
Master Project

Seminar Report: Semantic Data-analysis
and Automated Decision Support Systems

written by

Fabian Karl

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Course of Study: Intelligent Adaptive Systems
Student-ID: 6886047

Advisors: Anastasiia Novikova, Yevhen Alforov

Hamburg, March 26, 2018

Abstract
Huge amounts of new data are generated, analyzed and stored every day. Scientific
research is creating data with every experiment or observation. Since storing more
data means spending more money on physical data storage, compressing data becomes
increasingly important.

The first issue this paper tackles is the compression of scientific data. Hardware is
getting better by the month and compression algorithms are increasing in performance,
but is there a way to increase compression performance without increasing the capability
of hardware or software?

By finding optimal matches between datasets and compression algorithms based on the
semantic information the dataset carries, one can increase the performance of compression
algorithms without having to invest in better hard- or software. A benchmark study
with scientific datasets was implemented, executed and analyzed thoroughly in this paper.

The second part of this work deals with the question of how to further automate
the process of making decisions based on (un)structured and difficult to understand
datasets. Machine learning in a unsupervised or supervised fashion is proposed, explained
and theoretical use-cases are presented.

Contents
1. Motivation and Introduction 5

2. Scientific Data and Compression 7
2.1. Data . 7

2.1.1. Climate Data . 7
2.1.2. Geographical/Biological Data . 8
2.1.3. Protein Corpus . 8
2.1.4. Electrical Engineering and Robot Data 9
2.1.5. Medical Imaging Data . 9
2.1.6. Astronomical Data . 9

2.2. Compression . 10
2.2.1. Lossless and lossy compression . 10
2.2.2. Level of compression . 11
2.2.3. Lempel-Ziv algorithms . 12

3. Experiment: Compression Benchmark with lzBench 14
3.1. Experiment Design . 14

3.1.1. lzBench . 14
3.1.2. Algorithms . 15
3.1.3. Methods . 15

3.2. Results . 18
3.3. Discussion . 24
3.4. Conclusion . 26

4. Decision Support Systems with Machine Learning 27
4.1. Decisions . 27
4.2. Unsupervised Learning . 28
4.3. Supervised learning . 30

4.3.1. k-Nearest-Neighbor . 30
4.3.2. Neural Networks . 31
4.3.3. Decision Tree . 33
4.3.4. Example: Compression Algorithms 34

4.4. Conclusion . 35

5. Final Conclusion 36

References 37

3

A. Appendix 41

List of Figures 49

List of Tables 50

4

1. Motivation and Introduction
Scientific research is flourishing more than ever before. At the same time observation
techniques and devices are getting better and more precise. More raw data can be
extracted from experiments or from simply observing processes in nature. More data
hopefully means more information and more information can lead to more knowledge
about underlying mechanisms and structures.
More and larger data-files mean more storage space is needed and transmitting the

data from one place to another takes longer. Compressing files before sending or storing
them is one solution to this problem. But to counter the exponential growth of data,
compression algorithms have to improve in performance just as the size of datasets
increases. Better hardware assists this process, but cannot fully solve this problem alone.

A different approach to the problem of compressing files is to first look at the semantic
information carried by the dataset before compressing it with the next best compression
algorithm. Semantic information here means, what the data represents in a human sense.
The semantics of words and sentences describes their meaning to humans. The same way
data has a meaning to us. Does data describe a time-sequence of events, is it a catalog
of entities, does it represent changes in a system or does it represent measurements from
a medical test?
Using this information can help, when deciding about whether a dataset will have

a high or low compression ratio or speed. Different datasets inherently have different
characteristics when it comes to compression. Since most algorithms exploit repetitions
of numbers or sequences, random data is almost incompressible. A dataset with lots
of repetitions on the other hand can be compressed to a fraction of its original size. If
knowing a dataset will compress very badly, one might save time on trying to compress
it nevertheless, and instead focus on solving the problem in a different way. It goes the
same way for the opposite case: If one assumes or knows, that a certain dataset can be
compressed quite well, a big file-size will be less of a problem.
The second big advantage arises, when the semantic information of datasets is used

to decide on an optimal compression algorithms for a specific dataset. Depending on
the dataset, compression algorithms can have different performances. Finding optimal
pairs between algorithms and semantic data-types can increase compression ratio as well
as compression speed. To summarize, semantic information of different datasets should
be exploited as much as possible, since it can save time and allow better compression
performance without new hardware or software.

The first research questions of this work is of exploratory nature: How much infor-
mation about the compression characteristics of a dataset can be extracted by a semantic
data analysis?

5

This includes two subquestion:

1. How much do the semantic information and the structure of a dataset influence
the general compression performance for this dataset?

2. How much advantage, with regards to compression ratio, compression speed and
decompression speed can be achieved, by using an optimally suited compression
algorithm for different datasets?

The second part of this work covers a related but different topic: Decision Support
Systems (DSS). More data also means more complex methods for analyzing the data
are needed. Analyzing huge, high-dimensional datasets without computer systems is
hardly possible. Automated DSS are needed, that either help humans in analyzing data
or to make automated decisions all together. This is one of many reasons why machine
learning, big data and data science are getting more and more important. These fields
try to facilitate or automate the process of interpreting and analyzing data as much as
possible.

Human decision making is often based on intuition and gut feeling. Taking every single
piece of information into account when making complex decisions is often impossible.

DSS have been around for a long time (Haagsma & Johanns, 1970) in order to assist
human decision making. Recent advances in machine learning offer new ways of looking
at how automated decision processes can be formalized. A theoretical overview on
different unsupervised and supervised methods is given as well as practical examples in
order to answer the second research question.
How can decision processes be automated and optimized? More concrete: What

possibilities offers machine learning when it comes to DSS?

