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German Climate Computing Center e

Mission
DKRZ — Partner for Climate Science.

Maximum Compute Performance.
Sophisticated Data Management.
Competent Service.

Vision
DKRZ reliably unlocks the potential of the accelerating
technological progress for climate research

Partner
Climate institutions play an important in climate science
Max Planck Institute for Meteorology (MPI-M),

Climate Service Center Germany (GERICS), @ DKRZ
University of Hamburg and Climate Campus, DEUTSCHES
Helmholtz Center for Coastal Research CLIMARECHENZENTRUN

and more...



German Climate Computing Center
HLRE 3 — Mlstral 2015-2021

7 DKRZ pushes forward with Al/ML
B with research and service activity

Jupiter Notebooks with access to GPUs

However, focus is not on ML needed technology (yet)

bullx DLC 720, 3,500+ nodes, 100,000+ cores, Haswell/Broadwell, 3.6 PFLOPS
240 TB main memory, 54 PB disk storage, 450 GB/s mem-disk rate, FDR network
21 nodes for visualization
hot liquid cooling with high efficiency




DKRZ Machine Learning Research Group

Christopher Kadow, Martin Bergemann, Etor Lucio, Mahesh Ramadoss

Climate Informatics and Technologies

Artificial Intelligence Software Development
Machine Learning Data Analytics

Data Mining Evaluation and Validation
Deep Learning HPC (CPU/GPU/TPU)

Interface between Al/ML and Climate Science

Al/ML for DKRZ HPC Infrastructure

Knowledge Transfer and Method Research for Climate Community
Utilization of cutting-egde Al/ML Technologies for Climate Scientists
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Climate Science & Machine Learning
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Introduction and Research Yool
* General Na?
« DL, ML, AI? WTF? Literature? 7@ 0?
* What is a Neural Network? @‘ ?“\ A A dl
o NN
* Methods & Networks AV

e Supervised Learning, Unsupervised Learning, Reinforcement Learning
e Convolutional Neural Network, Recurrent Neural Network, Generative Adversal Network

e Hardware & Software

* PCs, HPCs, Clouds
* Tools, Frameworks, First Steps

* Al reconstructs missing Climate Information
* A Research Journey
* Transfer Learning
* What is next?




General



Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Machine Learning:

A technique by which a computer
can "learn" from data, without
using a complex set of different
rules. This approach is mainly
based on training a model from
datasets.

Deep Learning:

A technique to perform
machine learning

inspired by our brain's
own network of
neurons.

Wikipedia.com

Afificial Infelligence

Machine Learning

ARTIFICIAL
INTELLIGENCE

=4

MACHINE
LEARNING
DEEP

£
Qc_ LEARNING
— e L

MACHINE
LEARNING

DEEP

1950°s 1960’s 1970°s 1980°'s 1990's 2000's 2010's

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

v



Data Science

e Need of entire analytics
universe
e Branch that deals with data
e Different operations related
todatai.e.
= Data Gathering
= Data Cleaning
= Data Subsetting
= Data Manipulation
= Data Insights [Data Mining]

Machine Learning

Combination of Machine and
Data Science

Deep Learning

e Specific branch of Machine
Learning that deals with

Machines utilize Data Science  different flavours of Neural

techniques to learn about the = Network

data hence called as Machine e Examples

Learning = Simple Neural Network

Model Building, Model = Convolutional Neural

Evaluation and Validation Network

3 Types: » Recurrent Neural Network

= Unsupervised Learning = Long Short Term Memory

= Reinforcement Learning e Mainly utilized in..

» Supervised Learning » Object detection in Image

Most popular tools are and Video

Python, R and SAS m Speech Recognition

= Natural Language
Processing and
Understandings

Artificial Intelligence

e BigUmbrella

e Empowering machines to take
decisions on their own

¢ Asthe name suggest imparting
humans' natural intelligence in
machines

¢ Thus machines have ability to
understand and react
according to the situation

https://mc.ai



Literature

Books

OREILLY"

Trevor Hastie % :
Robert Tibshirani

; . 808,
Jerome Friedman TREREE %go,,

Hands-on

Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

The Elements of
Statistical Learning

Aurélien Géron

PDF free PDF free PDF free
online online online
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Literature

Spektrum

KOMPAKT

Spel‘g\,\‘(&!ﬁr_g‘

INT kompakt = -
Wie Me - / P

Neuronale Netze
Vorbild Gehirn

PDF and Printed

PDF

KUNSTLICHE
INTELLIGENZ

Der Weg in die Anwendung

Chemie
Suche nach neuen
Friiherkennung Stoffen

Krebsdiagnostik

Algorithmen
Entscheiden kann Bessere

nur der Mensch




MACHINE
LEARNING

Climate Informatics: Accelerating
Discovering in Climate Science with
Machine Learning

The goal of climate informatics, an emerging discipline, is to inspire collaboration between
climate scientists and data scientists, in order to develop tools to analyze complex and
ever-growing amounts of observed and simulated climate data, and thereby bridge the gap
between data and understanding. Here, recent climate informatics work is discussed, along
with some of the field’s remaining challenges.

he impacts of present and potential
future climate change pose impor-
tant scientific and societal chal-
lenges. Scientists have observed

changes in temperature, sea ice, and sea level,

and attributed those changes to human activity.
It is an urgent international priority to improve
our understanding of the climate system—a
system characterized by complex phenomena
that are difficult to observe and even more
difficult to simulate. Despite the increasing
availability of computational resources, cur-
rent analytical tools have been outpaced by
the ever-growing amounts of observed climate
data from satellites, environmental sensors, and
climate-model simulations. Computational ap-
proaches will therefore be indispensable for
these analysis challenges. The goal of the fledg-

ling research discipline, climate informatics, is to

1521.9615/13/531.00 © 2013 IEEE
Commmu o v IEEE CS AnD 1 AIP

Crame MoNTELEONT

George Washington University

Gavin A, ScamipT
NASA Goddard Institute for Space Studies
ScorT McQuabe

George Wasbington University

inspire collaboration between climate scientists
and data scientists (machine learning, statistics,

and data mining researchers), and thus bridge

Re-

scarch on climate informatics will accelerate

the gap between data and understanding.

discovery and answer pressing questions in cli-
mate science.

