Therefore we were forced to
upgrade both nodes to Rocky Linux 8.6. Moreover, in this exact week, NVIDIA decided
to release their GPU kernel modules as open source which changed the whole installation
procedure. All of this did cost a lot of time and we had only two days left for testing
after the initial setup of both nodes.

2.4.2 Power Cables

When we arrived at our booth at the ISC we immediately encountered a problem with
the power outlets provided by the ISC. We needed four of the IEC 60320 C19 standard
couplers but there were only two of them available. Unfortunately, they had no other
outlets available at the ISC. Even though our power consumption was way too low to
require both power supplies at the same time, we had two 2200W power supplies and
never drew more than 1600W from the outlet the system always throttled without both
couplers connected. Fortunately, we were able to order two adapter cables which, thanks
to express delivery, arrived the very next day early in the morning. So this wasn’t a real
issue except it didn’t allow us to do the necessary testing on the first day.

2.4.3 GPU topology

When we tried bench-marking our GPUs with microbenchmarks we observed very poor
scaling across our two nodes. According to our contacts at NVIDIA, this was due to our
hardware configuration or rather topology. In our initial setup, each GPU was connected
to a different NUMA node as shown in Figure 2.2. Since there was a problem within the
UCX library used by the HPL binary that had problems with communication with a NIC
across a NUMA node this was most likely the cause of the problem. They recommended



200 Gb NIC

200 Gb NIC

(a) Two NUMA nodes.

A100

(b) Single NUMA node (used).

Figure 2.3: Possible topology configurations.

10



bringing all the GPUs into one system, preferably into one single NUMA node. Because
our mainboards did not allow all GPUs with full bandwidth within one single NUMA
node, we had a decision to make. We could either put all four GPUs into one NUMA
node or split them up into two NUMA nodes on one node, but both configurations are
sub-optimal.

If we used booth NUMA Nodes in one node, as shown in Figure 2.3, then we would
still have some communication overhead that would likely be not an issue because the
problem was supposedly only apparent with NIC communications.

But putting all four GPUs into one NUMA node wasn’t optimal either.

In our servers, the GPUs weren’t connected to the CPUs directly but through a PLX
Chip that splits the one PClIe Slot into two PCle slots that then share their bandwidth.
Given that these PLX chips only run at PCle 3.0 speeds we’re already halving the
effective bandwidth of the GPUs. So the two options were either still having to deal
with NUMA Overhead or halving the worst-case PCle bandwidth of all the GPUs.

All of this happened right at the competition so our time was very limited and we could
not try out booth options. On the recommendation of our NVIDIA contact, we decided
to put all the GPUs into one single NUMA node which gave us acceptable scaling in the
benchmarks.

2.4.4 CPU

Later in the competition, when it came to benchmarking the scientific application that
we prepared and optimized, we noticed some problems with scaling and performance
across the nodes even sockets on one of the systems. After some investigation, we found
out that we had issues with the boosting behavior in one of both nodes. We don’t know
why but all boosting was disabled by the operating system on one of both nodes and
it kept turning off when we tried to re-enable it. This improved the performance by
quite a lot on this single node but on both nodes, the performance was still very poor.
We found out that this was due to one of the CPUs. For some reason, this one CPU
ran a lot slower, about 400 to 900MHz for no apparent reason. According to Atos, it
was most likely a hardware defect within the CPU. We disabled all boosting options on
both nodes, limiting the clock speeds to 2 GHz. Even though single node performance
drastically decreased we were able to scale beyond a single node, albeit with rather poor
performance.

Through the rest of the competition, we encountered some more problems with the CPU
configurations. As an example, the link speed between both CPU sockets was set to the
lowest possible setting which drastically reduced inter-process communication speeds.
The bandwidth between both sockets was even lower than the Infiniband connection
between both nodes. Generally speaking, there are many options pre-configured in the
BIOS that were not optimal for our use case and configured to work with an older CPU
generation. Moreover, the BIOS version was outdated and a BIOS update would have
solved most of our problems with these systems. At least that’s what Gigabyte suggested.
Given that time was very limited and we weren’t allowed to perform this update, which

11



in itself comes with some risks, we did not update the BIOS.

Even though we had a lot of problems and spent way more time debugging these
issues than actually working on the applications we learned a lot in the few days. If
everything went just fine we would have never learned as much about the systems as we
did now. Thanks to the help, especially from a technician from Gigabyte, who spent hours
of his valuable time at our booth helping us to rebuild the nodes, we were still able to at
least produce some results to participate in the competition. Most problems or rather
defects were just unlucky which very annoying because our work on the applications
worked very well. Most other problems wouldn’t be a problem if we had more time for
preparation.

Retrospective, our cluster turned out to be rather sub-optimal for the tasks and applica-
tions in the competition. First of all the nodes are built very compact and optimized
for compute density rather than efficiency. Putting 128 processing cores and up to 8
high-power GPUs into a small 2U chassis is a challenge for the cooling system. Even
though we hit the power target of 3kW and surpassed it, this was only possible due to
the cooling fans. These fans used about 800W of power when running at 100% meaning
that we wasted almost a third of our power budget on the cooling system. Since there is
no air conditioning in booths running the fans 100% load was necessary for long-running
applications. A physically larger enclosure would have required a lot less power for the
cooling fans. Moreover using only two nodes naturally comes with advantages over using
more nodes: All the data is close together, and the connection speed between the nodes
is as fast as possible with minimal latencies. But in our set of applications more nodes
and more CPUs would have improved the overall performance. This year there was
not a single application, besides the microbenchmarks, that could even run on a GPU.
Therefore the GPUs didn’t do anything once the micro benchmarks finished. We even
saw super linear speedup across multiple nodes in the online competition. A cluster with
four nodes without GPUs would have been better suited for this year’s software selection.
But that’s something we could not have known before we received our cluster.

12



3 Online Competition Clusters

Authors: Lukas Schulte, Christian Willner

For the competition each team had to build, optimize and run the applications on each of
the three provided clusters. Each with a unique architecture. The University of Toronto
provided access to their SciNet Niagara supercomputer, an Intel based cluster, described
in Section 3.1. The Pittsburgh Supercomputing Center opened up their Bridges-2 (see
Section 3.3) nodes, which have AMD processors installed. The third cluster was provided
by the HPC-AI Advisory Council itself. Their HPC unit is called Thor (Section 3.2) and
has NVIDIA BlueField-2 cards installed, that can be used for the SCC.

3.1 Niagara

Niagara, one of Canada’s most powerful supercomputers, is installed at the University of
Toronto and available for the participants of the online—part of the SCC. It was officially
launched in March, 2018 and expanded in March of 2020. According to the Top500 list,
a list of the most powerful supercomputers worldwide!, in June 2020, Niagara is at place
140 with 80640 cores and draws 919 kW of power at its Rp.qx of 6.25 PFlops/s.

It is a homogeneous system based on Intel Xeon Gold 6248 20C Processors at 2.5 Ghz,
connected with InfiniBand HDR100, build by Lenovo. Each of the 2024 nodes has
202 GB of RAM.

The installed operating system is CentOS7.6 and the queue submissions are managed by
Slurm. Each job can be scheduled from 15 minutes to 24 hours. Larger jobs are favored
over short ones.

3.2 Thor

The HPC-AI Thor system is an Intel based cluster, just like Niagara. It has 36 nodes,
each with a Xeon Broadwell CPU and 256 GB of RAM. It even uses the same InfiniBand
HDR100 adapters.

An interesting aspect of this setup are the NVIDIA BlueField-2 HDR100 cards. It basically
works as an autark ARM powered node. These data processing units are running Linux

Lwww.top500.org

13



and have their own InfiniBand and Ethernet interfaces. They are supposed to increase
the overlap in communication and computation. Ideally this is done with the proprietary
MPI implementation of the vendor to automatically use the potential of the DPU.

The added amount of communication that is necessary for the extra steps, can only be
offset at a certain buffer threshold. The applications have hence to be optimized to make
use of bigger communication buffers than they might have traditionally implemented.
This plays an important role in the coding challenge (see Section 7.2).

3.3 Bridges-2

To bring in some variation, a non-Intel cluster is also used for the digital part of the SCC.
The Pittsburgh based Bridges-2 cluster is a heterogeneous system with three different
node types, for different purposes. An easy comparison is given in the following Table 3.1.
All nodes are connected with HDR InfiniBand 200 Gb/s adapters.