6

2. Scientific Data and Compression
In this Chapter various scientific datasets will be presented and described semantically
(meaning the information they hold and represent). After that, compression will be
explained in a general way. Especially the family of compression algorithms used in later
the benchmark study will be explained in more detail.

2.1. Data
Classic compression corpora like the Canterbury corpus (Witten, Moffat, & Bell, 1999)
or the Silesia corpus (Deorowicz, 2003) often use images, text, html-files and other
multi media datasets in order to compare compression performance. In this study, only
scientific datasets were used for the benchmark. So what restrictions are in place here?
The datasets used in this paper are all from scientific sources. This means, they are

measurements from an executed experiment or a process in nature that was observed
and logged. The data that is compressed, consists only of actual data-points, no header
or other information is compressed. Most of the datasets used are arrays of float values,
stored in a byte or float representation. Since different fields of science can have wildly
different measurements or observations, the resulting dataset can have very varying
structures and forms. It was tried to cover as many different scientific research areas
as possible in order to create a more representative result. In this chapter every used
dataset will be presented and described in a short fashion.

2.1.1. Climate Data
Observing the climate and the changes of climate on our planet can create an almost
unlimited amount of data. Every part of the world offers hundreds of different observations
every second. In order to analyze and work with all this data, it has to be stored first.
The more efficient this is possible, the more data can be collected and studied.

As one representative for climate data, the Isabel Dataset 1 was chosen. Isabel was a
hurricane in 2003 (Fredericks, Nagle, & Kranenburg, 2017). The whole dataset covers
13 different measurements over 48 time-steps, each measurement per time-step yielding
500x500x100 float values. The values are stored in a 4-byte representation. Figure 2.1
shows the different measurements, a short description and their range. Uncompressed
every file is 97.657 KB large.

1http://www.vets.ucar.edu/vg/isabeldata/
2http://www.vets.ucar.edu/vg/isabeldata/readme.html

7

http://www.vets.ucar.edu/vg/isabeldata/
http://www.vets.ucar.edu/vg/isabeldata/readme.html

2

Figure 2.1.: The different measurements from the Isabel Datasets.

2.1.2. Geographical/Biological Data
Right next to the climate, the processes of nature and life are also ever changing and
evolving. Measuring or observing the changes in plant or animal life is one of the oldest
and most fundamental forms of research.
The dataset chosen from this research area comes from the University of Frankfurt,

Germany and is a measurement about the growing rates of crops. The dataset contains
the Monthly Growing Area Grids (MGAG) for 26 irrigated and rainfed crops. The
dataset is called MIRCA2000 (Portmann, Siebert, Bauer, & Döll, 2008). It also contains
float values stored as bytes.
Each of the 52 files contains information about one plant either being irrigated or

rainfed. Each file covers 4320 x 2160 grid cells over the period of 12 months. The values
in every grid cell represent the growing area in hectare. Uncompressed every file is
437.400 KB large. Because the files were very big, not all algorithms from the benchmark
could be used when testing these files.3

https://www.gfbio.org/data/search offers further Geographical datasets.

2.1.3. Protein Corpus
The Protein Corpus (Abel, 2002) is a set of four files, which were used in the article
’Protein is incompressible’ (Nevill-Manning & Witten, 1999). Every file describes a
different protein with a string made up by a sequence of 20 different amino acids. Every
amino acid is represented by one character. Protein is hard to compress, because it has
little repeating sequences. This makes it a good candidate for compression benchmarks.
The files are between 400 to 3.300 KB in size.

http://gdb.unibe.ch/downloads/ offers further Chemical datasets.

3used algorithms: lzlib,xz,zstd,lzma,csc,brotli,lz4fast,pithy,snappy,lzo1x

8

https://www.gfbio.org/data/search
http://gdb.unibe.ch/downloads/

2.1.4. Electrical Engineering and Robot Data
The used dataset comes from the testing of 193 Xilinx Spartan (XC3S500E) Field Pro-
grammable Gate Arrays (FPGAs)4. One hundred frequency samples were taken of each
of the 512 ring oscillators on the Spartan board. The measurements were taken with the
device operating in a regular room-temperature environment (around 25C°) and with an
input voltage of the standard 1.2V. Every dataset contains only float-values and was
saved as a csv-file with 395 Kb each.

Datasets from robotic sensors can be found on http://kos.informatik.uni-osnabrueck
.de/3Dscans/ or http://asrl.utias.utoronto.ca/datasets/mrclam/#Download, but
were not tested for this work.

2.1.5. Medical Imaging Data
Medical imaging is a standard procedure in every hospital. There are different ways to
gather informations about the inner life of a human or other animal non-invasively. Two
example datasets are used in this benchmark.
The Lukas Corpus (Abel, 2002) contains the measurements of radiography (x-ray).

The dataset includes four sets of files containing either two or three dimensional results
from radiography. Only the data from the first set of measurements was used in this
study. The tested files are a set of two dimensional 16 bit radiographs in DICOM format.
The files are between 6.000 and 8.000 KB large.

A second dataset comes from a functional Magnetic Resonance Imaging (fMRI)
study (Hanke et al., 2015). The data contains high-resolution, ultra high-field (7 Tesla)
fMRI data from human test persons. Twenty participants were repeatedly stimulated
with a total of 25 music clips, with and without speech content, from five different genres
using a slow event-related paradigm. The resulting physiological phenomena in the brain
are partly captured by the fMRI. Files are 275.401 KB large.