Machine learning is an active research area at
the interface of computer science and statistics.
T'he goal of machine learning research is to de-
velop algorithms, automated techniques, to detect
patterns in data. Such algorithms are critical to a
range of technologies including Web search, rec-
ommendation systems, personalized Internet ad-
vertising, computer vision, and natural language
processing. Machine learning also benefits the
natural sciences, such as biology; the interdisci-
plinary bioinformatics field has facilitated many
The im-
pact of machine learning on climate science has
the potential to be similarly profound.

di

s in genomics and proteomic:

Here, we focus specifically on challenges in
climate modeling; however, there are myriad
collaborations possible at the intersection of
these two fields. Recent work reveals that col-
laborations with climate scientists also generate
interesting new problems for machine learning.'
To

lenge problems for climate informatics, some

aden the discussion, we propose chal-

32

THIS ARTICLE HAS BEEN PEER-REVIEWED.

COMPUTING IN SCIENCE & ENGINEERING

Litera

ture

PERSPECTIVE

https://doi.org/10.1038/541586-019-0912-1

Deep learning and process understanding
for data-driven Earth system science

Markus Reichstein'?*, Gustau Camps-Valls®, Bjorn Stevens*, Martin Jung', Joachim Denzler?*, Nuno Carvalhais"® & Prabhat’

Machi h B

learning

geospatial data, but current approaches may not be optimal when system behaviour is d

are ingly used to extract patterns and insights fmm the ever-increasing stream of

d by spatial or

context. Here, rather than amending classical machine learning, we argue that these contextual cues should be used as

part of deep learning (an approach that is able to extract spati P
understanding of Earth system science problems, improving the predictive ability of

1 features -alh) to gain further process
ing and modelling

of long-range spatial connections across multiple timescales, for example. The next step will be a hybrid modelling
approach, coupling physical process models with the versatility of data-driven machine learning.

and the ability to make better predictions has given competi-
tive advantages in diverse contexts (such as weather, diseases or
financial markets). Yet the tools for prediction have substantially changed
over time, from ancient Greek philosophical reasoning to non-scientific
medieval methods such as soothsaying, towards modern scientific dis-
course, which has come to include hypothesis testing, theory develop-
ment and computer modelling underpinned by statistical and physical
relationships, that is, laws'. A success story in the geosciences is weather
prediction, wl huh has greatly i improv ed thmugh the integration of better
theory, inc I power, and established observational
systems, which .\Ilou for the assimilation of large amounts of data into the
modelling system’. Nevertheless, we can accurately predict the evolution
of the weather on a timescale of days, not months. Seasonal meteorolog-
ical predictions, forecasting extreme events such as flooding or fire, and
long-term climate projections are still major challenges. This is especially
true for predicting dynamics in the biosphere, which is dominated by
biologically mediated processes such as growth or reproduction, and is
strongly controlled by seemingly stochastic disturbances such as fires and
landslides. Such pr ive problems have not seen much progress in the
past few decades”.
At the same time, a deluge of Earth system data has become available,
with storage volumes already well beyond dozens of petabytes and rapidly
increasing transmission rates exceeding hundreds of terabytes per day

I | umans have always striven to predict and understand the world,

variety and veracity (see Fig. 1). One key challenge is to extract interpret-
able information and knowledge from this big data, possibly almost in
real time and integrating between disciplines.

Taken together, our ability to collect and create data far outpaces our
ability to sensibly assimilate it, let alone understand it. Predictive ability in
the last few decades has not increased apace with data availability. To get
the most out of the explosive growth and diversity of Earth system data,
we face two major tasks in the coming years: (1) extracting knowledge
from the data deluge, and (2) deriving models that learn much more
from data than traditional data assimilation approaches can, while still
respecting our evolving understanding of nature’s laws.

The combination of unprecedented data sources, increased computa-
tional power, and the recent advances in statistical modelling and machine
learning offer exciting new opp ies for expanding our knowled;
about the Earth system from data. In particular, many tools are available
from the fields of machine learning and artificial mlell:geme. but they
need to be further developed and adapted to geo-scientific analysis. Earth
system science offers new opportunities, challenges and methodological
demands, in particular for recent research lines focusing on spatio-
temporal context and uncertainties (Box 1; see https://developers.
google.com/machine-learning/glossary/ and http://www.wildml.com/
deep-learning-glossary/ for more complete glossaries).

In the following sections we review the development of machine learn-
ing in the geosuenm:u context, and highlight how deep Ieammgflhal
is, the ion of abstract (spati

These data come from a plethora of sensors ing states, fl

intensive or time/space-integrated variables, representing fifteen or more
orders of temporal and spatial magnitude. They include remote sensing
from a few metres to hundreds of kilometres above Earth as well as in situ
observations (increasingly from autonomous sensors) at and below the
surface and in the atmosphere, many of which are further being comple-
mented by citizen science observations. Model simulation output adds to
this deluge; the CMIP-5 dataset of the Climate Model Intercomparison
Project, used y for scientific g; dwork towards periodic
climate assessments, is over 3 petabytes in size, and the next generation,
CMIP-6, is estimated to reach up to 30 petabytes®. The data from models
share many of the challenges and statistical properties of observational
data, including many forms of uncertainty. In summary, Earth system
data are exemplary of all four of the ‘four Vs’ of ‘big data’: volume, velocity,

the potential to overcome many of the lmuratmm that hav e, until now,
hindered a more wide-spread adoption of machine learning. We further
lay out the most promising but also challenging approaches in combini
machine learning with physical modelling.

