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Abstract
Applications in HPC often rely on OpenMP for parallelization. Due to OpenMP’s
reliance on shared memory and threads, its scalability is inherently limited. Multiple
approaches to solve this scalability issue are part of today’s research, among them are
the Single System Image (SSI) kernels and operating systems. The contribution of SSIs
to allow OpenMP applications to scale beyond a single compute node is the provision of
distributed shared memory and thread migration across multiple nodes, though these
features are not guaranteed to be properties of every Single System Image kernel.
This work evaluates the fitness of current SSI kernels for the problem, basing the results
on the recent past of SSI kernels and Popcorn Linux, an experimental SSI kernel currently
in development. Results indicate that these operating systems are not suitable to enhance
the scalability of OpenMP applications without major drawbacks, instead the focus
should be directed to other approaches, for example tool-based ones.
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1 Introduction
In today’s HPC landscape, many applications rely on OpenMP [9] for parallelization.
This collection of compiler directives, environment variables and select library routines
allows the developer to introduce multithreading on shared memory at a low entry
barrier regarding the difficulty of implementation. Ever since version 4.0, offloading to
accelerators, such as GPUs, is also supported through new directives. Due to this ease
of use, the option to transform existing code incrementally and the vast support from
most available compilers, many users without a background in computer science are able
to efficiently parallelize their code with OpenMP. However, since OpenMP only allows
for parallelization at a shared memory level, alongside the available accelerators in a
given node, its scalability is inherently limited. Code that relies solely on OpenMP for
parallelization can only be executed on a single compute node of any given HPC cluster.
In order to exploit the massive amounts of compute power offered by such HPC systems,
the mentioned OpenMP-reliant applications need to be adjusted, either explicitly or
implicitly. An example for an explicit adjustment could entail the employment of a
different programming model that supports distributed memory parallelization. The
defacto standard for such a model is the Message Passing Interface (MPI) standard [13].
With MPI, multiple processes can compute in parallel while exchanging information in the
form of messages. However, in order to incorporate MPI into an existing application, said
application has to undergo a major transformation, without any options for incremental
parallelization either. So while it is a possibility to transform existing applications from
using only OpenMP to employing either just MPI or even a hybrid of MPI and OpenMP,
such a transformation requires certain knowledge and skills that scientific developers
without a background in computer science do not necessarily have, while also being very
time-consuming, depending on the size of the application. The same is true for any other
parallel programming model that requires fundamental transformations of existing code.

To aid with the transformation of OpenMP code to MPI code, several approaches
investigated the automatization of this process. Tools were developed and evaluated,
which transformed OpenMP applications at different stages, ranging from compile-time to
runtime, showing promising results regarding the performance of the transformed applica-
tions. One example for such a tool is CATO (Compiler Assisted Source Transformation of
OpenMP kernels) [24], which aims to transform the OpenMP code with the help of LLVM.

Another approach to solve the problem of scalability would be to abstract the dis-
tribution of memory into virtual shared memory, which would circumvent the need
to fundamentally change the applications built with OpenMP. This concept is known
as distributed shared memory. One of the options for introducing distributed shared
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memory is the employment of so-called Single System Images (SSIs). These systems
create a single unified view of the underlying distributed computing resources, providing
transparency in regard to resource management [10]. This abstraction can be introduced
at different levels, ranging from software, over the kernel-level, down to the hardware.

This work focuses on the evaluation of Single System Image kernels, examining an
exemplary open-source SSI operating system called Popcorn Linux [6]. The evaluation is
focused on the usability of Popcorn Linux in regards to the problem introduced above,
while also generalizing the findings towards an evaluation of the fitness of SSI kernels as
a solution for this specific problem.

This work is structured as follows: Chapter 2 provides a brief overview on related work
regarding distributed shared memory and Single System Images in general. Chapter 3
explains the concept of SSIs in more detail, as well as introducing Popcorn Linux and
its properties. Finally, Chapter 4 contains the aforementioned evaluation, followed by a
brief summary of the findings.