2.1.6. Astronomical Data
The last set of data comes from the scientific field of Astronomy. The used files contain
the entire Smithsonian Astrophysical Observatory (SAO) Star Catalog 5 of 258,996 stars,
including B1950 positions, proper motions, magnitudes, and, usually, spectral types in a
locally-developed binary format described below. The catalog comes in two formates,
one is 7.082 KB, the other one is 8.094 KB large.

4http://rijndael.ece.vt.edu/puf/download.html
5http://tdc-www.harvard.edu/software/catalogs/sao.html

9

http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://kos.informatik.uni-osnabrueck.de/3Dscans/
http://asrl.utias.utoronto.ca/datasets/mrclam/#Download
http://rijndael.ece.vt.edu/puf/download.html
http://tdc-www.harvard.edu/software/catalogs/sao.html

2.2. Compression
Compression plays an important role in the digital world we live in today (Chen &
Fowler, 2014). Storing and transmitting files, pictures, videos and information in general,
is done in every second of every day. Since physical storage is expensive and the time for
sending, receiving and storing data increases with its size, compression of data is crucial
to a fast and economically working digital information system. Especially in scientific
environments, huge amounts of data can result from experiments or observations.
Compression describes the process of decreasing the size of the data needed in order

to save the same (or almost the same) information (Sayood, 2000; Lelewer & Hirschberg,
1987). When performing a data compression, the resulting size divided by the original
size will result in the compression ratio. The ratio is often the most important metric of
a compression.

The time it takes to compress a file is represented in the compression speed. It shows,
how many Bytes the algorithm compresses every second. The decompression speed is
measured the same way.

Further metrics that might be interesting are the memory usage of the algorithm during
the compression and the energy usage of the program. Especially when compression is
done on a small hardware device or a microprocessor.
Often the use-case and the situation determine the most important metric and thus

the choice of the algorithms. Is the prime aspect of compression to store it with as little
space-usage as possible? Or is it important that data is compressed fast, so that it can
be send somewhere fast? Or maybe the hardware constraints do not allow for too much
memory usage?
The fact, that different use-cases will have different demands on compression, makes

it hard to define the optimal compression algorithm for one dataset. One could try to
come up with some sort of score to weight all the different metrics together to one value.
But this again would be highly subjective. For simplicity in this study, ratio will mostly
be taken as the most important metric and will often define the optimal algorithms.

Mahoney (2012) offers a nice theoretical and practical overview on the most commonly
used algorithms. It offers nice examples and gives a quick and intuitive understanding
about compression. For the ones seeking more theoretical and thorough information on
the topic of compression, Salomon and Motta (2010) is recommended.

2.2.1. Lossless and lossy compression
Compression algorithms can be separated in two classes: lossless and lossy compression.
As the names already suggest, the first loses nothing where the second one does. The
thing they lose is precision or accuracy of information.
This is often accepted, when the information, that is lost was redundant or not

visible for humans anyway. Most famously, lossy compression is used for images e.g.
JPEG (Acharya & Tsai, 2005), for videos e.g. MPEG (Sikora, 1997) and for audio, like
the well known MP3 (Brandenburg & Stoll, 1994). The loss in information, is normally

10

not noticeable for humans. This acceptance of loss on the other hand allows for much
better and faster compression.

Lossless compression does not allow this. Every bit has to be the same after compression
and decompression. This is often necessary, when a loss of information would destroy
the data. A very obvious example is storing any sort of key or password. The exact
replication of the original data is crucial. The benchmark used in this study only uses
lossless compression algorithms, thus they are more important at this point. Famous
lossless compression strategies are: Run-length Encoding (Robinson & Cherry, 1967),
Huffman Encoding (Huffman, 1952), Prediction-by-partial matching (Cleary & Witten,
1984) or Lempel-Ziv Compression (Chapter 2.2.3).

2.2.2. Level of compression

Figure 2.2.: Compression speed and ratio for different compression levels for zstd, brotli
and lzlib.

Most compression algorithms have ’levels’ of compression, that the user can define.
This allows the user to put an emphasis on either compression speed or compression ratio.
The higher the level, the greater is the achieved compression ratio at a loss of compression
speed. Compression levels enable flexible, granular trade-offs between compression speed
and ratios. So one can use level 1 if speed is most important or the highest level if size is
most important. For example Zlib offers nine compression levels and Zstandard 22 levels.

Figure 2.2 shows compression speed (y-axis) and the ratio (x-axis) for different levels
of zstd, brotli and zlib. All three compression algorithms clearly show better compression
ratio and worse compression speed with every increased level. The user then has the
freedom of picking its preferred level for every use-case.

11

2.2.3. Lempel-Ziv algorithms
The Lempel-Ziv (LZ) compression method is a very famous compression strategy. The
original LZ algorithm was published in 1977 by Ziv and Lempel, hence the name LZ77.
They published LZ78 (Ziv & Lempel, 1978) in the following year. Many more algorithms
based on the same idea were published later on. They are normally easily recognized by
having ’lz’ somewhere in their name.

Lempel–Ziv–Welch (LZW) (Welch, 1984), Lempel–Ziv–Storer–Szymanski (LZSS) (Storer,
1985), Lempel–Ziv–Markov chain algorithm (LZMA) (Igor Pavlov, 2004), Lempel–Ziv–Oberhumer
(LZO)6 and DEFLATE (Katz, 1991) all incorporate the same basic idea and add some
additional features to mostly increase speed or ratio of the algorithm.
The LZ-family is important for this work, because the algorithms of the benchmark

(lzBench) used in this work are all LZ algorithms. This is why the LZ algorithms will be
explained in more detail. LZ78 will be used as an example and is schematically shown in
Figure 2.3.

(SlidePlay, 2016)

Figure 2.3.: Using LZ78 on a string. Every arrow symbolizes one step.