State-of-the-art geoscientific machine learning

Machine learning is now a successful part of several research-driven
and operational geoscientific processing schemes, addressing the
atmosphere, the land surface and the ocean, and has co-evolved with
data availability over the past decade. Early landmarks in classifica-
tion of land cover and clouds emerged almost 30 years ago through
the coincidence of high-resolution satellite data and the first revival
of neural networks®”. Most major machine learning methodological

Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany. “Michael-Stifel-Center Jena for Data-driven and Simulation Science, Jena, Germany. *image
Processing Laboratory (IPL), University of Vakincia, Valencia, Spain. “Max Planck Institute for Meteorology, Hamburg, Germany. *Computer Vision Group, Computer Science, Friedrich Schiller
University, Jana, Germany. “CENSE, Departamento de Ciéncias @ Engenharia do Ambients, Faculdads de Ciéncias & Tecnologia, Universidads NOVA de Lisboa, Lisbon, Portugal "National Energy
Research Supercomputing Center, Lawrence Berkeley National Laboratory, Berbeley, CA, USA. *e-mail: mreichstein@bge-iena.mpg.de
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Reichstein, M., Camps-Valls, G., Stevens, B. et al.
Deep learning and process understanding for data-
driven Earth system science. Nature 566, 195-204
(2019). https://doi.org/10.1038/s41586-019-0912-1

Monteleoni, C., G.A. Schmidt, and S. McQuade, 2013:
Climate informatics: Accelerating discovering in
climate science with machine learning. Comput. Sci.
Eng., 15, 32-41, d0i:10.1109/MCSE.2013.50.



Neural Networks

Simple Neural Network
Linear model f(x) — SOftTTZ&.CE’(M/lﬂ?)

Neural network f(x) = softmax(Ws

( |
softmax(Ws(g(Walg(Wix)))))

Deep neural network f(;l?)

@ Input Layer () Hidden Layer @ Output Layer

becomehuman.ai
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6 Stages of Neural Network Learning

1. Initialization—initial weights are applied to all the neurons.

2. Forward propagation—the inputs from a training set are passed through the neural network and an output is
computed.

3. Error function—because we are working with a training set, the correct output is known. An error function is
defined, which captures the delta between the correct output and the actual output of the model, given the current
model weights.

4. Backpropagation—the objective of backpropagation is to change the weights for the neurons, in order to bring the
error function to a minimum.

5. Weight update—weights are changed to the optimal values according to the results of the backpropagation
algorithm.

6. Iterate until convergence—because the weights are updated a small delta step at a time, several iterations are
required in order for the network to learn. After each iteration, the gradient descent force updates the weights towards
less and less global loss function.

e Backward pass Q\ Wo
- e Backprop: efficient method to @\ /—W

calculate gradients Wi %

e Gradient descent: nudge o1l B — > Oupet
. parameters a bit in the opposite @/
- . Net Input Activation Unit Step
) /S dlreCtlon Wm Function Function Function

&

From missinglink.ai
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X
Supervised Learning o o XX =- DKRZ
0O O

Machine Learning

allagora.wordpress.com

Example:

Supervised
ML algorithm

Research:

Climate Prediction

Training

Observations Labeling

Learning
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Machine Learning

TWO MINUTE

PAPERS
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TWO MINUTE

PAPERS

WITH KAROLY ZSOLNAI-FEHER




X
Supervised Learning . & %
020
Unsupervised Learning

Machine Learning

Example:

allagora.wordpress.com

Unsupervised
ML algorithm



Supervised Learning .
OOO
O
. . . . 3
Machine Learning Unsupervised Learning ol my \O°
0 O

K-Means Clustering...

° . ' ...Clearly
explained!!!




Machine Learning

Example:

Research:

_ _ X 20/65 i
Supervised Learning . < X 2> DKRZ
OOO APE2010.de; www.coursera.org
Unsupervised Learning
Reinforcement Learning

[ ] Gen 34 species 14 genome 14 (37%)
Fit : 657 M Fi : 4322
lState &_RewardJ itness: €57 Max Fitness: 4322

{ Actions ,
medium.freecodecamp.org www.youtube.com/watch?v=qv6UVOQOF44
Climate Prediction Input
Deep Output
: Climate Prediction
TV Learning [——>]_Climate Prediction_

Temperature Reward
Correlation
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Supervised Learning . < X = DKRZ
OOO APE2010.de; www.coursera.org
> O
Machine Learning Unsupervised Learning ol = @
Reinforcement Learning

TWO MINUTE

PAPERS
— )
4_._1'. -z < «' TWOM\II:UTE
| @ PAPERS

WA motzsogmu FEliR




M et h O d S Meaningful

Compression

Structure Image

. o Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
-
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks
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Convolutional Neural Network (CNN, or ConvNet) 24/65 1

Good for: Classification, Supervised Learning, Image Recognition

A Convolutional Neural Network (ConvNet/CNN) is a
Deep Learning algorithm which can take in an input
image, assign importance (learnable weights and
biases) to various aspects/objects in the image and be
able to differentiate one from the other. The pre-
processing required in a CNN is much lower as
compared to other classification algorithms.