2 Related Work
The aforementioned tools for automatic transformation are currently topic of multiple
researches. These approaches range from newly developed compiler techniques [8] to
automated compiler-runtime systems [17]. Other approaches incorporate LLVM [18] to
either analyze the bytecode of an application [14] and transform the code accordingly,
or, as it is the case with CATO, transform the code during the optimization phase.

The concept of distributed shared memory (DSM) has been a topic in research since
the 1980’s. DSM has been implemented in both hardware and software. For hardware
approaches, the goal was to create scalable multiprocessor architectures with shared
memory and cache coherence. Two systems that achieved this goal were the Stanford
DASH [19] and the Stanford Paradigm [11]. While HPC systems nowadays do not
offer a single address space over all nodes, hardware-based DSM approaches are still
relevant today in the form of the NUMA architecture, which will be further discussed in
Section 3.1, alongside some software-based DSM approaches.

Many Single System Image operating systems can synonymously be referred to as
DSM operating systems, although this generalization does not cover all of them, as DSM
is not strictly a part of every definition of SSIs. The first Single System Images were
created in the 1980’s, their history and impact alongside their successors is analyzed in
detail in Section 3.2. Within this category of SSI kernels, multiple comparisons regarding
their performance were conducted, ranging from the usage as a web-grid built from
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desktop PCs [12] to feature comparisons when used in a cluster environment [20].

More recently, an overview of different SSI approaches, especially the SSI kernels was
by provided by Healy et al [15], covering many of the released SSI kernels and their
differences, focused mainly on the reasons for their failure on the operating system market.

Popcorn Linux itself has been evaluated in multiple papers, however only by the
original developers. Many of them have been focused on the performance of Popcorn
Linux when it is deployed in an environment with heterogeneous-ISA processors [5] [7].
Barbalace et al [6] also compared Popcorn Linux to a traditional SMP Linux with
three kernels from the NAS Parallel Benchmarks (NPB), focusing their evaluation on
comparing the performance of the OpenMP version on both operating systems and,
independent of that, also comparing the performance of the MPI version of these kernels
on the two operating systems. However, their evaluation was performed only on a single
node, not covering the homogeneous-ISA setting across multiple nodes that this work is
aimed at.

3 Single System Images

3.1 General
Buyya et al define a Single System Image as ”the property of a system that hides the
heterogeneous and distributed nature of the available resources and presents them to
users and applications as a single unified computing resource” [10]. In order for an entire
system to appear as a complete SSI, multiple levels have to cooperate to supply the
necessary properties. Multiple authors provide different categorizations of these levels,
though all of them include a hardware level, a kernel or operating system level, and a
user or application level to some extent. A perfect SSI would need cooperation from
every level to provide all users with the services necessary to create the illusion of a single
unified system, even though it is distributed. These services include, among others, a

Level Example
Hardware (cc)NUMA

OS / Kernel Popcorn Linux, Kerrighed etc.
User cJVM, SHMEM or other PGAS applications

Table 3.1: Overview of the different levels at which SSIs can be implemented. A perfect
SSI would require each level to provide an implementation and cooperation
between the layers.
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single entry point. The user can log in to the cluster under one address and the system
can transparently distribute said user to combat load imbalances. Another important
service is a single point of control, where the user has control over each node in the
cluster from a single shell or GUI. A perfect SSI would create an abstraction of the
distributed memory of each node, presenting it instead as one single shared memory
space. However, as of today no complete SSI has been achieved due to the complexity of
coordinating all of the components mentioned above, while still maintaining a scalable
system [23].

There exist different components in their respective levels that implement SSI features
within their boundaries. An example for a hardware-based SSI is the NUMA architecture.
Each processor is assigned a part of the local memory, but the entirety of said memory is
still treated as shared memory by all levels above the hardware. These types of systems
are also referred to as providers of distributed shared memory.

