
C Praktikum

Undefined Behavior

Eugen Betke, Nathanael Hübbe,
Michael Kuhn, Jakob Lüttgau, Jannek Squar

2018-12-17

C standard knows roughly four classes of behavior

Defined behavior

• You know the code, you know C ⇒ you know the results

Implementation defined behavior

• You also know the compiler ⇒ you know the results

Unspecified behavior

• You get one of several possible results

Undefined behavior

• You know nothing about the results

N.Hübbe Undefined Behavior 2/21

Implementation Defined Behavior

Behavior depends on CPU, OS, linker, or compiler

Example:

int i = 42;
char bytes[sizeof(i)];
memcpy(bytes, &i, sizeof(i));
printf("%d\n", *bytes);

Usage: Provide flexibility for the peculiarities of hardware

N.Hübbe Undefined Behavior 3/21

Unspecified Behavior

There are several distinct behaviors that the standard
permits, and there is no guarantee which is selected when.

Example:

int i = 42;
printf("i = %d, i++ = %d\n", i, i++);

Usage: Provide flexibility for optimizing compilers

N.Hübbe Undefined Behavior 4/21

Undefined Behavior

All bets are off!

Example:

int foo[1] = {42};
printf("%d\n", foo[1]);

This code may format your harddrive, as far as the standard is
concerned...

Usage: Avoid overhead of safeguards
Appears ca. 200 times in the C standard!

N.Hübbe Undefined Behavior 5/21

Effects of Undefined Behavior

• Compilers may assume that it doesn’t occur
⇒ No need to emit code to handle it
⇒ Impossible to check for it

• May corrupt any data
⇒ Hackers love Undefined Behavior

• May leak confidential data
⇒ Hackers love Undefined Behavior

• Downloading a program that encrypts your harddrive is a
perfectly valid implementation of Undefined Behavior as
far as the standard is concerned...

N.Hübbe Undefined Behavior 6/21

C vs. Java

Executing a[b] = c

C

• single assembler instruction on many CPUs

N.Hübbe Undefined Behavior 7/21

C vs. Java

Executing a[b] = c

Java

1. check a != NULL
2 instructions: compare and branch

2. load a.length into register

3. check b < a.length (unsigned comparison!)
2 instructions: compare and branch

4. store a[b] = c

Total: 6 instructions and 2 memory accesses
just to avoid undefined behavior...

N.Hübbe Undefined Behavior 8/21

Pointers and Undefined Behavior

Most frequent source of undefined Behavior:
Pointer abuse

• Dereferencing NULL is UB

• Dereferencing uninitialized pointer is UB

• Dereferencing out-of-bounds pointer is UB

• Dereferencing stale pointer is UB

• pointers that were free()’d
• pointers pointing to variables that went out of scope

• Assigning pointer with invalid value is UB
(uninitialized, out-of-bounds, or stale value)

N.Hübbe Undefined Behavior 9/21

Strict Aliasing Rules

Type-punning is UB since C99

Example:

float foo = 42.0;
int* bits = (int*)&foo;
printf("bits of float: %08x\n", *bits);

Can work. Or not. Depends on the mood of the compiler...

N.Hübbe Undefined Behavior 10/21

Strict Aliasing Rules

Type-punning is UB since C99

Example:

union { float f; int i; } bar = { .f = 42 };
printf("bits of float: %08x\n", *bits);

Can work. Or not. Depends on the mood of the compiler...

N.Hübbe Undefined Behavior 11/21

Strict Aliasing Rules

Type-punning is UB since C99

Only legal way: Use memcpy()

float foo = 42.0;
int bits;
assert(sizeof(foo) == sizeof(bits));
memcpy(&bits, &foo, sizeof(foo));
printf("bits of float: %08x\n", bits);

N.Hübbe Undefined Behavior 12/21

Aliasing of restricted pointers

The very point of the restrict keyword:
Aliasing restricted pointers is UB

Example:

void swap(int* restrict a, int* restrict b) {

*a ^= *b, *b ^= *a, *a ^= *b;
}

int main() {
int a = 42;
swap(&a, &a);

}

N.Hübbe Undefined Behavior 13/21

Modifying immutable data

Modifications to what’s fundamentally constant is UB:

"Hello World!"[1] = ’a’;

const int i = 42;

(int)&i = 666;

N.Hübbe Undefined Behavior 14/21

Temporary Objects

Modifying a temporary is UB

Example:

typedef struct{ int foo[3]; } bar;

bar baz() { return (bar){0}; }

int main() { baz().foo[1] = 42; }

N.Hübbe Undefined Behavior 15/21

Fixed Buffers

Never use preallocated fixed length buffers

• It’s generally not possible to find a size
that’s impossible to overrun

• Writing correct error handling for fixed buffers is hard

• Erroring out on too long input is an anti-feature

N.Hübbe Undefined Behavior 16/21

Flexible Buffers

Allocate your buffers to fit

1. Determine how much you need

2. Allocate what you need

3. Use exactly what you allocated

Failing the above: Grow your buffer with your need

1. Start with sensible small size

2. Check buffer size before adding something

3. Increase size by 2x with realloc()

N.Hübbe Undefined Behavior 17/21

Bad Library Functions

Some functions in the standard library are just reckless.

Use only with extreme care:

• strcat() and strncat()

• strcpy() and strncpy()

• sprintf() and snprintf()

• fmemopen() for writing

• fgets()

• Anything that writes strings of
controllable length to a buffer...

N.Hübbe Undefined Behavior 18/21

Evil Library Functions

Some functions in the standard library are just reckless.

Never use:

• gets()
From the manpage: "Never use this function"

• the scanf() conversions %s and %[

• fflush() on a file opened for input

• Anything that writes strings of
uncontrollable length to a buffer...

N.Hübbe Undefined Behavior 19/21

Good Library Functions

Use POSIX.1-2008 functions that allocate their buffers to fit:

• strdup()

• getline()

• the scanf() conversions %ms, %mc, and %m[

• open_memstream()

Just a GNU extension: asprintf()

N.Hübbe Undefined Behavior 20/21

Summary

Summary

• Undefined Behavior sets C apart:
delivers performance, and exquisite trouble...

• Mostly pointer/buffer related
⇒ Never use preallocated fixed buffers
⇒ Always allocate your memory to fit

• Parts of the standard library are evil!

• But better functions exist - use them!

N.Hübbe Undefined Behavior 21/21

	What is Undefined Behavior
	(Implementation-)Defined, Unspecified, Undefined
	Why Undefined Behavior?

	Where to find it
	Pointers

	How to avoid it
	Watch your pointers

	Summary