How does this work in a nutshell? Special: U-Net m
4»»
Single depth slice d
xA 1 0o 2 3 QL e -
4 6 6 8 s 6 8 .H_
W0 e )« > .
BRENEN <d i 14

Max Pooﬁné

Input Convolution + RelLU Pooling Convolution + RelU Pooling Fully Connected

I I I - -Y 'I' h MIT Introduction to Deep Learning: CNN ~40min
I I Ou u e https://www.youtube.com/watch?v=iaSUYvmCekl



Recurrent Neural Network (RNN) 25/65

Good for: make use of sequential information, have a “memory” which captures info about what has been calculated so far.
-

s gy S
A recurrent neural network (RNN) is a class of E g lTJ
artificial neural networks where connections between Unfold b tw tw : S
nodes form a directed graph along a temporal <2- e+ E_— % Y
sequence. This allows it to exhibit temporal dynamic P u e fu
behavior. Derived from feedforward neural networks, @ @ @
RNNs can use their internal state (memory) to process
variable length sequences of inputs.! "
How does this work in a nutshell? Special: LSTM 2 :
Long short-term
RNN is a generalization of feed-forward neural memory, has feedbacks,
network that has an internal memory. RNNs can process seqguences
are designed to recognize a data’s sequential of data. It has gates,
characteristics and use patterns to predict the which decide about h, h
next likely scenario. information to be stored
as memory. e

% Wirser does el apgEn bl 55V 1]

Issues?

Gradient vanishing

Training is difficult/Failure to converge
Cannot process very long sequences

I I I Y h MIT Introduction to Deep Learning: RNN ~40min
Ou u e https://www.youtube.com/watch?v=SEnXr6v2ifU


https://en.wikipedia.org/wiki/Recurrent_neural_network#cite_note-1

Generative Adversarial Networks (GAN)

Good for: imitation of data, structures, pictures, systems

A generative adversarial network (GAN) is a class of
machine learning frameworks. The generative
network  generates candidates  while  the
discriminative network evaluates them. The contest
operates in terms of data distributions. GANs often
suffer from a "mode collapse" where they fail to
generalize properly, missing entire modes from the
input data.

How does this work in a nutshell?

Two neural networks contest with each other in a
gam, in the form of a zero-sum game, where one
agent's gain is another agent's loss. Can produce
realistic fake fotos of humans. ™

I I I Y h MIT Introduction to Deep Learning: GAN ~40min 2
Ou u e https://www.youtube.com/watch?v=rZufA635dq4 &J

26/65 i
<=> DKRZ

-

Random Noise

-m

Discriminator

| Real
| Fake

Special: Conditional GAN

The conditional generative
adversarial network, or
cGAN for short, is a type of

GAN that involves the

Generated Data
IZ> Fake MRMS [:> MSE Loss
G(‘X) J
!

conditional generation of
images by a generator

l_l\ Discriminator I—’\ Real/Fake ,—1\ Bunary Cro.
| 4 14

Network ¥ | Entropy lc 1

D(x,y)

model

Figure 3. Schematic conditional Generative Adversarial Network Structure.

Issues?

Hyperparameter tuning can be tricky
and time consuming.

What do you do with ,fake” data?
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How2open the Black Box? Where are limits, where physics? 27/6si#
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,| think you should be more explicit in step two*
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How2open the Black Box? Where are limits, where physics? 28/65i

. Scientific Background & Evaluation!

Build upon weather and climate validation,
verification, and evaluation from centuries
of research.

Climate data needs climate data tests.

We do probably something we already did
before, like e.g. forecasts.

Scientific setups need to make sure to make
things right for the right reasons.

2. Explainable Al

A lot efforts in the ML community to make everything
explainable.

Important research for climate science are for example
,Heat Maps“, showing where in a 2D field the outcome
(Dog/Cat) is mostly based on:

least important most important

| .
https://cloud.google.com https://arxiv.org/abs/1906.02825



How2open the Black Box? Where are limits, where physics? 29/65i

5. ook insio [

INSIDE A NEURAL NETWORK

Input (28, 28) Output (26, 26)

& 3261 + |292]| + {262] %
2% 2 | * |
C VL 0.26
~ Yo
(A
) I ] 3 ] e
e 332 + |30e| + 287 +
TWO MINUTE x 2023 x 0.5 047 (.
PAPERS T . L3
= 351 4+ |276] 4+ 1235] =
" | | -
I - ~0.16 - 18 w 0.07 e
b === -
SRee=

N g s i T2
< Mover cover the mati

Also see: https://www.youtube.com/watch?v=rGOy9rgGX1k



https://www.youtube.com/watch?v=rGOy9rqGX1k
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Journal of Computational Physics The Earth Machine

Volume 378, 1 February 2019, Pages 686-707

Science::

“ 7l

ELSEVIER

FR{INEEFS

¢ compuiron | [

! Learning the climate
A new data-driven climate model will use satellite observations and high-resolution simulations

to learn how best to render its clouds. Similar methods will also be applied to other, small-scale phenomena,
such as sea ice and ocean eddies.

Physics-informed neural networks: A deep
learning framework for solving forward

In orbit since 2006, the
Cloud-Aerosol Lidar
and Infrared Pathfinder
Satellite Observation
spacecraft uses lasers
to peer into clouds.

Earth observation

and inverse problems involving nonlinear
partial differential equations

The model will use
artificial intelligence (Al)
to learn from averaged

M. Raissi 2, P. Perdikaris & &, G.E. Karniadakis

Al weather data and,
Show more N Global climate eventually, direct satellite
model observations.

High-resolution cloud models will

. - run as cells within the climate model, Cloud simulations
o Share ®m Cite \ guiding its global simulation.

Much more groups work on that!
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DIEEERENTIABLE PHYSICS
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Great News: Deep Learning, Machine Learning, Artificial Intelligence
is possible on CPU, GPU and TPU
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Great News: Deep Learning, Machine Learning, Artificial Intelligence
is possible on CPU, GPU and TPU

You can use bigger or high

performance computer like DKRZ or
UHH.

Or also you could use Amazon Web
Services (AWS) or Google Cloud.

.

# aws ) Google Cloud
n o >

<= DKRZ

KLIMARECHENZENTRUM




Hardware & Sottware  https://www.tensorflow.org/ 35/65 i

f TensorFlow

TensorFlow

Developed by Supports languages Uses dataflow graphs to
Google Brain Team process data

()

JensorfFlow,

EASY TO BUILD ROBUST MACHINE POWERFUL TENSORBOARD FOR

MACHINE LEARNING LEARNING EXPERIMENTATION FOR DATA VISUALIZATION
MODELS PRODUCTION RESEARCH

https://www.simplilearn.com/



https://ludwig-ai.github.io/ludwig-docs/ 333/905«

The core design principles Ludwig:
) * *No coding required: no coding skills are required to train a model
and use it for obtaining predictions.