After reading a character, the algorithm checks in the lookup-table, if this character
has been seen before. If not, it is added to the lookup-table. If it has seen it before, the
next character is also looked at. If the combination of the first two characters has been
seen before, then the first three characters are looked at, and so on. If at some point

6http://www.oberhumer.com/opensource/lzo/

12

http://www.oberhumer.com/opensource/lzo/

the algorithm finds a sequence of characters it has not seen before, it will replace all
the characters except the last one with the address of that character sequence (because
it has to have seen that sequence before) and save it plus the new character. This can
be seen in the ’output’ column. By doing this, the algorithm builds longer and longer
known sequences, that it can reuse.

13

3. Experiment: Compression
Benchmark with lzBench

Compression benchmarks are quite popular and very useful. Because of the flood of
different compression algorithms, that all claim to be faster and better than the rest, it
is important to create a valid and reliable competition between them.

The Idea is simple: Different algorithms compress, decompress and validate the same
data-sample on the same hardware. Important metrics like ratio, speed, memory usage,
energy usage and more are collected and can be compared afterwards. This creates a
valid and usable comparison between the algorithms and one can decide which algorithm
suits one’s needs best.

3.1. Experiment Design
3.1.1. lzBench
The benchmark chosen for this paper is lzBench1. The authors describe lzBench in their
Github Readme with the following: ’lzbench is an in-memory benchmark of open-source
LZ77/LZSS/LZMA compressors. It joins all compressors into a single exe. At the
beginning an input file is read to memory. Then all compressors are used to compress
and decompress the file and decompressed file is verified.’

LZ77 stands for Lempel–Ziv 1977, LZSS for Lempel–Ziv–Storer–Szymanski and LZMA
for Lempel–Ziv–Markov Algorihtm. All these algorithms are part of the Lempel-Ziv
family described in Section 2.2.3. Even though, they are based on the same general
principle, the three subfamilies have their own mechanisms and ideas in order to create
better compression algorithms. The same way, every individual implementation can have
a focus on a different aspect of compression, making it favorable for specific tasks or
datasets.
LzBench was chosen because of its simplicity and its big number of algorithms (see

Section 3.1.2). It is freely available and allows the user a high degree of manual adaptation.
Figure 3.1 shows the options one can set when running the benchmark tool.
When executing lzBench, it will use all set algorithms (option ’-e#’) with all their

possible levels of compression (see Chapter 2.2.2). It will run X compression runs and Y
decompression runs for every algorithm. X and Y are defined by the option ’-iX,Y’. ’-p#’
will then decide what measurement will be printed in the end (fastest, average, median).

1https://github.com/inikep/lzbench/

14

https://github.com/inikep/lzbench/

Figure 3.1.: Options available for running lzBench.

Many more options can be altered as seen in Figure 3.1. The official GitHub page of the
benchmark provides further information and examples.

3.1.2. Algorithms
LzBench uses 38 compression algorithms, all based on the idea of LZ-compression.
Figure 3.1 and Figure 3.2 show all 38 algorithms with their respective version or date
and a description, which comes directly from the authors of the algorithm. The reference
for the description and the algorithm can be found in the last column. As one can see,
most of the algorithms have ’lz’ or ’deflate’ somewhere in their name.
It should also be remarked, that many of the big IT-companies like Google, Apple

or Facebook all have their own compression algorithms and that there is a constant
rivalry which algorithm is the fastest and compresses the best. A nice example for this
is Facebook’s zstd (Collet & Turner, 2016) or Apple’s LZFSE. This further shows the
importance and prestige of compression algorithms nowadays. It also shows, that the
basic ideas of LZ-compression are still very much used.

3.1.3. Methods
The whole process of selecting files for the benchmark, testing them and writing the
results first to a file and then into the database was implemented in Python as part of
this study. The used database to store the final results of the benchmark is SQLite (Hipp,
2015). Every single dataset is stored as a table where every row contains: Compressor
name, Compression speed, Decompression speed, Original size, Compressed size, Ratio

15

Table 3.1.: The first 18 algorithms used by lzBench

N
o

N
am

e
Version/D

ate
D
escription

by
A
uthor

G
ithub

or
W
ebsite

1
blosclz

10.11.2015
Blosc

is
a
high

perform
ance

com
pressor

optim
ized

for
binary

data.
https://github.com

/Blosc/c-blosc/tree/m
aster/blosc

2
brieflz

01.01.2000
BriefLZ

is
a
sm

alland
fast

open
source

im
plem

entation
ofa

Lem
pel-Ziv

style
com

pression
algorithm

.
T
he

m
ain

focus
is

on
speed,but

the
ratios

achieved
are

quite
good

com
pared

to
sim

ilar
algorithm

s.
https://github.com

/jibsen/brieflz

3
brotli

12.12.2017

Brotliis
a
generic-purpose

lossless
com

pression
algorithm

that
com

presses
data

using
a
com

bination
ofa

m
odern

variant
ofthe

LZ77
algorithm

,H
uffm

an
coding

and
2nd

order
context

m
odeling,

w
ith

a
com

pression
ratio

com
parable

to
the

best
currently

available
general-purpose

com
pression

m
ethods.

It
is

sim
ilar

in
speed

w
ith

deflate
but

offers
m
ore

dense
com

pression.

https://github.com
/google/brotli

4
crush

v1.0
C
RU

SH
is

a
sim

ple
LZ77-based

file
com

pressor
that

features
an

extrem
ely

fast
decom

pression.
https://sourceforge.net/projects/crush/

5
csc

13.10.2016
A

Loss-less
data

com
pression

algorithm
inspired

by
LZM

A
https://github.com

/fusiyuan2010/C
SC

6
density

v0.12.5
beta

Superfast
com

pression
library.