# Nodes Type RAM Usage

488 AMD EPYC 7742 256 GB Data analytics

24 NVIDIA Tesla V100 512 GB Deep learning

4 Intel Xeon 8260M 4 TB Genome sequence assembly

Table 3.1: Different types of Bridges-2 nodes.

14



4 Microbenchmarks
Authors: Lukas Schulte, Niclas Schroeter

4.1 HPL

HPL is a portable and parallel implementation of the High-Performance Linpack bench-
mark. It is a measure of a computer’s double precision (64) floating point rate of
execution. The first published version dates back to 1979 which makes it probably the
oldest benchmark still in use today. This makes it particularly interesting for performance
comparisons across generations of computer systems.

It is widely used and the benchmark was chosen for the Top500 list.

The benchmark used in the HPL package is to solve a dense system of linear equations.
The specifications allow for optimizations considering the problem size and exact im-
plementation to achieve the best possible performance for a given system. To meet the
specifications for the Top500 list the benchmark must use a LU factorization with partial
pivoting. Moreover, the algorithm must be in 2/3n® + O(n?) double precision floating
point operations.

Since this benchmark is used to determine the rank within the Top500 list, manufacturers
of CPUs and GPUs have a huge interest in tuning this benchmark for their own hardware.
Because our cluster had a total of four GPUs with theoretical Rpc., of 9.7 TFLOPs,
tuning for the GPUs was way more beneficial than tuning for the CPUs, with a theoretical
peak performance of about 2 TFLOPs each.

Fortunately NVIDIA provides precompiled binaries packaged into a docker/enroot con-
tainer with all optimizations pre-applied. They even provide optimized input parameters
for our exact system configuration (with four GPUs in a dual socket system with two
EPYC CPUs) that we then used. We tried playing around with some parameters and
even compiled our own binary with a CUDA enabled BLAS library, but to no one’s
surprise, the NVIDIA optimized version turned out to be the best one for our system.

Using the NVIDIA containers (version 21.4) and their sample input configurations we
were able to achieve a result of 33.4 TFLOPS. Given the theoretical Peak performance of
about 43 TFLOPS of a single node, that’s about 78% of the theoretical Peak performance.
When testing with only two GPUs in a single node, we achieved about 20 TFLOPS.
Therefore we think our topology, as discussed in 2.4.3, might have limited scaling across
more GPUs.

15



4.2 HPCG

The high performance conjugate gradient (HPCG) benchmark was proposed in 2013 as
a means of better representing the computation and data access patterns used in actual
applications [DH13]. The goal was to introduce a more realistic metric to rank system
performance, compared to HPL, which only represents a fraction of the applications that
are run in the context of HPC. To this extent, HPCG implements the preconditioned
conjugate gradient method with a local symmetric Gauss-Seidel preconditioner. This
involves the usage of different computational patterns, such as sparse matrix-vector
multiplications, dot products or local triangular solves.

As with HPL, we used the HPCG implementation provided as a container (v21.4) by
NVIDIA to make use of the GPUs in our system. After installing all the necessary
software on our nodes and moving the hardware around, the only tuning parameter
that is left when running the HPCG container is the input file. Unfortunately, due to
the problems with the short preparation time before the competition and the hardware
problems during the competition, we did not have much time to test different inputs,
so the final run was conducted using 256 in all input dimensions, resulting in a final
performance of 0.75 TFLOPS, which was also below our expectations.

4.3 HPCC

The HPC Challenge (HPCC) is a benchmark suite, initially proposed to augment the
Topb00 list by including multiple other benchmarks alongside HPL to better represent
the actual applications run on HPC systems [LDK*05]. There are seven benchmarks
present in the suite: HPL, STREAM, RandomAccess, PTRANS, FFT, DGEMM and
b_eff Latency/Bandwidth. These benchmarks cover different areas of performance, such
as processor performance in the case of HPL or DGEMM, communication performance in

the case of PTRANS and memory system performance in the case of STREAM [Wic05].

Since NVIDIA does not provide a container for HPCC, we opted to utilize the version
available in Spack, namely HPCC v1.5.0, having to forgo the utilization of our GPUs in
this case. Regarding performance tuning, there are multiple parameters that influence
the final results. First, HPCC has MPI and BLAS dependencies, meaning that multiple
different implementations should be tested per dependency. Once proper implementations
are found, the next tuning parameter is the input file, which is very similar to the HPL
input, with four extra lines to supply different parameters to PTRANS, if deemed
necessary.

In order to investigate the impact of the different implementations for the necessary
dependencies, we created multiple scripts to run HPCC with different build configurations,
using a selection of the benchmark results to evaluate the performance over multiple
executions of the benchmark, reporting the results as a mean and accompanying standard
deviation. A sample output is provided in Table 4.1. Since the reported metrics in

16



MVAPICH?2 HPC-X MPICH

hpl_tflops 1.7524 (0.0067) | 1.7193 (0.0246) | 1.6069 (0.0636)
stardgemm_ gflops | 21.3268 (0.0706) | 22.5267 (0.0249) | 22.6012 (0.0545)
ptrans_gbs 13.1767 (0.3478) | 17.2075 (0.1914) | 2.9819 (0.1008)

mpifft_gflops 54.8982 (1.4831) | 61.9185 (2.6011) | 44.9419 (0.7795)

AVB_PIB_PONE | 4 7579 (0.0055) | 0.6021 (0.0022) | 1.1762 (0.0063)
_latency__usec

avg ping pong
bandwidth_gbytes 14.9639 (0.0952) | 13.2703 (0.0410) | 5.5157 (0.0539)

Table 4.1: Benchmark outputs for HPCC using different MPI implementations.

HPCC are very numerous, we had to restrict our evaluations to a smaller subset. We
chose different metrics for the evaluation of the different tuning options in such a way
that we should be able to assess the overall impact of the different implementations,
as seen in Table 4.1 for MPI. Using these scripts, we made measurements to decide on
the best MPI, BLAS and also a potential FFT implementation. It should be noted
that we had to conduct these initial evaluations on a single node once again, due to
the availability issues before the competition. During these evaluations, we concluded
that HPC-X would be the optimal MPI implementation, while OpenBLAS would be the
optimal BLAS implementation. Based on the results from these scripts, we also decided
to stick to the internal FF'T implementation of HPCC instead of using FFTW2 or Intel
MKL.

Unfortunately, we were unable to investigate whether or not these observations transfer
to the complete cluster setup with two nodes, while also not being able to tune the input
file for optimal performance. Due to the hardware problems described in Section 2.4 on
the first day of the competition, we were only able to submit runs for HPL and HPCG
within the time limit, not leaving any spare time for further examinations or even a
single run of HPCC.

17



5 ICON

Authors: Niclas Schroeter, Frederic Voigt

The name ICON stems from [COsahedral Nonhydrostatic general circulation model. It’s
an earth system to model a global numerical weather forecast, as well as a climate model.
The icosahedral part of the name hints at the grid type of the application, which offers a
nearly homogeneous coverage of the globe and avoids the pole-problem in lat-long grids.

First the sphere is divided in 20 equilateral spherical triangles, that can be further subdi-
vided via bi- or trisections. These subdivisions can be localized to improve the prediction
in certain areas. The location of averaged scalar model variables, like temperature,
moisture or air density, are located on the circumcenter, while the wind components are
modeled onto the midpoints. The different levels of the system allow the differentiation
of water, snow or earth surfaces to increase the prediction accuracy.

ICON has many different dependencies and parameters that allow for performance tuning.
The following section showcases the general workflow while tuning ICON. The first section
will describe the tuning with compilers and dependencies, followed by ICON-specific
runtime options in the second section. Since the tasks were near identical for both the
online and the on-site competition, the workflow described in the following sections was
applied to both competitions.

Tasks

The task for ICON was to simulate a whole year as a coupled atmosphere-ocean-
experiment. To do this, we were provided with weather input data of the year 1850. The
goal was to run the experiment as fast as possible. There were two additional conditions:
The first one was to stay within a 30 minute time limit, while the second one was to
not deviate too far from a given reference result. To check the second constraint, the
correctness, there were visualization options in the form of post-processing scripts. A
secondary task was the tool-based examination of the program run with the profiler IPM.
The delivered results should be interpreted afterwards and the main bottlenecks of the
application should be described further.