*Generality: a new data type-based approach to deep learning model
design that makes the tool usable across many different use cases.

e *Flexibility: experienced users have extensive control over model
For absolute building and training, while newcomers will find it easy to use.

programming

. *Extensibility: easy to add new model architecture and new feature
beginners

data types.

*Understandability: deep learning model internals are often
considered black boxes, but we provide standard visualizations to
understand their performance and compare their predictions.



37/65 A
<=> DKRZ

WELCOME TO PYTORCH TUTORIALS

®
‘ » Py | O r‘ | l New to PyTorch? PyTorch Recipes

PyTorch is an open source machine learning library
based on the Torch library used for applications
such as computer vision and natural language

The 60 min blitz is the most common starting Bite-size, ready-to-deploy PyTorch code
point and provides a broad view on how to use examples.
PyTorch. It covers the basics all the way to

constructing deep neural networks. Explore Recipes >

processing, primarily developed by Facebook's Al

Research lab (FAIR).

PyTorch Build
Your OS
Package
Language

CUDA

Run this Command:

Start 60-min blitz >

() i
Stable (1.7.1) Preview (Nightly) Alibaba Cloud >
aws  Amazon Web Services >
Coe GoogleCloud |

Platform

9.2 10.1 10.2 11.0 None

Microsoft Azure >
NOTE: Python 3.9 users will need to add '-c=conda-forge' for installation

conda install pytorch torchvision torchaudio cudatoolkit=10.2 -c pytorch



Applied Machine Learning

Dr. Kaustubh Patil Biological insights of

clinical relevance and
evolutionary origins

Prediction: Brain-
age and size;
Clinical status

Remote Sensing

Compute
nodes

What is important for ML on HPCs?
“Reproducibility and Data Management”

Processors
This library provides users with the possibility of

. uer w1 101 testing ML models directly from pandas

Jlllearndataframes, while keeping the flexibility of using
scikit-learn’s models.
https://juaml.github.io/julearn/main/index.html

Providing a data portal and a versioning system
for everyone, Datalad lets you have your data
and control it too.

https://www.datalad.org

dala

Network

Performance

5@ ) JULICH]
gy J Forschungszentrum
| #)j0LicH

JUWELS-Cluster

12 petaflops (12 quadrillion
computing operations per
second)

2511 CPU nodes + 56 GPU nodes

total of 5134 CPUs (Intel Xeon
Skylake) +
total of 224 GPUs (NVIDIA V100)

122,768 CPU cores +

71.680 FP64 CUDA cores (GPUs in
total)

total of 264 TB

100 Gb/s (Mellanox InfiniBand
EDR)

JUWELS-Booster

73 petaflops (73 quadrillion

computing operations per second)

936 GPU nodes

total of 1872 CPUs (AMD EPYC
Rome) +
total of 3744 GPUs (NVIDIA A100)

44,928 CPU cores +

12,939,264 FP64 CUDA cores
(GPUs in total)

total of 479 TB +

total of 150 TB High Bandwidth
Memory

200 Gb/s (NVIDIA Mellanox HDR
InfiniBand)


https://pandas.pydata.org/
https://scikit-learn.org/stable/

Applied Machine Learning s
Dr. Kaustubh Patil ML@HPC at INM-7 9 :-!gl-g!gﬂn

Example scenario: brain-age prediction

Problem: Predict chronological age using structural MRI image
Importance: Large difference in actual and predicted age indicates atypical ageing
Data: UK biobank with > 40k subjects

Use of HPC: in all stages of the ML pipeline
Data management: dynamic using DatalLad (all data does not fit in user folder)

Preprocessing (CAT12): ~1hr/subject (parallelized subject-wise on JURECA)
Feature extraction: Gray matter volume from thousands of brain regions
Learning:

Traditional methods: SVM

Deep learning: multi-GPU using PyTorch

=" e


https://www.datalad.org/

MANY ROADS TO THE GPU

DOMAIN SPECIFIC PERFORMANCE DEEP LEARNING,
LANGUAGES el GRS RV S MACHINE LEARNING

Courtesy by David M. Hall - NVIDIA



FORTRAN / Al COUPLING

Many solutions. None ideal.

Use Julia. Call Fortran Use C++ Instead Ok, but limited Missing: Native API Missing: Fortran !’i”"ﬁ““':-“‘"x

Ev'rbncu

xnet

DiffEqFlux.jl Y = Implemented layers
GluonNLP 1 o Dense
GPUArrays o Bia TensorFlow
@ pout
GluonTS &
o Batch Normalization

Courtesy by David M. Hall - NVIDIA
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Image Inpainting - Restoration

Human Intelligence Artificial Intelligence

ﬁ Photos

”Ground Truth” ”"Broken* ”Restoration” ”Ground Truth” "Broken” ”Restoration”

Sanctuary of Mercy church in Borja, Spain Image Inpainting with Deep Learning

https://en.wikipedia.org https://medium.com Tarun Bonu



https://medium.com/
https://medium.com/@tarun_bonu?source=post_page-----dd8555e56a32----------------------
https://en.wikipedia.org/wiki/Borja,_Zaragoza
https://en.wikipedia.org/
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Elharrouss, O., Almaadeed, N., Al-Maadeed, S. & Akbari,
Y. Image inpainting: a review. Neural Process. Lett. 51,
2007-2028 (2019).

