ZRAM - RAM Kompression Seminar

Benjamin Warnke

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

2018-01-18

- 1 Grundlagen
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispiel
- 5 Benchmarks

Benjamin Warnke ZRAM - RAM Kompression 2 / 18

- 1 Grundlagen
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispie
- 5 Benchmarks

Benjamin Warnke ZRAM - RAM Kompression 3 / 18

Grundlagen

SVVAP

- Seit 1960 RAM Virtualisierungsverfahren (swap sth. out)
- Nicht benötigte Daten werden ausgelagert
- Ursprünglich Partition auf HDD
- Verfügbarer Arbeitsspeicher = physikalischer Arbeitsspeicher + virtueller Arbeitsspeicher
- Enthalten in jedem Kernel
- Nicht beeinflussbar, was ausgelagert wird
- Unter Linux konfigurierbar mit der boot-flag vm.swappiness

Benjamin Warnke ZRAM - RAM Kompression 4 / 18

Grundlagen

- Geschrieben in C
- Open-source
- Speicher ist aufgeteilt in Seiten
- Vorteile gegenüber user-space-C
 - Direkter Speicherzugriff (struct page*)
 - Mehr Rechenzeit
- Nachteile gegenüber user-space-C
 - Direkter Speicherzugriff (struct page*)
 - Keine Bibliotheken (stdlib, stdio, boost, mpi, openmp, · · ·)
 - \blacksquare Segfault \rightarrow kernel panic = crash
 - Keine Fließkommazahlen, keine Vektorregister
 - Eigener Code muss threadsafe sein

Benjamin Warnke ZRAM - RAM Kompression 5 / 18

ZRAM

Grundlagen

- Bestandteil des offiziellen Linux-Kernel-Source-Codes
- Linux Kernel module oder build-in
- lacksquare Erzeugt virtuelles blockdevice (Festplatte) ightarrow 4096 Byte Blöcke
- Benutzbar als RAM-disk und/oder SWAP-device(s)
- Aktuell bis zu 5 Kompressionsalgorithmen zur Auswahl
- Kompressionsrate pro Seite mindestens 1.2 oder gar nicht

Benjamin Warnke ZRAM - RAM Kompression 6 / 18

- 1 Grundlager
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispie
- 5 Benchmarks

Benjamin Warnke ZRAM - RAM Kompression 7 / 18

- memory-management Modul entscheidet, was ausgelagert wird
- Komprimiert einzelne Seiten (4096 Bytes)
- Kompressionsalgorithmen bereitgestellt durch die crypto-api
- Komprimierte Daten landen in einem Buffer
- Komprimierte Daten werden in size-classes gruppiert
- Buffer wird umkopiert in den Speicher der size-class

Benjamin Warnke ZRAM - RAM Kompression 8 / 18

class	size	obj_used	pages_used	pages_per_zspage
0	32	0	0	1
1	48	0	0	3
2	64	0	0	1
		• • •	• • •	• • •
107	1744	1662	714	3
111	1808	1030	460	4
126	2048	3783	1892	1
144	2336	4398	2516	4
151	2448	2298	1380	3
168	2720	7775	5184	2
190	3072	16425	12321	3
202	3264	15197	12160	4
254	4096	143155	143155	1
Total		201485	181846	

Benjamin Warnke ZRAM - RAM Kompression 9 / 18

- 1 Grundlager
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispie
- 5 Benchmarks

- Flash-Speicher hat begrenzte Lebenszeit
 - ightarrow Swap auf Flash-Speicher nicht sinnvoll
- Benutzt Linux Kernel
- Enthält ZRAM seit Version 4.4
- Pro-Contra
 - ZRAM 'vergrößert' verfügbaren RAM
 - Kompression + Dekompression kosten CPU-Zeit + Energie
- Kompressionsrate nicht vorhersagbar
- Nicht jeder Android-Kernel unterstützt ZRAM

Linux-Server

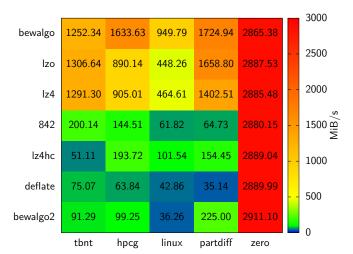
- 7RAM ist enthalten im Linux Kernel
- Im mainline Kernel seit Version 3.14 (30.März 2014)
- Über 4 Jahre staging
- Schneller als HDDs
- Kompressionsraten zwischen 1 und 19 (je nach Datensatz)
- Kompressionsgeschwindigkeiten bis zu 2.9GiB/s (best-case)

Benjamin Warnke ZRAM - RAM Kompression 12 / 18

13 / 18

- 1 Grundlager
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispiel
- 5 Benchmarks

LIVE-Beispiel


LIVE-Beispiel

Benjamin Warnke ZRAM - RAM Kompression 14 / 18

- 1 Grundlager
- 2 Funktionsweise
- 3 Anwendungsgebiete
- 4 LIVE-Beispie
- 5 Benchmarks

Benjamin Warnke ZRAM - RAM Kompression 16 / 18

Benjamin Warnke ZRAM - RAM Kompression 17 / 18

Was bringt ZRAM für mich?

Vorteile

- mehr Arbeitsspeicher insbesondere bei low-memory Systemen
- mehr Programme gleichzeitig ausführen
- Programme mit hohen Arbeitsspeicher Anforderungen starten
- relativ schneller swap
- reduzierte Festplattenzugriffe

Nachteile

- CPU-7eit
- Energie-verbrauch
- keine garantierte Komprimierbarkeit der Daten