D
EN

SIT
Y

is
a
free

C
99,open-source,BSD

licensed
com

pression
library.

It
is

focused
on

high-speed
com

pression,at
the

best
ratio

possible.
Stream

ing
is

fully
supported.

D
EN

SIT
Y

features
a
buffer

and
a
stream

A
PIto

enable
quick

integration
in

any
project.

https://github.com
/centaurean/density

7
fastlz

v0.1
FastLZ

-lightning-fast
lossless

com
pression

library.
FastLZ

is
very

fast
and

thus
suitable

for
real-tim

e
com

pression
and

decom
pression.

Perfect
to

gain
m
ore

space
w
ith

alm
ost

zero
effort.

https://github.com
/ariya/FastLZ

8
gipfeli

13.07.2016
G
ipfeliis

a
high-speed

com
pression/decom

pression
library

aim
ing

at
slightly

higher
com

pression
ratios

(around
30

%
less

bytes
produced

for
text)

than
other

high-speed
com

pression
libraries.

https://github.com
/google/gipfeli

9
glza

v0.8
G
LZA

is
an

experim
entalgram

m
ar

com
pression

toolset.
C
om

pression
is

accom
oplished

by
using

G
LZA

form
at,G

LZA
com

press
and

G
LZA

decode,in
that

order.
https://github.com

/jrm
uizel/G

LZA

10
libdeflate

v0.7
ibdeflate

is
a
library

for
fast,w

hole-buffer
D
EFLAT

E-based
com

pression
and

decom
pression.

https://github.com
/ebiggers/libdeflate

11
lizard

v1.0
Lizard

(form
erly

LZ5)
is

a
lossless

com
pression

algorithm
w
hich

contains
4
com

pression
m
ethods:

fastLZ4,LIZv1,fastLZ4
+

H
uffm

an,LIZv1
+

H
uffm

an
https://github.com

/inikep/lizard

12
lz4/lz4hc

v1.8.0
LZ4

is
lossless

com
pression

algorithm
,providing

com
pression

speed
at

400
M
B/s

per
core,

scalable
w
ith

m
ulti-cores

C
PU

.
https://github.com

/lz4/lz4

13
lzf

v3.6
LZF-com

press
is

a
Java

library
for

encoding
and

decoding
data

in
LZF

form
at,w

ritten
by

Tatu
Saloranta.

D
ata

form
at

and
algorithm

based
on

originalLZF
library

by
M
arc

A
Lehm

ann.
https://github.com

/ning/com
press

14
lzfse/lzvn

08.03.2017

Beginning
w
ith

iO
S
9
and

O
SX

10.11
ElC

apitan,A
pple

provides
a
proprietary

com
pression

algorithm
,LZFSE.

LZFSE
is

a
Lem

pel-Ziv
style

data
com

pression
algorithm

using
Finite

State
Entropy

coding.
It

targets
sim

ilar
com

pression
rates

at
higher

com
pression

and
decom

pression
speed

com
pared

to
deflate

using
zlib.

https://developer.apple.com
/

docum
entation/com

pression/
data_

com
pression

15
lzg

1.v0.8
LZG

algorithm
is

a
m
inim

alim
plem

entation
ofan

LZ77
class

com
pression.

T
he

m
ain

characteristic
ofthe

algorithm
is

that
the

decoding
routine

is
very

sim
ple,fast,and

requires
no

m
em

ory.
https://github.com

/m
bitsnbites/liblzg

16
lzham

v1.0
LZH

A
M

is
a
lossless

data
com

pression
codec

w
ritten

in
C
/C

+
+

(specifically
C
+
+
03),

w
ith

a
com

pression
ratio

sim
ilar

to
LZM

A
but

w
ith

1.5x-8x
faster

decom
pression

speed.
https://github.com

/richgel999/lzham
_
codec

17
lzjb

2010
lzjb

is
a
fast

pure
JavaScript

im
plem

entation
ofLZJB

com
pression/decom

pression.
It

was
originally

w
ritten

by
""Bear""based

on
the

O
penSolaris

C
im

plem
entations.

https://github.com
/cscott/lzjb

16

Table 3.2.: The second 18 algorithms used by lzBench

N
o

N
am

e
Version/D

ate
D
escription

by
A
uthor

G
ithub

or
W
ebsite

18
lzlib

v1.8
T
he

lzlib
com

pression
library

provides
in-m

em
ory

LZM
A

com
pression

and
decom

pression
functions,

including
integrity

checking
ofthe

uncom
pressed

data.
https://github.com

/LuaD
ist/lzlib

19
lzm

a
v16.04

Lem
pel-Ziv-M

arkow
-A

lgorithm
us

20
lzm

at
v1.01

LZM
AT

is
an

extrem
ely

fast
real-tim

e
lossless

data
com

pression
library!

http://w
w
w
.m

atcode.com
/lzm

at.htm

21
lzo

v2.09
Lem

pel-Ziv-O
berhum

er

22
lzrw

15.07.1991
Lem

pel-Ziv
R
oss

W
illiam

s

23
lzsse

14.05.2016
https://github.com

/C
onorStokes/LZSSE

24
pithy

24.12.2011
pithys

roots
can

be
traced

back
to

G
oogles

snappy
com

pression
library,but

has
diverged

quite
a
bit.

https://github.com
/johnezang/pithy

25
quicklz

v1.5.0
Q
uickLZ

is
the

world’s
fastest

com
pression

library,reaching
308

M
byte/s

per
core.