Bertalmio, M., Sapiro, G. Caselles, V. & Ballester, C.
Image inpainting. In Proc. ACM Conf. Comp. Graphics
(SIGGRAPH) (eds Brown, J. R. & Akeley, K.) 417-424
(ACM/Addison-Wesley, 2000)

Neural Pracessing Letters (2020) 51:2007-2028

Image Inpainting

Marcelo Bertalmio and Guillermo Sapiro*
Electrical and Computer Engineering, University of Minnesota

Vicent Caselles and Coloma Ballester
Escola Superior Politecnica, Universitat Pompeu Fabra

Abstract

Inpainting, the technique of modifying an image in an undetectable
form, is as ancient as art itself. The goals and applications of in-
painting are numerous, from the restoration of damaged paintings
and photographs to the removal/replacement of selected objects. In
this paper, we introduce a novel algorithm for digital inpainting of
still images that attempts to replicate the basic techniques used by
professional restorators. After the user selects the regions to be
restored, the algorithm automatically fills-in these regions with in-
formation surrounding them. The fill-in is done in such a way that
isophote lines arriving at the regions’ boundaries are completed in-
side. In contrast with previous approaches, the technique here in-
troduced does not require the user to specify where the novel in-
formation comes from. This is automatically done (and in a fast
way), thereby allowing to simultaneously fill-in numerous regions
containing completely different structures and surrounding back-
grounds. In addition, no limitations are imposed on the topology of
the region to be inpainted. Applications of this technique include
the restoration of old photographs and damaged film; removal of su-
perimposed text like dates, subtitles, or publicity; and the removal
of entire objects from the image like microphones or wires in spe-
cial effects.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—; [.3.4 [Computer Graphics]: Graphics Utilities—
; I.4.4 [Image Processing and Computer Vision]: Restoration—;
1.4.9 [Image Processing and Computer Vision]: Applications—;

(e.g., removal of stamped date and red-eye from photographs, the
infamous “airbrushing™ of political enemies [3]).

Digital techniques are starting to be a widespread way of per-
forming inpainting, ranging from attempts to fully automatic detec-
tion and removal of scratches in film [4, 5], all the way to software
tools that allow a sophisticated but mostly manual process [6].

In this article we introduce a novel algorithm for automatic digi-
tal inpainting, being its main motivation to replicate the basic tech-
niques used by professional restorators. At this point, the only user
interaction required by the algorithm here introduced is to mark
the regions to be inpainted. Although a number of techniques ex-
ist for the semi-automatic detection of image defects (mainly in
films), addressing this is out of the scope of this paper. Moreover,
since the inpainting algorithm here presented can be used not just
to restore damaged photographs but also to remove undesired ob-
jects and writings on the image, the regions to be inpainted must be
marked by the user, since they depend on his/her subjective selec-
tion. Here we are concerned on how to “fill-in” the regions to be
inpainted, once they have been selected.” Marked regions are au-
tomatically filled with the structure of their surrounding, in a form
that will be explained later in this paper.

2 Related work and our contribution

We should first note that classical image denoising algorithms do
not apply to image inpainting. In common image enhancement ap-
plications, the pixels contain both information about the real data

https://doi.org/10.1007/s11063-019-10163-0

®

Check for
updates

Image Inpainting: A Review
Omar Elharrouss’ - Noor Almaadeed’ - Somaya Al-Maadeed’ - Younes Akbari'

Published online: 6 December 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Although image inpainting, or the art of repairing the old and deteriorated images, has been
around for many years, it has recently gained even more popularity, because of the recent
development in image processing techniques. With the improvement of image processing
tools and the flexibility of digital image editing, automatic image inpainting has found impor-
tant applications in computer vision and has also become an important and challenging topic
of research in image processing. This paper reviews the existing image inpainting approaches,
that were classified into three subcategories, sequential-based, CNN-based, and GAN-based
methods. In addition, for each category, a list of methods for different types of distortion on
images are presented. Furthermore, the paper also presents available datasets. Last bul not
least, we present the results of real evaluations of the three categories of image inpainting
methods performed on the used datasets, for different types ol image distortion. We also
present the evaluations metrics and discuss the performance of these methods in terms of
these metrics. This overview can be used as a relference for image inpainting researchers,
and it can also facilitate the comparison of the methods as well as the datasets used. The
main contribution of this paper is the presentation of the three categories of image inpainting
methods along with a list of available datasets that the researchers can use to evaluate their
proposed methodology against.

Keyword Image inpainting - Objects removal - Image repairing - CNN - GAN



Liu et al. 2018 Image Inpainting for Irregular Holes Using Partial Convolutions
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Transfer Learning
Youtube comment:

{5 Google: Let's make Al that teaches itself to walk.
K] Facebook: Let's make Al that develop their own language.
<4 Nvidia: Let's make Healing brush tool from Photoshop...

Climate Science? BUT HOW?

Observations Annual Mean HadCRUT4

Station., Ship. Bove based data
HadCRUT4 January 1850

Variable: tas
| Near-Surface Air Temperature

GRAY -> Missing Values



Transfer Learning

Observations —
HadCRUT4

Reanalysis —
20th Century
Reanalysis

Climate Models —
Historical CMIP5

Observations - What is
this?

data via the use of scientific
instruments

Reanalysis - What is this?
Data products that rely on
both observations and
models to estimate
conditions using a single
consistent assimilation
scheme throughout

CMIP5 and ESMs - What is

this?

Intercomparison Project
between different climate
models (Phase 5). ESMs =
Earth System Models
Include the atmosphere,
ocean, land, ice and,
particularly, the biosphere in
an interactive way.

HadCRUT4 - What is this?

It contains newly digitised measurement
perception and recording of data, both over land and sea, new sea-

surface temperature bias adjustments
and a more comprehensive error model
for describing uncertainties in sea-
surface temperature measurements

20CR - What is this?

Reanalysis from NOAA covering the
20th century using data simulation and
observation, it's a four-dimensional
global atmospheric dataset of weather
spanning 1836 to 2015 (using an
ensembile filter)

Historical - What is this?

