
C Praktikum

Advanced Pointers

Eugen Betke, Nathanael Hübbe,
Michael Kuhn, Jakob Lüttgau, Jannek Squar

2018-11-26



Warning

This is a dive under the hood.
We will see, and hopefully understand many details
which still elude some seasoned programmers.

Do not expect this presentation to align with what you expect,
but expect to have some fun with the unexpected.



The Five Pointer Rules

1. any object in C can be pointed to

2. pointer declarations are read inside out

3. a[b]⇔ *(a + b) and a−>b⇔ (*a).b

4. value of ptr + a is ptr + a*sizeof(*ptr)

5. arrays are not pointers, they decay to pointers

N.Hübbe Advanced Pointers in C 3/26



Rule 1

any object in C can be pointed to

Both, the type of any object and its associated pointer,
can be written down in C.
To turn a variable declaration into a pointer declaration,
just add a * in front of the variable name.
(An extra set of parentheses () may be needed.)

Example time

N.Hübbe Advanced Pointers in C 4/26



Rule 2

pointer declarations are read inside out

• start at the variable name
(type name for typedef)

• follow operator precedence

• array subscript ([]) and function call (())
take precedence over pointer dereference (*)

N.Hübbe Advanced Pointers in C 5/26



Rule 2

pointer declarations are read inside out

Example 1:
struct foo *(*bar)[5]; //bar is

struct foo *(*bar)[5]; //... a pointer to an
struct foo *(*bar)[5]; //... array of size 5 (precedence!),
struct foo *(*bar)[5]; //... elements are pointers to
struct foo *(*bar)[5]; //... structs of type foo

N.Hübbe Advanced Pointers in C 6/26



Rule 2

pointer declarations are read inside out

Example 1:
struct foo *(*bar)[5]; //bar is
struct foo *(*bar)[5]; //... a pointer to an

struct foo *(*bar)[5]; //... array of size 5 (precedence!),
struct foo *(*bar)[5]; //... elements are pointers to
struct foo *(*bar)[5]; //... structs of type foo

N.Hübbe Advanced Pointers in C 7/26



Rule 2

pointer declarations are read inside out

Example 1:
struct foo *(*bar)[5]; //bar is
struct foo *(*bar)[5]; //... a pointer to an
struct foo *(*bar)[5]; //... array of size 5 (precedence!),

struct foo *(*bar)[5]; //... elements are pointers to
struct foo *(*bar)[5]; //... structs of type foo

N.Hübbe Advanced Pointers in C 8/26



Rule 2

pointer declarations are read inside out

Example 1:
struct foo *(*bar)[5]; //bar is
struct foo *(*bar)[5]; //... a pointer to an
struct foo *(*bar)[5]; //... array of size 5 (precedence!),
struct foo *(*bar)[5]; //... elements are pointers to

struct foo *(*bar)[5]; //... structs of type foo

N.Hübbe Advanced Pointers in C 9/26



Rule 2

pointer declarations are read inside out

Example 1:
struct foo *(*bar)[5]; //bar is
struct foo *(*bar)[5]; //... a pointer to an
struct foo *(*bar)[5]; //... array of size 5 (precedence!),
struct foo *(*bar)[5]; //... elements are pointers to
struct foo *(*bar)[5]; //... structs of type foo

N.Hübbe Advanced Pointers in C 10/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an

void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 11/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),

void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 12/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to

void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 13/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),

void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 14/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument

void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 15/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer

void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 16/26



Rule 2

pointer declarations are read inside out

Example 2:
void*(*foo[3])(int) //foo is an
void*(*foo[3])(int) //... array of size 3 (precedence!),
void*(*foo[3])(int) //... elements are pointers to
void*(*foo[3])(int) //... functions (precedence!),
void*(*foo[3])(int) //... which take an int argument
void*(*foo[3])(int) //... and return a pointer
void*(*foo[3])(int) //... to void

N.Hübbe Advanced Pointers in C 17/26



Rule 3

a[b]⇔ *(a + b) and a−>b⇔ (*a).b

Example time

N.Hübbe Advanced Pointers in C 18/26



Rule 4

value of ptr + a is ptr + a*sizeof(*ptr)

Example time

N.Hübbe Advanced Pointers in C 19/26



Rule 5

arrays are not pointers, they decay to pointers

• only & and sizeof operators do not trigger decay

• decay happens even in function declarations
(because argument passing is a use)

Example time

N.Hübbe Advanced Pointers in C 20/26



The Five Pointer Rules

1. any object in C can be pointed to

2. pointer declarations are read inside out

3. a[b]⇔ *(a + b) and a−>b⇔ (*a).b

4. value of ptr + a is ptr + a*sizeof(*ptr)

5. arrays are not pointers, they decay to pointers

Warning: Only Rule 2 and Rule 5 hold true in C++.

N.Hübbe Advanced Pointers in C 21/26



Passing Multidimensional Arrays to Functions

Three methods available - what are the differences?

Example time

N.Hübbe Advanced Pointers in C 22/26



Storing Multidimensional Arrays in Objects

Pitfall: Can’t store pointer to array of dynamic size in struct.
⇒ Must use untyped pointer and casts.

Example time

N.Hübbe Advanced Pointers in C 23/26



Function Pointers as Callbacks

Whenever a callback comes in handy...

Example time

N.Hübbe Advanced Pointers in C 24/26



Function Pointers for Customizable Behavior

Idea: Store function pointer in struct to make function call
runtime decision⇒ polymorphic objects!

But that’s for another day...

N.Hübbe Advanced Pointers in C 25/26



Summary

Summary

• only 5 simple pointer rules ...

• ... that allow us to do complex stuff

• real dynamic 2D arrays (envious, C++?)

• function pointers make function calls runtime decisions
(callbacks and polymorphism)

N.Hübbe Advanced Pointers in C 26/26


	Pointers Revisited
	Pointer Rules

	Advanced Pointer Use
	Multidimensional Arrays
	Function Pointers

	Summary