DSM can also be provided via software support, although the performance is worse
compared to direct hardware support. Programming languages and libraries that support
the Partitioned Global Address Space model (PGAS) [2] present the distributed memory
of multiple nodes as one global shared memory space. Examples for PGAS languages
include Unified Parallel C and Coarray Fortran, example libraries include the different
SHMEM implementations. However, since their use in the problem described in this
work would constitute a complete transformation of the underlying OpenMP code, these
SSI-level programming languages and libraries are not considered further on their own,
although they can be utilized in tools for automatic transformation of said OpenMP
applications. Examples for software-based DSM in the form of runtime systems are
multiple attempts at creating Java Virtual Machine implementations that provide an
SSI of a cluster environment to a Java application, for example the cJVM [3] from 1999.

3.2 SSI Operating Systems and Kernels
This work focuses on the SSI operating systems and kernels. In a perfect Single System
Image, this level is responsible for providing transparency regarding process migration to
balance the load, managing access to certain files depending on whether a node-local file
or a global file is needed, and many more.

The first SSI operating systems emerged in the 1980’s, before the term was coined.
Locus [25] and Plan 9 [22] built the foundation for the SSI operating systems to come.
Locus was built as a distributed operating system with UNIX compatibility, enabling
a view of multiple machines connected over the network as a single computer. This
operating system later culminated in the Single System Image called OpenSSI. Plan 9
was built with the intention to move away from UNIX around the time that personal
computers started to replace the previous monolithic timesharing systems. With this OS,
users were able to create their own computing environment and use it on any machine in
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the network, utilizing concepts such as a single filesystem namespace or single process
identification on distributed computing resources.

Until the 2000’s, many different SSI operating systems emerged, such as MOSIX [4],
Kerrighed [21] and Solaris MC [16]. Today however, work on most of these operating sys-
tems has been terminated. Kerrighed’s last update was around 2012 and MOSIX became
proprietary and received its most recent update in 2017, to name a few examples. Only
very few are still maintained or actively being developed, among them are OpenVMS, a
proprietary SSI which is focused on high-availability servers, and Popcorn Linux.

This development in the lifecycle of the SSI operating systems has been predicted by
Buyya et al, citing development and maintenance costs that were too high compared to
the market share of these operating systems, alongside the need to specifically develop
all components of a cluster towards supporting SSIs, losing flexibility in the process. Due
to the low availability of SSIs these days, this work focuses only on Popcorn Linux for
all further evaluations.

3.3 Popcorn Linux
Popcorn Linux is a replicated-kernel operating system based on the Linux kernel. It is a
project of the Systems Software Research Group at Virginia Tech. The goal of the project
is to explore a different approach to the design of current operating systems, addressing
potential operating system scalability issues. As opposed to a single kernel instance that
manages all CPUs and other hardware resource, the replicated-kernel approach aims to
have multiple kernel instances instead, either one per CPU or one per group of CPUs.
These instances control different non-intersecting subsets of hardware and communicate
via message passing over a newly introduced inter-kernel communication layer. This
communication enables the coordination of multiple kernels, so that the abstraction of a
single operating system, and therefore the abstraction of an SSI, can be maintained.

Figure 3.1: Popcorn Linux architecture on multicore hardware [6]. Each CPU is equipped
with its own kernel, connected by the communication layer.

The inter-kernel communication layer is built on top of shared memory, utilizing private
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receive-only buffers, over which message passing occurs. The kernels themselves are fully
operational with the resources assigned to them, the OS state is partially replicated on
each kernel. Operating system services in Popcorn Linux are rewritten as distributed
services to accommodate for the replicated kernels in the system. In order to balance
the load on the system, Popcorn Linux enables migration of user space tasks, allowing
for a transparent execution of applications across multiple kernels.

The Popcorn Linux architecture is schematically displayed in Figure 3.1, although it
is not necessary to introduce one kernel per CPU. This operating system also allows for
multiple CPUs to be managed by a single kernel, to the point where only a single kernel
instance is present on a compute node in a cluster. Isolated, this bears resemblance to
the current approach of the Symmetric Multiprocessing operating systems. However, it is
possible to equip two nodes with Popcorn Linux and connect them via the communication
layer as well, thus enabling the SSI view over multiple nodes. Most papers and follow-
up work regarding Popcorn Linux focus on the usage of the SSI on heterogeneous
ISA hardware, for example to utilize both x86 and ARM processors with the same
application, since clusters are moving towards heterogeneity. Applying Popcorn Linux to
a homogeneous environment is possible as well, even though it is not the main focus of
the project.