18



5.1 Building and configuration

To build ICON it was first necessary to log in to DKRZ Git to get access to the code
and the submodules. The actual configuration process is based on a prebuilt script. To
configure ICON;, first the dependencies are loaded and sourced. They are all available in
Spack, which was used for these operations. Most of the dependencies will be examined
further in the next section as they gave us options for optimization, barring some
dependencies like Python, which was used for post-processing, or CDO. The next steps
consist of the usual build procedures, i.e. setting the compiler flags and other variables,
followed by make. The use of OpenMP and vectorization, which will be discussed
further below, also had to be enabled in the configuration step. The differences of the
configuration step on Bridges-2, Niagara and our on-site cluster are mainly limited to the
used compiler and some other dependencies, which needs to be reflected in the utilized
flags as well, but the overall usage remained similar.

Throughout the build and configuration process, we repeatedly encountered bugs and
problems that could be attributed to peculiarities of ICON. For example, some paths
in the scripts are designed for Mistral, on which ICON was originally designed. Other
problems, such as the use of MPICH and OpenBLAS, are explained in more detail below.

5.2 Compilers and dependencies

The first tuning option is the choice of compiler. For this purpose, we opted to use
either the Intel compiler suite or GCC, since both of these compiler collections are well
established. The choice was heavily influenced by the underlying hardware. For example,
our tests on the Niagara cluster, which is equipped with Intel CPUs, have shown that
the Intel compilers produce a better optimized executable than the GCC compilers
when running on Intel hardware. The executable built with Intel compilers required
slightly less than 20 minutes to simulate the entire year without further tuning, whereas
the executable built with GCC needed more than 30 minutes. However on non-Intel
hardware, this difference in performance vanishes, leaving the GCC-built executable
ahead of the Intel pendant.

For all following evaluations, the runtimes were compared on a reduced version of the
experiment, only simulating 3 months instead of one year, due to limitations on computing
resources and time constraints. Due to this limitations, we were only able to run each
experiment once, which harms the statistical significance of our results. Though it should
be mentioned that whenever we had to repeat experiments due to perceived irregularities,
we noticed a rather small variance between the different runs.

After choosing the best compiler for the given hardware, the next major dependency
that influences the runtime is the MPI implementation. For all available clusters, we
investigated three different MPI implementations: MPICH, MVAPICH2 and NVIDIA
HPC-X, which utilizes OpenMPI. We built ICON once for every MPI implementation

19



and then compared the different runtimes on the reduced simulation. Table 5.1 shows
examples of the resulting runtimes during the online competition. Note that MPICH
performed far worse than all other implementations and was not even able to compile on
Niagara. This considerably longer runtime can most likely be attributed to problems
with the collective operations that are necessary after each time step of calculations
in ICON. We noticed that some of these collective operations took much longer than
others, sometimes requiring multiple minutes instead of less than a second. This was
reproducible on multiple runs of this particular experiment, though the exact timing of
the longer lasting collectives was irregular.

MPICH | MVAPICH2 | HPC-X
Niagara * 216s 192s
Bridges-2 605s 310s 280s

Table 5.1: Runtimes of ICON with different MPI implementations.

The next dependency that has a large impact on ICON’s performance is the BLAS
library. Once again we opted to evaluate the most established ones, namely Intel MKL
and OpenBLAS. As with the compilers before, it appears that Intel MKL produces
the best results whenever used in conjunction with Intel hardware. On AMD hardware
though, these results were not reproducible. Example measurements are shown in
Table 5.2. These measurements were taken while using the Intel compilers on Niagara
and GCC on Bridges-2, both for compiling ICON and the dependencies. Note that the
usage of OpenBLAS on Niagara led to compilation problems, so in order to still be
able to compare them, we built ICON and the dependencies, including OpenBLAS and
Intel MKL, with GCC instead and then compared the two different versions on a full
simulation. Results indicate that OpenBLAS performs worse (runtime of 43 minutes)
than Intel MKL (runtime of 40 minutes) when everything is built with GCC. We suspect
that this difference would at least carry over if OpenBLAS could have been built with
the Intel compilers as well, though it will probably grow wider, given our observations of
the performance of Intel software and hardware in combination.

MKL | OpenBLAS
Niagara | 192s *
Bridges-2 | 325s 280s

Table 5.2: Runtimes of I[CON with different BLAS implementations.

The last dependency that we experimented with for potential performance gains was
NetCDF, particularly the parallel variant PnetCDF. We suspect that building the
NetCDF dependency with PnetCDF would have improved our runtime further, since
this would have enabled a parallel 1/O option that was potentially available during the
configuration step for ICON, but we ran into compilation problems whenever we used
PnetCDEF. One of the ICON submodules would fail to compile on every cluster and we

20



were unfortunately not able to resolve this problem, which is why we had to refrain from
using it for any of our final configurations.

The final tuning options regarding the compiler and dependencies are the compiler
options. Per default, the ICON build script already utilized the -08 flag for the most
part alongside other optimization flags, leaving -ffast-math or the Intel pendant -fp-model
fast=2 off. In normal usage scenarios, this would be recommended. However, since
we had the option to check our results for correctness, with the goal of producing the
fastest execution times possible, we decided to enable the fast math option in all our
runs. For the online competition, this further reduced our runtimes on both clusters,
without harming the correctness, therefore giving us an important advantage. In the
on—site competition, there was also a reduced runtime, unfortunately though, the fast
math optimizations distorted the precision of the results so that they were outside the
tolerance range for correct results.

5.3 Runtime parameters

After investigating the impact of the different compilers and implementations of depen-
dencies, the next options to increase the performance of ICON are the different runtime
parameters, beginning with the distribution of the Ocean processes. Since the task
for the competition is a coupled ocean atmosphere experiment, processes need to be
assigned to either the Ocean component or the Atmosphere component. The setup that
is initially used, without further modifications, assigns three quarters of the processes to
the Atmosphere component and the last quarter to the Ocean component, while also
noting that this distribution designates too many processes to the Ocean component. In
order to find a better distribution, we conducted two experiments per cluster, the first
one being a coarse evaluation with large step size, while the second one was fine-grained
to find the optimal distribution around the previous optimum from the coarse evaluation.
An example is provided in Figure 5.1, where we tested the different distributions on
Niagara.

The next runtime parameter is the nproma value. This constant specifies the blocking
length for array dimensioning and inner loop lengths, the arrays in ICON are also
organized in sizes using this constant. A block of nproma size can be processed as one
vector by vector processors or by one thread in a threaded environment. It is also the
length of the innermost loops and it can be used for achieving better cache blocking.
Due to these reasons, changing this constant can result in higher performance of the
nodes during their calculations. Both the Ocean and the Atmosphere component have
their own nproma parameter in the ICON scripts, though we decided to set them to the
same value, as both components utilize the same hardware. As with the distribution of
the Ocean processes, we first conducted a coarse-grained experiment to then limit the
following fine-grained experiment to the range of the previous best results. The example
provided in Figure 5.2 was also conducted on Niagara.

21



200

=
Ul
o

100

Runtime in seconds

50

Figure

250

200

=
Ul
o

Runtime in seconds
=
o
o

50

Figure

236

230

192 192 195

15 20 25 30 35 40 18 20 22
Number of processes for Ocean component

5.1: Different distributions of the Ocean processes on Niagara. The whole ex-
periment utilized four nodes of 40 processes each. The bars represent one
experiment each, with the labels referring to the total number of processes
assigned to the Ocean component. The left figure corresponds to the initial
coarse evaluation, the right shows the fine-grained one.

247

209 201 207

16 32 48 64 80 128 36 40 44 48 52 56 60
nproma value for both components

5.2: Different values for nproma on Niagara. The left figure corresponds to the
initial coarse evaluation, the right shows the fine-grained one.

22



277 274 274 275 269

253
250 252

N
o
o

Runtime in seconds
= [
o ul
o o

50

hwthread core Ilcache |2cache I3cache socket numa

Process mapping options

Figure 5.3: Different process mapping options, tested on Bridges-2.

The next option that we investigated was process placement. Given that most processes
in ICON communicate mainly with their neighbors or via collective communications,
proper process placement can further decrease the runtime. Therefore we used the
map-by parameter provided by mpiexec to test different mappings on our cluster and
Bridges-2. On Niagara, the map-by parameter did not work properly, so we instead
utilized the KMP _AFFINITY environment variable to control the mappings for the
same effect. The example in Figure 5.3 shows the different mapping options and their
effects when tested on Bridges-2.