http://w
w
w
.quicklz.com

/

26
shrinker

v0.1
A

data
com

pression/decom
pression

library
for

em
bedded/real-tim

e
system

s.
https://github.com

/atom
icobject/heatshrink

27
slz

v1.0.0
SLZ

is
a
fast

and
m
em

ory-less
stream

com
pressor

w
hich

produces
an

output
that

can
be

decom
pressed

w
ith

zlib
or

gzip.
It

does
not

im
plem

ent
decom

pression
at

all,zlib
is

perfectly
fine

for
this.

http://w
w
w
.libslz.org/

28
snappy

v1.1.4
Snappy

is
a
com

pression/decom
pression

library.
It

does
not

aim
for

m
axim

um
com

pression,or
com

patibility
w
ith

any
other

com
pression

library
instead,

it
aim

s
for

very
high

speeds
and

reasonable
com

pression.
https://github.com

/google/snappy

29
tornado

v0.6a

30
ucl

v1.03
U
C
L
is

a
portable

lossless
data

com
pression

library
w
ritten

in
A
N
SIC

.
https://github.com

/D
istrotech/ucl

31
w
flz

16.09.2015
w
fLZ

is
a
com

pression
library

designed
for

use
in

gam
e
engines.

It
is

extrem
ely

cross
platform

and
fast

enough
to

use
anyw

here
I’ve

run
into.

https://github.com
/ShaneY

C
G
/w

flz

32
xpack

02.06.2016

X
PA

C
K

is
an

experim
entalcom

pression
form

at.
It

is
intended

to
have

better
perform

ance
than

D
EFLAT

E
as

im
plem

ented
in

the
zlib

library
and

also
produce

a
notably

better
com

pression
ratio

on
m
ost

inputs.
T
he

form
at

is
not

yet
stable.

https://github.com
/ebiggers/xpack

33
xz

v5.2.3
X
Z
U
tils

is
free

general-purpose
data

com
pression

software
w
ith

a
high

com
pression

ratio.
https://tukaani.org/xz/

34
yalz77

19.09.2015
Yet

another
LZ77

im
plem

entation.
https://github.com

/ivan-tkatchev/yalz77

35
yappy

22.03.2014
https://github.com

/richard-sim
/

C
om

pression-Test-Suite/tree/
m
aster/C

om
pressionSuite/Yappy

36
zlib

v1.2.11
zlib

is
designed

to
be

a
free,general-purpose,legally

unencum
bered,

that
is,not

covered
by

any
patents,lossless

data-com
pression

library
for

use
on

virtually
any

com
puter

hardware
and

operating
system

.
https://zlib.net/

37
zling

10.04.2016
Libzling

is
an

im
proved

lightweight
com

pression
utility

and
library

https://github.com
/richox/libzling

38
zstd

v1.3.3
Zstandard

is
a
real-tim

e
com

pression
algorithm

,providing
high

com
pression

ratios.
It

offers
a
very

w
ide

range
ofcom

pression
/
speed

trade-off,w
hile

being
backed

by
a
very

fast
decoder

http://facebook.github.io/zstd/

17

and Filename. Every table contains one row for every used level of algorithm. When two
levels have too similar results, only one of them is stored. On average every benchmark
run creates 170 to 200 rows of measurements. LzBench is mostly written in C and C++,
with an easy to use shell interface. Executing C programs from Python is not impossible,
but executing a shell command is much more handy.
Implemented methods for testing include:

A method (lzBench_on_folder) that will take an input-file or folder and an output-
folder as arguments, will then run the benchmark and save the result file in the given
directory. Options for lzBench can also be given as parameters. This method creates
one bash script for every file, that is executed on a cluster. Number of nodes to use and
which partition to use can also be given as parameters for the method. By doing this,
the procedure of testing can easily be parallelized on different nodes.

import_folder_to_DB will import the given folder into the given sqlite3 database.
Existing tables will be overwritten.

The same Python script contains different methods for analyzing the results stored
in the database.

get_table will return the whole table for a given table name. It will be sorted by
a given metric (default = ratio) and an n can be given if only the top n rows shall be
returned.

get_best_algorithms will return all tested data samples with their n best algorithms
regarding a chosen metric (ratio, compression speed, decompression speed). By adding a
regex one can filter the tables that are returned.

get_best_files_per_algorithm will return the previously mentioned dictionary re-
versed. This function takes the best algorithms for every dataset and creates a dictionary
mapping from algorithm to datasets, that this algorithm had the best performance on.

get_averages returns a list of all datasets and their average ratio, compression speed
and decompression speed over all algorithms.

3.2. Results
Visualizing and presenting the results of a compression benchmark can be tricky. The
benchmark includes different algorithms, which all measure different metrics. And every
benchmark is performed on various datasets. This means, three important factors interact
(algorithm, metric, dataset) and the different effects between those can be observed.
It is very hard, though to show all of them in one plot or table, since at least three

18

dimensions would be needed for that. Effects that might be interesting are: How well is
the performance of different algorithms on one dataset? Do different sorts of data share
certain characteristics when it comes to compression? What algorithms show overall the
best performance? Is there a relation between the different metrics?

In order to answer these questions in the discussion, the results are shown and plotted
from different angles in this chapter.

The first view on the data shows the relationship between one dataset and different
algorithms and different metrics. Table 3.3 shows part of a single result from lzBench
with all algorithms selected (-eall). This is also how every table in the database looks
like. The table is sorted by ratios and the complete table can be seen in the Appendix
in Figure A.1. The dataset used to create this table is one of the Isabel datasets. The
first row of the table shows, that lzlib 1.9 -9 yields the best ratio of 7.86. To create this
ratio, the compression speed decreases to 1.23 MB/s and the decompression speed is
56.68 MB/s. The next rows show slightly worse ratios with better compression speed.
At row 102 for example, blosclz 2015 -9 has a ratio of 6.37 with a compression speed of
556.74 MB/s and a decompression speed of 1085.87 MB/s. The very last row shows the
measurements of copying the data without compression. This creates a reference value
for the compression and decompression speed.