4 Evaluation

4.1 Prerequisites
To combat the scalability problem of OpenMP described in the introduction, a Single
System Image operating system must exhibit at least the following properties: since
distributed shared memory is not implemented in current HPC hardware, the oper-
ating system has to provide DSM. While less efficient than hardware support, it is a
necessity for functioning OpenMP applications, as they rely on shared memory. The
second property is thread migration. OpenMP threads need to be either migrated
from the initial local node onto remote nodes, or they need to be created at the remote
nodes to begin with. Either way the SSI needs to enable such levels of thread management.

In the past, these prerequisites were not necessarily part of every SSI, MOSIX for
example did not support programs utilizing shared memory or threads [20]. Kerrighed
on the other hand supplied both a software-based DSM mechanism and a thread man-
agement mechanism that allowed for migration of threads to remote nodes, or to initially
create them on a remote node. This demonstrates that even during the height of the
SSI operating systems, not every one of them was fit for the solution of the OpenMP
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scalability problem that is the subject of this evaluation.

Popcorn Linux also offers software-based DSM, which, alongside the partially replicated
OS state between kernels, enables task migration across node boundaries [7]. This
encompasses thread migration as well. Both the DSM engine and the task migration make
use of the communication layer to communicate updates to memory or to communicate
thread state information. While DSM is provided transparently, the migration of threads
has to be made explicit. In order for a thread to migrate, a call to the migrate function
has to be inserted into the user application, once to move the thread onto a remote node
and once again at the end to return the thread to the host, returning with the thread
state information attached to said thread. The thread migration also requires an extra
library that is part of the Popcorn compiler framework. While this compiler framework
is built to support the heterogeneous-ISA use case of Popcorn Linux, upon request the
developers provided a thread migration library, detached from the extensive compiler
framework, for the thread migration in a homogeneous-ISA environment.

4.2 Setup
For the evaluation, the Popcorn Linux kernel version 5.2.21 was used. It was installed
on two nodes of the WR cluster at Universität Hamburg, a cluster for educational and
research purposes. The nodes in question are equipped with an AMD Opteron 6344
each. The communication layer was established over TCP/IP. The compilation of the
kernel itself was carried out with gcc v7.5.0. The kernels were installed directly on the
hardware instead of a virtual machine to resemble an actual production environment as
closely as possible.

4.3 Evaluation
The first part of this evaluation focuses on the initial setup of Popcorn Linux, including
any necessary research as well as the installation process. The second part is concerned
with the usage and stability of the kernel, followed by a small-scale comparison to
tool-based approaches for the solution of the OpenMP scalability issue outlined in the
introduction.

Popcorn Linux is documented very poorly. Since it is built on top of the Linux kernel,
usual kernel configuration and installation practices can be applied, there is however
very little information on the modifications of the kernel or what to take into account
during the setup on the Github README or any links contained therein. The same
is true for the usage of the thread migration feature. Information on what to consider
when trying to migrate threads in a user application is very sparse once again, and the
aforementioned library for thread migration in the homogeneous configuration is not
available without contacting the developers.
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After the initial setup of the nodes, they operate in an isolated manner until the
communication layer is established. To that end, a kernel module is provided. After
creating a configuration file and loading the kernel module on both nodes, a handshake
occurs over TCP/IP, creating the messages displayed in Listing 4.1 on the kernel ring
buffer.

1 Loading Popcorn messaging layer over TCP/IP ...
2 popcorn : Loading node configuration ...
3 popcorn : * 0: 10.0.0.63
4 popcorn : 1: 10.0.0.64
5 popcorn : 1 joined , x86_64
6 popcorn : Ready on TCP/IP

Listing 4.1: Handshake between two nodes, enabling subsequent communication over the
communication layer. The asterisk marks the local node, the other address
belongs to the remote node.