The last tuning option that we examined was multithreading. ICON is written with
hybrid parallelization, enabling the usage of OpenMP alongside MPI. Once enabled
during compilation, the number of threads per process can be controlled via the [CON
scripts. On all clusters, we tested different configurations, ranging from one thread per
process (the default, equal to no multithreading) to single-digit processes per node, while
the remaining resources were used as threads. We found that whenever we enabled
multithreading, the performance on this particular experiment decreased considerably.
Changes to the corresponding environment variables that influence the performance in
those scenarios did not alleviate this problem either. Due to this, we decided to forgo
the usage of multithreading in all of our final configurations.

5.4 Final configurations for the online competition

After going through the tests described in the previous section, we combined everything to
one final configuration per cluster. On Niagara, we utilized the Intel compiler suite, Intel

23



MKL as the BLAS library of our choice, alongside HPC-X as the MPI implementation.
Of the 160 processes in total, 20 were assigned to the Ocean component, with the process
mapping option of tile passed to KMP_AFFINITY. The optimal nproma value on this
processor architecture appeared to be 40 in this particular case. With the aforementioned
fast math options enabled as well, we managed to produce a final runtime of 12 minutes
and 8 seconds.

On Bridges-2, the superior option for the compilers turned out to be GCC, while using
OpenBLAS as the BLAS library. For the MPI implementation, HPC-X remained the best
option. Of the overall 384 processes distributed across the four nodes for the competition,
32 were assigned to the Ocean component, mapping the processes to NUMA domains
via map-by. As for the nproma value, the optimal choice appeared to be 16. Once again
enabling the fast math options during compilation, we finished with a runtime of 15
minutes and 15 seconds.

Combining these two results, we finished the ICON portion of the competition in first
place, beating out all other teams in this category of the online competition.

5.5 Profiling

Communication
% of MPI Time

MPI_Waitall
MPI_Allreduce
MPI_Send
MPI_Reduce
MPI_Alltoallw
MPI_Irecwy
MPI_Bcast
MPI_Comm_dup
MPI_Isend
MPI_Comm_size
MPI_Waitany
MPI_Barrier
MPI_Comm_split

Figure 5.4: Shares of communication time for the different MPI calls within ICON. This
figure was generated via IPM on Niagara.

One of the tasks was to create ICON profiles with IPM and interpret them, both on
Bridges-2 and on Niagara. Since this analysis revealed an additional insight into the
general behavior of ICON, we would like to roughly summarize it here.

On both clusters, the application spends about a quarter of its runtime in MPI communi-
cation. The call to MPI _Wait accounts for most of this time (over half on Niagara and

24



two-thirds on Bridges). Next is MPI _Allreduce, which is about a quarter of the runtime
used for MPI calls. MPI Send is third and is about a tenth of the time. An example
of that is displayed in Figure 5.4, visualizing the percentage of MPI communication on
Niagara.

The first bottleneck can be quickly determined, as the application spends most of its
time waiting. Figure 5.5 provides further insight into potential causes, displaying the
communication balance ordered by MPI rank. Ranks 140 to 159 were responsible for the
Ocean component, the rest was appointed to the Atmosphere component. Due to the
distributed computation for the atmosphere and the ocean, load balancing is an important
aspect in ICON. In the atmospheric calculation about half of the communication time is
spent waiting. In the ocean group, the waiting time is much more present and takes the
lion’s share of the communication. We suspect that these long waiting times stem from
the synchronization between the two components. Apparently, the processes responsible
for the ocean component finish their calculations and accompanying communication calls
much faster than the atmosphere processes.

Communication balance by task (sorted by MPI rank)

300 - B 1PI_vaitall B 1PI_Testall
. i B 1PI_Allreduce MPI_Sendrecy
= W 1PI_Send MPI_Init

n

a

k=3
1

MPI_Reduce MPI_Finalize
W 1PI_Alltoallv

MPI_Irecv

MPI_Bcast
M 1PI_Comm_dup

MPI_Isend

MPI_Comm_size

~n

=3

3
1

-

aQ

=3
1

B 1PI_vaitany
B 1PI_Barrier
M HPI_Comm_split
W 1PI_Comn_rank
W 1PI_Alltoall
W 1PI_Allgather
W MPI_Gathery
MPI_Testany
W 1PI_Comm_free
B 1PI_Gather
MPI_Recv
MPI_Comm_group
MPI_Buffer_attach

tine in seconds

100

50

o
@

o o o
& - °

100
120
140
160

HPI rank

Figure 5.5: Communication balance of the individual processes, sorted by MPI ranks.
This figure was also generated via IPM on Niagara.

The second bottleneck of the application is MPI Allreduce. We suspect that it is used
for synchronization and result exchange at the end of time steps within the simulation.
It should also be noted that the overall time necessary to communicate, excluding any
wait calls, is larger within the atmosphere component as a whole. It can be concluded
that there is a severe load imbalance between the two components when working on the
experiment that was used for this competition. Given that the distribution of Ocean and
Atmosphere processes, that was used to generate these profiles, was the best performing
one, we suspect that this load imbalance cannot be resolved by simply shifting the process
distribution, but that it is rather an inherent problem with ICON itself or at the very
least with the setup of the particular experiment for the competition.

25



5.6 On-site competition

For our final configuration of ICON on our cluster, we chose GCC as the compiler suite
due to the AMD CPUs. For the dependencies, OpenBLAS and HPC-X performed the
best. The best performing nproma value was 20. It should be noted that the tests to
determine the best options had to be conducted on a single node of our final cluster
setup due to the availability issues prior to the competition. On this setup, the optimal
distribution of processes per component was 100 processes for the Atmosphere component
and 28 for the Ocean component. On the single node, we achieved runtimes of slightly
over 40 minutes, so from these initial tests, we estimated a runtime below 30 minutes
for our complete setup with both nodes. However, due to the CPU problems described
in Section 2.4, executing ICON on both nodes led to worse performance than having it
compute on a single node, however the performance of the single node had also worsened
compared to our initial tests. Due to these factors we ended the competition regarding
ICON with a total runtime of 1 hour and 11 minutes, far beyond our initial estimations.

26



6 NWChem

Authors: Frederic Voigt, Johannes Wiinsche

NWChem brands itself as an open source high-performance computational chemistry
tool. It has a strong emphasis on its scaling capabilities and is hence a good candidate

for the SCC.

The software is developed by EMSL at the Pacific Northwest National Laboratory in
the state of Washington, USA since the 1990s. Scientists can use it to model kinetics
and dynamics of solid-state materials, nanostructures and biomolecules. The source
code is primarily written in Fortran and uses MPI as well as OpenMP. This method of
parallelization is usually hidden by a global array programming model. These arrays can
be scaled to be shared on distributed memory addresses [ABdJ*20].

Tasks

The first task was the processing of a total of three different inputs, a CCSD(T)-
experiment, a TCE CCSD(T)-experiment and a DFT-experiment. These were to be
performed on the basis of CPU nodes. In addition, one experiment should also be GPU
based and the input data (except for the DFT experiment) could be selected from the
previous ones. Like ICON (see Section 5), an analysis of the program run with the IPM
profiler should be performed and a small analysis of the program behavior should be
made.

6.1 Tuning

Since NWChem was available as a Spack package, building and compiling the application
on both clusters was relatively easy at first. The challenge of tuning was to try out the
different dependencies of the packages and to test their interactions. The focus was on
the compiler, MPI and the packages scalapack, lapack, blas and FFTW. To test these
configurations, we wrote scripts that tried most viable combinations.

Some combinations we were able to discard early on due to overlapping functionality, for
example Intel-mkl implements a wide range of the previously named interfaces.

27



6.1.1 Scripts

The aforementioned scripts can be divided into two main functionalities. First, for
the evaluation of the best performing combination of libraries, a standard case with
a brief runtime, namely DFT, has been chosen to give an overview of estimates how
well performing each combination is. From this, the best performing will be further
evaluated to measure whether OpenMP (if available) can offer any improvement over
the already tested work distribution. Referring to the documentation, one, two, four,
and eight threads have been used here, as a greater number of threads is very likely to
worsen performance in the long run. This has also been confirmed in our analysis, with
a maximum of four threads delivering any performance gain.

6.1.2 Input Tuning

NWChem has shown to be sensitive to the tuning of the actual input it received and
therefore we invested some time into assuring a well-tuned input file was available for all
three benchmarks which needed to be evaluated.