Table 3.3.: Part of the results plotted in Figure 3.2 for one dataset from the Isabel
datasets

No. Compressor name Compression speed Decompression speed Original size Compressed size Ratio Filename
0 lzlib 1.8 -9 1.23 56.68 100000000 12718753 7.86 CLOUDf08.bin
1 brotli 2017-03-10 -11 0.72 288.82 100000000 12731988 7.86 CLOUDf08.bin
2 lzlib 1.8 -0 28.21 52.01 100000000 13043559 7.67 CLOUDf08.bin
3 xz 5.2.3 -9 8.16 82.42 100000000 13071183 7.65 CLOUDf08.bin
4 lzma 16.04 -9 5.67 76.84 100000000 13071640 7.65 CLOUDf08.bin
5 lzma 16.04 -0 26.78 86.33 100000000 13068579 7.65 CLOUDf08.bin
6 xz 5.2.3 -6 7.99 84.07 100000000 13065817 7.65 CLOUDf08.bin
7 csc 2016-10-13 -5 9.83 58.56 100000000 13086055 7.64 CLOUDf08.bin
...
102 blosclz 2015-11-10 -9 556.74 1085.87 100000000 15707744 6.37 CLOUDf08.bin
103 fastlz 0.1 -2 439.01 1753.47 100000000 15720163 6.36 CLOUDf08.bin
104 slz_zlib 1.0.0 -1 454.04 475.85 100000000 15745116 6.35 CLOUDf08.bin
105 slz_zlib 1.0.0 -2 413.92 476.32 100000000 15755240 6.35 CLOUDf08.bin
106 slz_zlib 1.0.0 -3 461.42 451.4 100000000 15757749 6.35 CLOUDf08.bin
107 lzo1y 2.09 -1 1592.93 892.5 100000000 15769310 6.34 CLOUDf08.bin
108 ucl_nrv2b 1.03 -6 33.43 391.42 100000000 15775324 6.34 CLOUDf08.bin
...
169 blosclz 2015-11-10 -1 1037.62 1536.04 100000000 43275920 2.31 CLOUDf08.bin
170 lizard 1.0 -40 157.79 3070.95 100000000 46405992 2.15 CLOUDf08.bin
171 lizard 1.0 -20 447.72 3552.96 100000000 46405992 2.15 CLOUDf08.bin
172 yappy 2014-03-22 -1 106.87 1895.22 100000000 48855449 2.05 CLOUDf08.bin
173 lizard 1.0 -10 497.55 2889.2 100000000 49093035 2.04 CLOUDf08.bin
174 lizard 1.0 -30 465.87 3467.25 100000000 49093035 2.04 CLOUDf08.bin
175 density 0.12.5 beta -1 819.16 729.42 100000000 60061456 1.67 CLOUDf08.bin
176 memcpy 4537.5 4271.75 100000000 100000000 1.00 CLOUDf08.bin

Plotting the columns ’Compression speed’, ’Decompression speed’ and ’Ratio’ for the
whole table will result in the graph from Figure 3.2. The figure shows all algorithms

19

Figure 3.2.: Plot of ratio, compression and decompression speed for one of the Isabel
datasets.

(many with different levels) sorted by ratio. Every green dot on the green line is one
algorithm. The green line belongs to the left axis and shows the compression ratio.
The two blue lines represent the compression and decompression speed. In order to
see the speed of an algorithm, one has to go down in a theoretical vertical line from
every green dot until one intersects the blue lines. Then the three measurements for
ratio, compression speed and decompression speed can be seen. Speed is measured in
Megabytes per second (MB/s).

This view shows the effects of different metrics and different algorithms for one dataset.
It lacks the information of comparing many datasets with each other, though.

To create a two dimensional view of all algorithms, with different datasets, one has to
somehow eliminate the factor ’metric’. The easiest way to do that, is to just decide on a
metric beforehand. Ratio was chosen as a metric for the next tables and figures, since it
is often the most important metric. When fixating the metric, one can now look at the
best performances of different algorithms for different datasets.

Table 3.3 shows the four best performing algorithms for datasets from different sci-
entific data-collections. One can see, that a lot of datasets were best compressed by
different levels of lzlib. FMRI Imaging datasets, though, are best compressed by csc
2016 level -1 or -5. Protein datasets, which are supposed to be hard to compress, were

20

compressed best by brotli 2017 level -11 followed by zstd 1.3.1 and csc 2016. The table
only shows a part of all the datasets used in the benchmark. The complete list of datasets
can be found in the Appendix in Tables A.2 to A.8.

Table 3.3 offers an overview over what algorithm has the best ratio for which dataset.
It also offers the possibility to count the ’winning algorithms’ from every dataset and
create a histogram over the algorithms having the best ratio for at least one dataset.
This can be seen in Figure 3.3. The algorithms are aligned on the x-axis and the number
of times they achieved the best ratio is shown on the y-axis. The figure shows, that as
expected from Table 3.3, different levels of lzlib yield the best ratio in this study. Lzlib
levels -9 , -0, -6 and -1 show the best ratio for most of the tested datasets. csc, brotli, xz,
lzma and zstd also achieve the best ratio for at least one dataset.

Both these views on the data can easily be replicated with different metrics, offering a
different view on the results.

Figure 3.3.: Histogram for algorithms/levels and the number of times, they achieved the
best ratio for a dataset.