After initializing the communication layer, tests were conducted that included com-
munication between the nodes. The first test entails the execution of the command
cat /proc/cpuinfo in the shell. When the Popcorn communication layer is in place, a
call to print the CPU information on one node first prints the information for the local
node, which is then followed by the information from the remote node. During the
tests, executing said shell command on either node led to the remote node crashing and
rebooting, crashing the communication layer in the process, while the local node also
froze the ssh session. The same behaviour was observable on any OpenMP application
that utilized the Popcorn thread migration. Even simple OpenMP applications that
only wrote the hostname to a file (compiled with either gcc or clang), encapsulated
in a parallel and a critical directive, crashed the remote node while freezing the local
one. The crashing node also did not create any log messages regarding the crash, which
complicates any attempt at debugging. Upon request, a former developer of the Popcorn
Linux kernel tried to assist in finding the cause for the crashes, however to no avail. Due
to this, any evaluations of performance when utilizing Popcorn Linux with OpenMP
were not conducted.

The instability of Popcorn Linux is not the only downside to the kernel. In its current
state, Popcorn Linux can only be used on 32 nodes at most, which is too small for almost
any cluster that is currently in use. This emphasizes that the Popcorn Linux kernel, at
least in its current state, is experimental and fit for research purposes, but not for a
production environment.

4.4 Comparison to Tool-based Approaches
The need to install a custom kernel to utilize the sought-after features of Popcorn Linux,
namely the DSM and the thread migration, renders this kernel-based solution undesirable
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to most operators of HPC systems, as it incurs a loss of flexibility. When compared
to the utilization of a tool for automatic transformation of OpenMP applications, the
initial cost for the setup is much smaller, as it only requires the installation of the tool,
alongside for example a compiler toolchain or other dependencies where necessary.

The instability of Popcorn Linux also points to another crucial downside of the kernel-
based approach. If the kernel is unstable to the point where a crash of the communication
layer incurs a crash of the entire compute node that the kernel resides on, the adminis-
trative overhead for the HPC system operators is increased, whereas a crash of a tool is
very unlikely to cause such an outage.

Another downside of Popcorn Linux in particular is that it does not support shared
libraries. Applications built for thread migration need to have all their libraries linked in
statically. So solving the scalability issue of OpenMP via a special kernel would introduce
new restrictions that were not in place beforehand. This pattern extends to most SSIs
of the past. For example, MOSIX did not support shared memory or threads and also
introduced expensive overhead to several system calls [1]. Introducing limitations to
existing working solutions that also affect applications outside of the OpenMP context is
not desirable and can be circumvented by using a tool-based solution instead of a kernel.
Such a tool-based solution would be able to operate independently of other system
components and applications, not introducing any restrictions to otherwise working and
independent software.

The final downside is scalability. In the past, SSIs have shown to not scale well beyond
low node counts in general, dropping considerably in performance when used on too
many nodes [23]. The scalability of the code generated by the tools cannot be generalized,
as it would be subject to the specific transformation. If for example a transformation to
MPI code is executed, the generated code would be bounded by the scalability of MPI
at the very least, not accounting for any further limits imposed by the transformation
mechanism itself.

5 Conclusion
In this work, the problem that OpenMP does not scale beyond one compute note cur-
rently due to its reliance on shared memory and threads was examined once again,
and a solution was evaluated, the Single System Image operating systems. In their
current state, SSI operating systems and kernels are not fit to bring OpenMP to multiple
nodes and distributed memory. The market for SSIs has dropped, leaving only very
few of these operating systems, of which even fewer are focused on HPC clusters. In
this work, the evaluation was focused on Popcorn Linux, one of the only remaining
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SSI kernels in active development for the HPC market. Due to its poor documentation
and instability, Popcorn Linux is not recommended for the use in a homogeneous-ISA
production environment, if the reason for its use is to tackle the scalability issue of
OpenMP.

Alongside the evaluation of Popcorn Linux, multiple reasons were provided for why
the solution to this problem will most likely not be found in the realm of SSI kernels or
operating system, ranging from a loss of flexibility to unwanted side effects on otherwise
uninvolved software. Instead, a tool-based approach is recommended and these tools
should be the focus of further research regarding this problem.
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