Here focus was laid on three factors: feature utilization, memory usage and algorithm
choice. Starting with feature utilization, input files needed to specify beyond OpenMP
environments for which steps OpenMP should be used. For most cases it made sense
and brought real performance gain, though some did not benefit from the distribution
to threads rather to processes at all. Especially, one case produced a worsened run-
time compared to using only processes, therefore OpenMP was disabled for this step.
Furthermore, GPU utilization needed to be activated by specifying the host capabilities.

Next to input feature, memory availability and distribution needed to be specified, which
turned out to be trial-and-error in many cases as internals of some computations require
a certain amount of global/local memory available. We started from common memory
bounds and ratios, extracted from multiple discussions in the NWChem forum, and
modified them to fit to the available systems. Also problematic for this study was that
shorter (ergo smaller cases) require less memory and different memory distributions, so a
proper testing of runtime had to be performed on the full benchmark, which, depending
on the benchmark, could take about two hours. In a less time restraint environment this
is probably the point where a greater degree of optimization can be expected.

Lastly, we tested some algorithm variants and parameters to take the best choice runtime-
wise. Since these algorithms are implementations of quantum-chemical processes with
only numbers as their names, the organizers provided a selection, we were able to choose
from, to produce the correct results. We measured all given variants and chose the best
performing one. The parameters for them were identical, mostly relating to observed tile
domain.

28



6.2 Results

The effects of the individual tested combinations of library implementations described
in Section 6.1 can be seen for Bridges-2 in Figure 6.1 and for the Niagara cluster in
Figure 6.2. The importance of the OMP threads, or more precisely the choosen number
of threads, for the runtime of NWChem has already been discussed in Section 6.1.1 and
can be viewed for the Bridges-2 cluster in Figure 6.3 and for the Niagara cluster in 6.4.
Here, the weak performance of the application, in terms of strong-scaling, becomes very
apparent.

Total time required for different configurations of NWChem on bridges

250 mpi

| openmpi

mvapich2
mpich
hpex-mpi
gcc
openb\as openblas openb\as openblas
amdblis amdblis amdblis amdblis blis blis blis blis fftw
amdfftw amdfftw fftw fftw amdfftw amdfftw fftw fftw amdsca\apack ne(llb scalapack amdsca\apack netlib- scalapack
amdscalapack netlib-scalapack amdscalapack netlib-scalapack amdscalapack netlib-scalapack amdscalapack netlib-scalapack
Variants used

2

Total Wallclock time
-
I >
S 3

-
1
5

w
o

o

Figure 6.1: Runtime of NWChem for shifted combinations of the implementations of
compiler, scalapack, lapack, blas and FFTW on the Bridges-2 cluster.

29



Total time required for different configurations of NWChem on niagara

mpi
= openmpi
=== mvapich2
= mpich
= intel-mpi

500

400

300

Total Wallclock time

200

04
gcc gee gcc gee
openblas openblas openblas openblas
amdfftw fftw W
amdscalapack netlib-scalapack amdscalapack netlib-scalapack

Variants used

Figure 6.2: Runtime of NWChem for shifted combinations of the implementations of
compiler, scalapack, lapack, blas and FFTW on the Niagara cluster.

30



Total time required for # threads of NWChem on bridges

700 - mpi
B openmpi
I mvapich2
B mpich
EEE hpcx-mpi
600
500
[
S
S 400 A
X
1%
o
]
©
=
k]
2 300 A
200
100 A
0 -
(gce, 1) (gce, 2) (gcc, 4) (gcc, 8)

Threads used

Figure 6.3: Runtime of NWChem for moved OMP thread count on the Bridges-2 cluster.

31



Total time required for # threads (rccsd benchmark) of NWChem on niagara

mpi

1400 - B intel-mpi

1200 A

1000

800

Total CPU time

600 -

400 1

200 -

(gee, 1) (gcc, 2) (gcc, 4) (gcc, 8)
Threads used

Figure 6.4: Runtime of NWChem for moved OMP thread count on the Niagara cluster.

The final achieved times for each challenge can be found in Table 6.1.

6.3 Profiling

NWChem was to be subjected to further analysis by using IPM. The analysis part was
relatively simple and only the three most used MPI calls should be named: These were
MPI_Wait in first place, MPI _Recv in second and MPI Isend in third. A part of the

32



IPM analysis can be viewed in Figure 6.5.

Computation

Communication

Event | Count ]Pop

% of MPI Time

M 1PI_Barrier B 1PI_Testall
B MPI_Recy B MPI_Comm_free
M vPI_vait B 1PI_Rsend
MPI_Allreduce MPI_Comm_size
M 1PI_Bcast B 1PI_Comm_group
MPI_Send W MPI_Comm_rank
MPI_Allgather
B rPI_Isend
MPI_Reduce

MPI_Comm_split
MPI_Comm_create
MPI_Irecy
MPI_Waitall

M MPI_Comm_cup

Figure 6.5: Distribution of call frequencies of MPI functions in NWChem according to
the IPM profiling.

Challenge Niagara Bridges-2
RCCSD-T 3455.5s  2191.4s
TCE CCSD(T) 9729.2s  8856.0s
DFT 135.9s  161.8s
GPU 6002.1s

Table 6.1: Final results of the NWChem runs.

33



7 Xcompact3D

Authors: Christian Grineberg, Christian Willner

The Application Xcompact3D is a high-performance framework for solving the Navier-
Stokes equations and associated scalar transport equations and is based on Fortran90. It
uses Direct and Large Eddy Simulations and combines the versatility of industrial codes
with the accuracy of spectral codes. Currently it is able to solve the incompressible and
low-Mach number variable density Navier-Stokes equations using sixth-order compact
finite-difference schemes with a spectral-like accuracy on a monobloc Cartesisan mesh.
The development of Xcompact3D started in the mid-90’s as Incompact3D for serial
processors and only for incompressible flows. Over the time MPI support, simulation of
compressible flows in the low Mach number limit and wind farm simulation were added
and Incompact3D was renamed to Xcompact3D in 2019. Currently the developer are
working on GPU support but the version for the competition only supported CPU’s.

Xcompact3D achieves a good scalability due to the use of 2DECOMP library which
allows a 2D pencil decomposition of the mesh, which allows to divide the mesh in 2
dimensions as shown in Figure 7.2. The benefit, in contrast to the previously used 1D
decomposition as shown in Figure 7.1, is that the mesh can be divided between more
processes at the expense of a more complex communication scheme between the processes.
The consequence is that the runtime depends on the chosen division of the problem into
rows and columns in order to distribute the calculations evenly among the processes.
Also the chosen MPI library to build the application affects the runtime, as the actual
communication could be performed differently or because of different performance of
each MPI library for different message sizes.

Figure 7.1: 1D domain decomposition example using 4 processors a) decomposed in y
direction b) decomposed in x direction. Figure taken from [Lil0].

34



Figure 7.2: 2D domain decomposition example using 4x3 processor grid. Figure taken
from [Lil0].

Since there was no Spack package for Xcompact3D, we had to build one first. The
Xcompact3D makefile supports gfortran or the Intel Fortran compiler. The default library
for the Fast Fourier transformation is FFT which is built into 2DECOMP. Alternatively,
FFTW or Intel MKL are also supported.

35



7.1 Online Competition

The tasks for the online competition were based on the simulation of the flow between
two wind turbines with uniform incoming wind.

1. Profiling the simulation for 4 nodes on both clusters for 2500 iterations and submit
two IPM profiles with comments on potential bottlenecks

2. Identify the best configuration for the fastest wall clock time for 2500 iterations on
4 nodes for both clusters

3. Generate 3D visualizations of the flow for 5000 iterations on a cluster of our choice
with ParaView

4. Bonus Task: perform two strong scalability studies on both clusters using 1 to 8
nodes for 2500 iterations

For this we were given an input file were we could change 5 parameters. Firstly, p_row
and p_col for the domain decomposition. Both variables multiplied should give the
number of MPI processes for the application. If this is not the case, this leads to an error
during the execution. The next parameter was ilast for the number of iterations, which
is given for the tasks. The two last parameter was icheckpoint for writing checkpoints
after a number of iterations in a backup file and ‘output for the frequency to create
visualization data. Both parameters icheckpoint and ioutput were set to number higher
then the number of iterations to not influence the performance. Only exception were the
run for the visualization of task 3.

For the choice of the compiler for each cluster we only considered GCC and the Intel
compiler which were already defined in the makefile. To found out which compiler was
the best for each cluster we took the input file for the wind turbine case and compared
the runtime for versions of Xcompact3d built with different compilers. For the Niagara
cluster, the Intel compiler was the better compiler, probably due to better optimization
for the Intel CPU’s used for the cluster. Instead, for Bridges-2 GCC achieved better
results then the Intel compiler.