ESM simulations, which covers the time

from 1850 to 2000 - 2015. Initialized with

pre-industrial (1850) conditions.

Should simulate climate change due to

some CO2-input/parametrization
(otherwise it’s called pi-Control)
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How does it differ from 20CR and
CMIP?

20cr is filled with observations like
HadISST which is derived from
HadSST, which is also part of
HadCRUT4. With CMIP historical
experiment, HadCRUT4 has just the
climate trend in common.

How does it differ from HadCRUT4
and CMIP?

Not purely based on observations
(HadCRUT4), It's not model output
(CMIP) either,

How does it differ from HadCRUT4
and 20CR?

Hist vs. 20CR: historical runs are not
pushed towards observations

Hist vs. HadCRUT4: model data
covers the whole world/grid for the
whole time period & more variables
then SST — no data gaps




Transfer Learning

Training Sets
20CR

20CR Reanalysis
1870-2009
1 Model (Atmos.)

Output of 20crAl

20CR — 56"

Reconstructed

HiiCRUT4

Reconstructed
028

CUE 145t

Reconstructed
1.632

(o]
N
h.f
-)
-)

55+1 Ens. Member

Miss Masks
HadCRUT4 H
1850-2018
2.028
CMIP5 Historical CMIP

1850-2005
35 Models (ESMs)

7

for
Als Masked

HiiCRUT4

Maske

CMIP — 145"

Masked

144+1 Ens. Member 269.568
Miss Masks
HadCRUT4 ﬂ
1850-2018

2.028

Setup of Machine Learning sets:

Training, Validation, Test

IMPORTANT: How to select each? Science
and Evaluation! Don‘t cheat yourself.

20CR — 56 HiiCRUT4 CWE — 145t
Reconstructed || Reconstructed || Reconstructed
1.632 2.028 1.632 :
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PyTorch,
Partial Convolution,
cuDNN CUDA-GPU accelerated
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PrE'ResearCh Produce JPGs Change Al

Find computer Install Software,  Run Software in from Climate Data Software to read

with GPUs Download Pics its original mode .4 run climate data

"' y "'3 dys ~2 days~ ~3 days (NetCDF) and run
it o ' B ' and tune
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Pre-Research
. 4

Shown is the e Entiiscien

learning process, & Einstellungen
each square and

step shows 50

iterations in the

neural network,

to create a

related (climate)

nattern.

-rom

Kadow et al 2020

nature
geo

51/65
Nature Geoscience & @
8.353 Tweets

Nature Geoscience £ @NatureGeosci - 1. Juni

NGeo: Artificial intelligence can reconstruct missing historical temperature
data

nature.com/articles/s4156...
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20CR Test-Suite - Annual Global Mean Temperature

— 20CR Original
---- 20CR Masked il
— 20CR by 20crAl , ¥

021l 20CR by cmipAl i j1°

o
—
5
P L d
w"’
-

r/rmse 20CR Test
Masked | .9706/.1142

Temperature Anomaly (°C)

20crAl*
cmipAl*

1870 1900 1950 2000




Research  Temporal and Spatial = HadCRUT4 Es

HadCRUT4 Orlglnal

El Nino
July
1877

HadCRUT4 by Cowtan and Way
HadCRUT4 + HadSST4

-3.0 -26 =22 -18 -1.4 —10 —06 —02 0.2 0.6 1.0



Research HadCRUT4 Annual Global Mean Reconstruction

0.8 — HadCRUT4 Original - MASKED \
— HadCRUT4 reconstructed by 20crAl -'
0.6! — HadCRUT4 reconstructed by cmipAl

0.4}

0.2}

Temperature Anomaly (°C)

1950 2000



Research

0.8

0.6}

Temperature Anomaly (°C)

1850
 cooler global mean temperature from the mid 19t to the early 20" century
* an underestimation of the global mean temperature trend between 1850 and 2018.

HadCRUT4 Annual Global Mean Reconstruction

— HadCRUT4 Original - MASKED
— HadCRUT4 reconstructed by 20crAl
— HadCRUT4 reconstructed by cmipAl

Trends

1850-2018

1850-1899

1900-1949

1950-1999

2000-2018

1901-2012*

HadCRUT4

0.052+0.013

3e-4+0.030

0.104+0.030

0.081+0.035

0.157+0.128

0.075+0.014

0.4|

by 20crAl

0.057+0.013

-5e-4+0.035

0.102+0.034

0.085+0.029

0.166+0.089

0.080+0.013

by cmipAl

0.058+0.013

0.005+0.035

0.102+0.035

0.085+0.030

0.167+0.090

0.080+0.013

0.2}

1900

1950
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* The results of the Al reconstructions support other studies by also showing a cooler period in the mid

of the 20" century.

* Early 21t century: Compared to HadCRUT4, both Als agree on a weaker hiatus phase and a stronger
trend including higher values for 2016, the warmest year on record.
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Al Reconstructs hot

,\‘
\
)

ARTICLES nature
https://doi.org/10.1038/541561-020-0582-5 geOSCIenCQ

"} Check for updates

Artificial intelligence reconstructs missing climate
information

Christopher Kadow ©2'222, David Matthew Hall®* and Uwe Ulbrich©®?

Historical temperature measurements are the basis of global climate datasets like HadCRUT4. This dataset contains many
missing values, particularly for periods before the mid-twentieth century, although recent years are also incomplete. Here we
demonstrate that artificial intelligence can skilfully fill these observational gaps when combined with numerical climate model
data. We show that recently developed image inpainting techniques perform accurate monthly reconstructions via transfer
learning using either 20CR (Twentieth-Century Reanalysis) or the CMIP5 (Coupled Model Intercomparison Project Phase 5)
experiments. The resulting global annual mean temperature time series exhibit high Pearson correlation coefficients (>=0.9941)
and low root mean squared errors (<0.0547 °C) as compared with the original data. These techniques also provide advantages
relative to state-of-the-art kriging interpolation and principal component analysis-based infilling. When applied to HadCRUT4,
our method restores a missing spatial pattern of the documented El Nifio from July 1877. With respect to the global mean tem-

s with Realistic Results
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DKRZ

DEUTSCHES
KLIMARECHENZENTRUM

>/ nVIDIA.