After we decided which compiler we used for each cluster, we wanted to find out which
MPI library performs the best on each cluster. We considered OpenMPI, MPICH,
MVAPICH2, HPC-X on both clusters and Intel-MPI only on Niagara. Furthermore,
we considered that each MPI library could perform differently based on the domain
decomposition, due to different implementations of the communication scheme. So we
used the wind turbine case with just 100 iterations with 4 nodes, 512 processes on
Bridges-2 and 320 processes on Niagara, with different combinations of p_row and p_ col
for each MPI library, as shown in Figure 7.3 and Figure 7.4.

36



Total time in seconds

Total time required for different MPI libraries with XCompact3D on bridges

161

14 4

12

10 7

N ) N o @ I
1% o 3k k: o ;
W @ 0o ar X o,'?—%

Decomposition used (rows, cols)

Figure 7.3: MPI comparison for Bridges-2.

37

(total, hpcx-mpi)

(total, mpich)

(total, mvapich2@2.3.7)
(total, openmpi@4.1.1)



Total time required for different MPI libraries with XCompact3D on niagara

m (total, hpex-mpi)
350 EEE (total, intel-mpi)
B (total, mpich)
B (total, mvapich2)
mm (total, openmpi)
300 A
250 4
n
b=
c
S
@
200 1
s
w
E
=
e 150
100 4
50 ~

N (5] o T o A o LA “h [N
20 © [ 3 7 V ¥ ; . ;
B O @ Qo Qo a® b o Ca &0
Decomposition used (rows, cols)

Figure 7.4: MPI comparison for Niagara.

The result was that for Bridges-2 MPICH and for Niagara MVAPICH2 were the best
performing MPI libraries. Although both plots illustrate how important a well chosen
domain decomposition is for the performance.

The last thing we considered to gain a better performance was the use of different FFT
libraries. Instead of only relying on the default FF'T implementation we used so far, we
also considered FFTW on both cluster and additionally Intel-MKL on Niagara. Then
again we used the wind turbine case and tested all the different decompositions with
each FFT library and the best MPI library for each cluster for 2500 iterations on 4 nodes
to find the best configuration for task 2 on each cluster.

cluster | runtime in min | compiler MPI FFT p_row | p_col
Bridges-2 16.44 GCC MPICH default FFT 8 64
Niagara 15.46 Intel MVAPICH2 FFTW 16 20

Table 7.1: Best runs on each cluster with the used compiler and libraries.

Remarkably is that Niagara is still faster than Bridges-2 despite the fewer process count

38



for 4 nodes, 512 to 320. This is probably due to the AVX-512 support of the Intel CPU’s
used for the Niagara cluster, which the AMD CPU’s on Bridges-2 do not support.

To profile Xcompact3D on each cluster for task 1, we had to use IPM. Since HPC-X
is already build with TPM support we decided to use Xcompact3D built with HPC-X
instead of the best performing MPI library for each cluster. However the HPC-X we
used on Niagara for the runs for task 2 were not built with IPM support and so we had
to recompile with a different HPC-X version which was only possible with GCC, not

with the Intel compiler.

cluster | compiler MPI FFT
Bridges-2 | GCC MPICH default FFT
Niagara GCC MVAPICH?2 | default FFT

Table 7.2: Used compiler and libraries for profiling each cluster.

We created profiles for different decompositions on each cluster. Overall, the time spent
in MPI functions and the used memory is greater for Bridges-2 compared to Niagara,
probably due to the higher process count.

1200

1000

on
o
E=3

tine in seconds
[=)]
o
L=

£
o
E=3

100

Figure 7.5: Distribution MPI time task wise on Bridges-2.

L=
=
(]

=
=
"y

index {sorted by HPI time)

39

400

500

= MPI_Alltoallw
— HMPI_Allreduce
— MPI_Waitall
MPI_Reduce
= MPI_Iszend
MPI_Irecw
MPI_Comm_rank.
= MPI_Comm_size
MPI_Init
MPI_Finalize



1800 MPI_Allreduce

MPI_Alltoallw

1600 MPI_Waitall
MPI_Reduce
1400 MPI_I==end
o MPI_Irecwy
< 1200 MPI_Comm_rank,
§ = MPI_Comm_size
B 1000 MPI_Finalize
= MPI_Init
a1l
o
T
=
=00
400
200
0
< o = o = o L=

sorted index

Figure 7.6: Distribution MPI time task wise on Niagara.

The biggest difference between both cluster is seen in Figure 7.5 and Figure 7.6. All
processes on Bridges-2 have a nearly equally distributed time per MPI time. For Niagara
that was not the case. The approximately first 120 tasks wait longer then the remaining
tasks.

For task 3 we used the Bridges-2 cluster to create the visualization of the wind turbine
case for 5000 iterations and we set the ‘output parameter from the input file to 1000 to
create a visualization data every 1000 iterations. The Figure 7.7 shows the visualization
at various time steps created with the open source tool ParaView.

40



(a) 0 iteration

(c) 3000 iterations (d) 5000 iterations

Figure 7.7: Visualization at different time steps.

For the task 4, the bonus task, we should perform a strong scalability studies on each
cluster from 1 to 8 nodes with 2500 iterations. Due to restrictions on the Niagara cluster
it was only possible to allocate 4 nodes for a job. On Bridges-2 we used MPICH and the
default FFT library and on Niagara MVAPICH2 and Intel-MKL. Furthermore, we used
different row x column decompositions to find the fastest configuration for the number
of nodes used, as shown in Figure 7.8 and Figure 7.9. In Figure 7.10 we combined all
runs to a boxplot, for each cluster, to show that there was a relatively large variance
depending on the decomposition. Overall, Xcompact3D shows a good strong scaling
behavior, in the measured range up to 8 nodes and an increase in processes shortens the
runtime. The only exception is a small peak for the Bridges-2 cluster at 6 nodes, but
when the number of processes is increased further, the runtime starts to decrease again.

41



Best runs per nprocs - Scale study performed on bridges with mpich

30004

2500 4

2000 1

1500 1

Total time in seconds

1000 4

500 1

. total

(128, 32, 4) (256, 8, 32) (384, 16, 24) (512, 8, 64) (640, 16, 40) (768, 12, 64) (896, 14, 64)(1024, 16, 64)
Decompaosition used (nproc, rows, cols)

Figure 7.8: Fastest run per number of nodes for Bridges-2.

Best runs per nprocs - Scale study performed on niagara with mvapich2

3500

3000 -

2500 1

~

=}

=

o
L

Total time in seconds
=
o
=]
=]
s

1000 4

500 -

. total

(240, 16, 15) (320, 186, 20)
Decomposition used (nproc, rows, cols)

(80, 20, 4)

(160, 10, 16)

Figure 7.9: Fastest run per number of nodes for Niagara.

42



Total time in seconds

3500 °
3000 4

25004

2000 4 =
gy

Scale study performed on bridges with mpich Scale study performed on niagara with mvapich2

T 3500
- =

3000

2500

Total time in seconds

2000
1500 ;l_] -
o]
1500
| e 7]
; o
1000 i = - b

1000 %

e o o o o 5 5 o
X.':\"e‘ T‘\vﬁe )5.00‘3‘z J".“o‘52 {’.“0‘3e Q’.(\o‘5e A e 6"‘062

Number of processes used (nproc) Number of processes used (nproc)

e o o > > o 5 5
Yﬁgﬁ o o 3’00552 M‘Gﬁe 6,(\"62 6,“0‘52 1,(\06& %.“oﬂz

(a) Scale behavior Bridges-2. (b) Scale behavior Niagara.

Figure 7.10: Boxplots for scaling behavior for each cluster.

7.2 Coding Challenge

The

coding challenge was set up to extend XCompact3D to utilize DPU offloading. The

task was divided into 5 parts:

1.

The
had

Getting familiar with DPUs

. Modify XCompact3D to utilize asynchronous communication in All-to-All calls
. Evaluative Benchmarking of the two versions of the program

2
3
4.
)

Write a technical report about our findings

. Bonus: Explorative study to test out different inputs with unmodified and modified

XCompact3D

DPU infrastructure was available on the Thor cluster (see Section 3.2). The challenge
to be performed on a special branch of the code base, that already included some

implementation work. The main starting boost was the linking of the asynchronous
communication library in the form of libNBC!.