Freie Universitat LS4V Berlin
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HPC Modelmg HPC Processing HPC Al/ML

Research

o “72@
e !"i"

""—"‘~\--—0$elfd ribing data files

Common Metadata ‘

. CF
* ACDD
* 15019115

Models o- - - Standard |
// * CFStandard name

/ / :
/ S S \
/ —

l"‘ \'\

\

\\
Metadata /

\ Standards y

\\‘\ \"‘\ > 4 * GCMD keywords

\ Lexicon i —)T = = ® Common vocabularies
= + SWEET Ontologies

* Successful combination of climate modeling, observation and artificial intelligence -> on
and thanks to HPCs

* At the moment, many groups (try to) improve models with Al, here it is vice versa

* Missing values introduce structual biases, which can be reduced by Al

e Other studies are confirmed (trends, hiatus, etc.), but this study shows an added value in
terms of temperol (global mean) and spatial structures (e.g. El Nino 1877).

e Data and technology will be continously prepared for the community (on GitHub)



What is next?

s s 55 Helmholtz-Zentrum
s+ 11 Geesthacht

Zentrum fiir Material- und Kiistenforschung

Other Variable
Other Frequency

Statistical downscaling and blending

i 1N | . e

L4 Universitdit Hamburg | [\ %77
| oG R A |

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Liu et al 2018

(a) Low Res (d) Output

(e) GT

Downscaling

HadEX3
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Extremes?



What is next?
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What is next?

neural
Jove

(1] Tube:




What is next?

Master Thesis at DKRZ!?
Focus on Precipitation

* |s precipitation possible to reconstruct?
e Same training method?

* From climate to weather and back:
e Can we reconstruct radar data from station data?
e Backin time where no radar existed?

In cooperation with:

GERICS ==

Climate Service Center il

Germany

Eine Einrichtung des Helmholtz-Zentrums Geesthacht



Conclusion

Past — Observation Reconstruction

Combination of climate modeling, observation and artificial
intelligence. Successful re-fill of climate information. Interpolation
plus pattern recognition is a strong tool for climate research.

Just some thoughts

Battle of the image inpainting community: do they care about a picture?
e Can we put a climate benchmark set outthere?
Speaking the same language: difference of an analysis and a reanalysis?
The world on a square: pre-processing not optimal, convolutions on boundaries
Not one code optimization: Al technology has a lot of potential left!? Hopefully this gets beaten soon.
Transfer learning needs science: e.g. you cannot train on missing values
What is happening next? Go on higher scales? Other variables?
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Artificial Intelligence:
Mimicking the intelligence or
behavioural pattern of humans

or any other living entity.

Deep learning and process understanding
" for data—driven Earth system spience

= "M('Deep Learning Neural Network

e General
DL, ML, AI? WTEF? Literature
e What is a Neural Network?

e Methods & Networks

e Supervised Learning y
e Unsupervised Learning S A Machine

. . o O ooo Learning
* Reinforcement Learning o 0 ,
e Convolutional Neural Network -
e Recurrent Neural Network (!) I -

- L

* Generative Adversal Network (!) .,

[ Fake |

FEHa—
4 OPyTorch

Tensor

 Hardware & Software
e PCs, HPCs, Clouds
e Tools, Frameworks, First Steps

<&=> DKRZ

DEUTSCHES
KLIMARECHENZENTRUM

* Al reconstructs missing Climate
Master Thesis with/at DKRZ
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TWO MINUTE

PAPERS
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GitHub =

(&5 Q‘ O &8 https://github.com/FREVA-CLINT/climatereconstructionAl

Research

README.md O Search or jump to... Pull requests Issues Marketplace Explore

E FREVA-CLINT / climatereconstructionAl ®Watch ~ 3 ¥ Star 12 % Fork 7

Climate Reconstrt
Pa rtia I CO nvol utic <> Code Issues Pull requests Actions Projects Wiki Security 1 Insights Settings

[Applied implementation] (https:// About s
/\ We found potential security vulnerabilities in your dependencies.
P y y P
See Dependabot alerts S
Official implementation is released You can see this message because you have been granted access to Dependabot alerts for this repository. Software to train climate
reconstruction technology (image
. v . . inpaiting with partial convolutions)
Note that this is an ongoing re-img 8 master + ¥ 1branch © 2 tags Go o file Add file = ) _ _
. P, = with numerical model output to re-fill
Input and output: . . .
P P missing values in observational
This is an unofficial pytorch implems Christopher Kadow monthly ful grid reconstructions now 1850-2018 lebefec on2Jun ) 49 commits datasets like HadCRUT4
i u+ | ) 00 Readme
Convolutions [Liu+, arXiv2018]. h5/script First commit with all necessary software and data to reconstruct clim... 8 months ago
. o B3 View license
= masks First commit with all necessary software and data to reconstruct clim... 8 months ago
Requirements
reconstructions monthly ful grid reconstructions now 1850-2018 6 months ago
Releases 2
L] Python 3.6+ snapshots First commit with all necessary software and data to reconstruct clim... 8 months ago
e Pytorch 0.4.1+ —

pip install -r requirements.txt
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Technical Fact Sheet

* Research applied at Freie University Berlin HPC (ML) and
DKRZ infrastructure (Data Handling)
* Al models were trained using 500.000 iterations with an
additional 500.000 iterations for fine tuning.
* Applying a batch size of 18 on a NVIDIA Geforce 1080Ti at

approximately 17its / sec.
 On 1 Node -> 2 GPU cards with 3.584 cores per card