For the asynchronous communication to work, it was important to change API calls and
break them into two parts. call transpose_x_to_y(in, out, decomp) had to become

http://www.2decomp.org/occ.html

43


http://www.2decomp.org/occ.html

call transpose_x_to_y_start(hande, in, out, send buffer, receive_buffer, decomp)
and call transpose_x_to_y_wait(hande, in, out, send_buffer, receive_buffer,

— decomp). There are several calls of this type for each combination of x,y and z. The
classic overlap pattern (early as possible start of communication, late as possible waiting

for completion) should be used to enable a good overlap between communication and
computation.

This type of division needed additional buffers to be added and maintained. For each of
the dimension combinations there had to be a separate buffer space, to avoid overwriting
of existing data.

7.3 On-site competition

For the on—site competition, the same wind turbine case as in the online competition
was used with modified parameters for the calculation for 2000 iterations and the only
task was to submit the best run including the makefile, job submission file, the input.i3d
file and the log file for this run. But due to the hardware problems the time to optimize
Xcompact3D for our hardware before and during the competition was very limited.
Therefore we used our experience from the online competition for the Bridges-2 cluster,
due to similar hardware, as our starting point. To built Xcompact3D we used GCC,
HPC-X and tried both the FFT and FFTW library. Initially we reduced the iteration
count and tried different row x column decompositions on 2 nodes, which turned out
to be very slow. At that time we already suspected that there was a problem with the
communication between the two nodes. Therefore we repeated the whole process to find
the best decomposition but this time on just one node, which surprisingly gave slightly
better results. So we got the final parameter for the best run, as shown in Table 7.3.

runtime in min | compiler | MPI FFT p_row | p_col
best run 49.84 GCC HPC-X | default FFT 16 16

Table 7.3: Used compiler, libraries and parameter for the best on—site run.

Overall our achieved runtime was behind our expectations. The average time for one
iteration was 1.5 s and in for comparison on Bridges-2 for 2 nodes the average time for
one iteration was approximately 0.37 s. That means, without the hardware problems
and more time for optimization on our hardware, a much better result would have been
possible.

44



8 Secret Application - FALL3D

Author: Frederic Voigt

As a surprise challenge during the SCC another Fortran application was revealed. FALL3D
is a model solver for advection—diffusion—sedimentation equations on a terrain—following
grid with a finite differences scheme [FCM18]. The main purpose was the forecast of
volcanic ash distribution and passive transport in the atmosphere after an eruption
[FCM18]. In the current version FALL3D-7.3.1 parallel execution was possible for the
first time (in publicly available open source code), which made it well suited as a secret
application in the SCC [FCM18|.

Tasks

The input was a .inp file, which is FALL3D’s own input format. For the SCC, we looked
at data from an eruption of Mount St. Helen on May 18, 1980 [Wes|. The input file
could be further processed with a simple command from FALL3D.

Tuning

Fall3D itself was not included in Spack. However, all dependencies - an MPI implemen-
tation with Fotran compilation and NetCDF - were available in Spack, so building the
application was relatively easy. We already needed both dependencies for the previous
applications. As a compiler we used GCC 12. For the Secret Application, we managed to
use the library PnetCDF (the parallel variant of NetCDF). We assume that the use of this
library significantly improved the final performance, since the 1/O could be parallelized.

Tuning consisted, for the building aspect, only of setting the —enable-parallel flag in the
configure-step, as well as using the compiler optimization levels.

Another aspect was the computational grid used by FALL3D. This was divided into
3 dimensions among the processes. Based on our previous experience, we empirically
determined that the outermost loop should be kept as large as possible. Also, based
mainly on our experience with ICON, we decided to experiment with binding of the
processes and tested socket, NUMA and L3-cache bindings. Therefore we tried different
combinations which can be seen in Figure 8.1.

We also used the CPU boost mode, which was explained in chapter 2. The use led to
significantly improved performance (sometimes with improvements in the range of up to

45



Configuration runtime in comparison

210

200

150 I I I I .

1
4x16x4 - Socket - Boosted 16x 4x4-13 lGx 4x4-13- Boosted 16x4x4- NUMA 16 x 4 x 4 - NUMA - Boosted 16 x4x4- Socket 16 x 4 x 4 - Socket - Boosted l

Runtime in seconds
- o N
~ 0 o
o o o

@
o

Configuration

Figure 8.1: Comparison of FALL3D results. For the configurations, first the distribution
of the processes on the 3D-Grid is given. After that the binding instance is
given and finally if the configurations was boosted or not.

25%, such as with a 16 x 4 x 4 split with binding on L3 cache level).

Results

In the end, a configuration with the largest outer loop, a 32 x 4 x 2 partition, prevailed.

It also showed that boosting had a positive effect across all configurations. The effects of
binding, on the other hand, were relatively small and there were only differences in the
range of a few seconds.

The best runtime was 153 seconds in the end.

46

32x4x2
- Socket - Boosted



9 Learnings

Authors: Frederic Voigt, Christian Willner

We have been able to gain new experience in various aspects of the project work and
have also been able to take away a few things on a technical level.

Foremost, we have acquired a much more routine handling of the tools, documentations
or the application of theoretical knowledge in basic areas of scientific computing.

For example, most of us had already worked with Spack once or twice, but after the
competition, its use became routine. The power of this package manager became clear
especially in the applications NWChem and Xcompact. Also the careful use of the
possibilities of Spack, like the usage and combination of compilers, dependencies or
pre-configuration of the applications for the on—site competition, became easier for all of
us.

In the more theory-based courses, the practical aspects of working with scientific ap-
plications tend to be less prominent in our experience. For example, working with
dependencies of individual applications, linking libraries or instrumenting/sampling
applications for profiling. While these aspects presented us with great challenges at the
beginning, thanks to the steep learning curve we almost always knew what to do at the
end of the SCC.

Working with documentation is part of the daily routine in any form of programming.
The scientific, mostly non-commercial, applications sometimes have harsh documentation
and sometimes it is very difficult to find them at all. In the course of the SCC work,
however, we have become more and more comfortable with this circumstance and think
that this knowledge will help us in all parts of software development.

During the competition, we were sensitized to the properties of scientific software. So we
were able to find even the most absurd errors more and more quickly. One illustrative
example, in the ICON application, is that certain commands in the jobscript must have a
space at the end because the strings are concatenated. Such errors can take an enormous
amount of time, but with time you get a feeling for how bugs are systematically tracked
down and where the sources of errors can be found.

But we were also able to gain some knowledge on a less practical level. We were
particularly pleased with the way in which theoretical knowledge from the university
courses was applied to the practical side of the competition.

47



A prime example of this was the modification of our hardware. Although this admittedly
led to some complications in the actual implementation, it illustrates one aspect of
high-performance computing. The importance of the interconnection network of nodes
and the arrangement of the nodes among each other was well demonstrated to us here.
For example, simply changing the hardware elements in a way that was more suitable
for the underlying software led to an increase in performance.

A similar interesting aspect was already mentioned in ICON. The mapping of processes
and threads to the hardware is often only discussed very briefly in lectures due to time
constraints. We were all the more pleased that we were able to get a relatively high
speedup by changing the mapping, since the initial mapping made such poor use of the
hardware.

When it comes to scientific high performance computing, it is mostly the case that
Fortran will be mentioned at some point. As a group we were stunned when every
single application demanded some degree of Fortran literacy. None of us had any prior
knowledge of the language and we had to learn the language to dive deeper into certain
problems. The application of Fortran was interesting for two reasons. On the one
hand, Fortran still forms the basis for many other programming languages thanks to its
efficiency and it was very beneficial for the general understanding of the language. On the
other hand, we were able to gain insight into the basics of high performance computing in
general. Most problems did not ask to change the source code, but especially the coding
challenge (see Section 7.2) needed some experience in modern Fortran. Since the task
here was to rebuild the communication and blocking and non-blocking communication is
an important aspect of efficient programming, this was all the more beneficial for our
understanding of basic HPC concepts.

The last aspect we would like to mention is the profiling of the programs with IPM. This
profiler may not be the first choice as a tool, but we have enjoyed evaluating the programs.
It is very interesting to see how different changes and tuning affects the overall behavior
of the programs. Even without a close look at the source code, weaknesses can be
identified and, with a rough understanding of the application functionality, assumptions
can be made about where these weaknesses arise. In ICON, for example, it could be
seen that the interaction between atmosphere and ocean nodes leaves clear traces in the
profiling.

All in all, the SCC remains a very positive memory for us and we were able to learn a lot.

48



Bibliography

[ABdJ*20] E Apra, E J Bylaska, W A de Jong, N Govind, K Kowalski, T P Straatsma,

[DH13)

[FCM18]

[LDK*05]

[Li10]

M Valiev, H J J van Dam, Y Alexeev, J Anchell, V Anisimov, F W Aquino,
R Atta-Fynn, J Autschbach, N P Bauman, J C Becca, D E Bernholdt,
K Bhaskaran-Nair, S Bogatko, P Borowski, J Boschen, J Brabec, A Bruner,
E Cauét, Y Chen, G N Chuev, C J Cramer, J Daily, M J O Deegan, T H
Dunning, Jr, M Dupuis, K G Dyall, G T Fann, S A Fischer, A Fonari,
H Friichtl, L Gagliardi, J Garza, N Gawande, S Ghosh, K Glaesemann, A W
Gotz, J Hammond, V Helms, E D Hermes, K Hirao, S Hirata, M Jacquelin,
L Jensen, B G Johnson, H Jénsson, R A Kendall, M Klemm, R Kobayashi,
V Konkov, S Krishnamoorthy, M Krishnan, Z Lin, R D Lins, R J Littlefield,
A J Logsdail, K Lopata, W Ma, A V Marenich, J Martin Del Campo, D Mejia-
Rodriguez, J E Moore, J M Mullin, T Nakajima, D R Nascimento, J A
Nichols, P J Nichols, J Nieplocha, A Otero-de-la Roza, B Palmer, A Panyala,
T Pirojsirikul, B Peng, R Peverati, J Pittner, L Pollack, R M Richard,
P Sadayappan, G C Schatz, W A Shelton, D W Silverstein, D M A Smith,
T A Soares, D Song, M Swart, H L. Taylor, G S Thomas, V Tipparaju, D G
Truhlar, K Tsemekhman, T Van Voorhis, A Vizquez-Mayagoitia, P Verma,
O Villa, A Vishnu, K D Vogiatzis, D Wang, J H Weare, M J Williamson,
T L Windus, K Wolinski, A T Wong, Q Wu, C Yang, Q Yu, M Zacharias,
7 Zhang, Y Zhao, and R J Harrison. NWChem: Past, present, and future.
J. Chem. Phys., 152(18):184102, May 2020.

Jack Dongarra and Michael A Heroux. Toward a new metric for ranking high
performance computing systems. Sandia Report, SAND2013-4744, 312:150,
2013.

A. Folch, A. Costa, and G. Macedonio. Fall3d-7.3.1 users manual. 2018. http:
//datasim.ov.ingv.it/download/fall3d/manual-fall3d-7.3.1.pdf
(visited: 2022-09-07).

Piotr Luszczek, Jack J Dongarra, David Koester, Rolf Rabenseifner, Bob
Lucas, Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Taka-
hashi. Introduction to the hpc challenge benchmark suite. Technical report,
Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States),
2005.

Ning Li. 2 decomp and fft user guide. 2010. http://www.hector.ac.uk

49


http://datasim.ov.ingv.it/download/fall3d/manual-fall3d-7.3.1.pdf
http://datasim.ov.ingv.it/download/fall3d/manual-fall3d-7.3.1.pdf
http://www.hector.ac.uk/cse/distributedcse/reports/incompact3d/UserGuide.html
http://www.hector.ac.uk/cse/distributedcse/reports/incompact3d/UserGuide.html

[Wes]

[Wic05]

/cse/distributedcse/reports/incompact3d/UserGuide.html (visited:
2022-08-08).

Liz Westby. Mount st. helens in eruption, may 18, 1980. https://www.usgs
.gov/media/videos/mount-st-helens-eruption-may-18-1980 (visited:
2022-09-07).

Nathan Wichmann. Cray and hpcc: Benchmark developments and results
from past year. Proceedings of CUG, pages 16—19, 2005.

20


http://www.hector.ac.uk/cse/distributedcse/reports/incompact3d/UserGuide.html
http://www.hector.ac.uk/cse/distributedcse/reports/incompact3d/UserGuide.html
https://www.usgs.gov/media/videos/mount-st-helens-eruption-may-18-1980
https://www.usgs.gov/media/videos/mount-st-helens-eruption-may-18-1980

Appendices

o1



List of Figures

2.1
2.2
2.3

5.1

5.2

5.3
5.4

2.5

6.1

6.2

6.3
6.4
6.5

7.1

7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9

Sketch of our cluster. . . . . . . . ... ... 7
Initial system topology. . . . . . . . . . ... 9
Possible topology configurations. . . . . . .. ... ... L. 10

Different distributions of the Ocean processes on Niagara. The whole
experiment utilized four nodes of 40 processes each. The bars represent
one experiment each, with the labels referring to the total number of
processes assigned to the Ocean component. The left figure corresponds

to the initial coarse evaluation, the right shows the fine-grained one. . . . 22
Different values for nproma on Niagara. The left figure corresponds to the
initial coarse evaluation, the right shows the fine-grained one. . . . . . . . 22
Different process mapping options, tested on Bridges-2. . . . . . . . . .. 23
Shares of communication time for the different MPI calls within ICON.
This figure was generated via IPM on Niagara. . . . . . . ... ... ... 24
Communication balance of the individual processes, sorted by MPI ranks.
This figure was also generated via IPM on Niagara. . . . ... ... ... 25
Runtime of NWChem for shifted combinations of the implementations of
compiler, scalapack, lapack, blas and FFTW on the Bridges-2 cluster. . . 29
Runtime of NWChem for shifted combinations of the implementations of
compiler, scalapack, lapack, blas and FFTW on the Niagara cluster. . . . 30

Runtime of NWChem for moved OMP thread count on the Bridges-2 cluster. 31
Runtime of NWChem for moved OMP thread count on the Niagara cluster. 32
Distribution of call frequencies of MPI functions in NWChem according

to the IPM profiling. . . . . . . . .. ... 33
1D domain decomposition example using 4 processors a) decomposed in y

direction b) decomposed in x direction. Figure taken from [Lil0]. . ... 34
2D domain decomposition example using 4x3 processor grid. Figure taken

from [Lil0]. . . . . . .. 35
MPI comparison for Bridges-2. . . . . . . . . . ... ... 37
MPI comparison for Niagara. . . . . . . . . . ... .. ... ... .... 38
Distribution MPI time task wise on Bridges-2. . . . . . .. .. ... ... 39
Distribution MPI time task wise on Niagara. . . . . . . . . .. ... ... 40
Visualization at different time steps. . . . . . . ... .. ... ... ... 41
Fastest run per number of nodes for Bridges-2. . . . . . . ... ... ... 42
Fastest run per number of nodes for Niagara. . . . . . . .. .. ... ... 42

52



7.10 Boxplots for scaling behavior for each cluster. . . . . ... .. ... ... 43

8.1 Comparison of FALL3D results. For the configurations, first the distri-
bution of the processes on the 3D-Grid is given. After that the binding
instance is given and finally if the configurations was boosted or not. . . 46

23



List of Tables

3.1 Different types of Bridges-2 nodes. . . . . . . ... ... 14
4.1 Benchmark outputs for HPCC using different MPI implementations. . . . 17
5.1 Runtimes of ICON with different MPI implementations. . . . . . . . . .. 20
5.2 Runtimes of ICON with different BLAS implementations. . . . . . . . .. 20
6.1 Final results of the NWChem runs. . . . . . .. ... ... ... ..... 33
7.1 Best runs on each cluster with the used compiler and libraries. . . . . . . 38
7.2 Used compiler and libraries for profiling each cluster. . . . . ... .. .. 39
7.3 Used compiler, libraries and parameter for the best on-site run. . . . . . 44

o4






	Introduction
	Team Cluster
	Hardware
	Operating system
	Storage and file system
	Problems and difficulties
	Software and driver problems
	Power Cables
	GPU topology
	CPU


	Online Competition Clusters
	Niagara
	Thor
	Bridges-2

	Microbenchmarks
	HPL
	HPCG
	HPCC

	ICON
	Building and configuration
	Compilers and dependencies
	Runtime parameters
	Final configurations for the online competition
	Profiling
	On-site competition

	NWChem
	Tuning
	Scripts
	Input Tuning

	Results
	Profiling

	Xcompact3D
	Online Competition
	Coding Challenge
	On-site competition

	Secret Application - FALL3D
	Learnings
	Bibliography
	Appendices
	List of Figures
	List of Tables