Another way to view more dimensional data in two dimensions, is to average over one
variable. Averaging over all measurements from all algorithms will reduce the table of
around 200 measurements to one row of averaged values. Going even further, one could
now take these averages and calculate another average over all the datasets, that come

21

Table 3.4.: Four best algorithms regarding ratio for different datasets.
Data sample best ratio second best ratio third best ratio fourth best ratio
Electric_D067966 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Electric_D070707 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Electric_D070835 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6
Electric_D059546 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Electric_D061283 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9

FMRI_auditory_perception-01 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5
FMRI_auditory_perception-03 csc 2016-10-13 -1 lzlib 1.8 -0 brotli 2017-03-10 -5 zstd 1.3.1 -8
FMRI_auditory_perception-04 csc 2016-10-13 -1 lzlib 1.8 -0 brotli 2017-03-10 -5 zstd 1.3.1 -8
FMRI_auditory_perception-05 csc 2016-10-13 -5 csc 2016-10-13 -3 lzlib 1.8 -9 xz 5.2.3 -9
FMRI_auditory_perception-06 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5
FMRI_auditory_perception-08 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5

Lukas_breast_0 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Lukas_thorax_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_pelvis_0 csc 2016-10-13 -3 csc 2016-10-13 -5 csc 2016-10-13 -1 lzlib 1.8 -9
Lukas_thorax_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9
Lukas_breast_1 lzlib 1.8 -6 lzlib 1.8 -9 lzma 16.04 -9 xz 5.2.3 -6
Lukas_pelvis_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_sinus_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_food_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9

Isabell_QRAINf01 lzlib 1.8 -9 brotli 2017-03-10 -11 lzma 16.04 -9 xz 5.2.3 -6
Isabell_Pf01 lzlib 1.8 -3 lzlib 1.8 -6 lzlib 1.8 -9 xz 5.2.3 -6
Isabell_QGRAUPf01 lzlib 1.8 -9 xz 5.2.3 -6 xz 5.2.3 -9 lzma 16.04 -9
Isabell_Vf01 lzlib 1.8 -3 lzlib 1.8 -6 xz 5.2.3 -6 lzlib 1.8 -9
Isabell_CLOUDf01 lzma 16.04 -5 lzlib 1.8 -9 lzlib 1.8 -3 lzlib 1.8 -6
Isabell_QVAPORf01 csc 2016-10-13 -5 csc 2016-10-13 -3 csc 2016-10-13 -1 lzlib 1.8 -3
Isabell_QICEf01 lzlib 1.8 -9 xz 5.2.3 -6 lzlib 1.8 -3 lzma 16.04 -5
Isabell_PRECIPf01 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 lzma 16.04 -5
Isabell_TCf01 csc 2016-10-13 -3 csc 2016-10-13 -5 csc 2016-10-13 -1 lzlib 1.8 -3

Protein_mj brotli 2017-03-10 -11 zstd 1.3.1 -18 zstd 1.3.1 -22 zstd 1.3.1 -1
Protein_sc brotli 2017-03-10 -11 csc 2016-10-13 -5 zstd 1.3.1 -22 csc 2016-10-13 -3
Protein_hi brotli 2017-03-10 -11 zstd 1.3.1 -18 zstd 1.3.1 -22 zstd 1.3.1 -1
Protein_hs brotli 2017-03-10 -11 zstd 1.3.1 -22 csc 2016-10-13 -5 csc 2016-10-13 -3

Stars_SAOra xz 5.2.3 -6 xz 5.2.3 -9 lzma 16.04 -5 lzlib 1.8 -6
Stars_SAO lzma 16.04 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6

irrigatedcrop22 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7
irrigatedcrop23 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7
irrigatedcrop24 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfedcrop12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfedcrop13 lzlib 1.8 -4 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2
rainfedcrop14 lzlib 1.8 -3 lzlib 1.8 -4 lzlib 1.8 -5 lzlib 1.8 -6
rainfed_crop_15 lzlib 1.8 -6 xz 5.2.3 -7 xz 5.2.3 -6 xz 5.2.3 -8

from the same ’area’ and are semantically similar. By doing this, a very compact view,
on how well datasets with similar structure and semantic information are compressible,
is created. Table 3.5 shows the result of what was just described. The averages over
all datasets from one domain of all three metrics can be seen. The table is again
sorted by ratio. The Star Catalog shows the worst results for all three measurements.
The Protein and FMRI dataset also show a low ratio (around 1.4) and speed. Lukas,
Electrical Engineering and Isabel datasets all have a ratio around 3 to 3.4 and a quite

22

Table 3.5.: Average performance of all algorithms over different datasets.
No. Name Ratio Compression Speed Decopmression Speed
1 Stars 1.258214 104.467712 674.257881
2 Protein 1.407821 219.244082 1111.206667
3 FMRI 1.482281 156.532802 666.815015
4 Lukas 3.029618 137.818054 730.667927
5 Electric 3.227880 159.069449 783.240035
6 Isabel 3.478683 293.490520 1186.734199
7 MIRCA rainfed 90.986818 3377.459896 3125.643697
8 MIRCA irrigated 471.882460 3879.590057 3293.802149

low compressions speed (around 150). The two MIRAC datasets show the highest ratios
(90 and 470) and the fastest compression (more than 3300 MB/s). The two MIRCA
datasets were separated, because their average ratio was quite different.

Looking at the mean is normally one of the first steps when analyzing results or data
in general. In order to get more information about the underlying structures, more
analysis can be helpful, though. Variance of the data and the detection of outliers can
be visualized in a boxplot.

A boxplot consists of a box, a line inside the box, two whiskers and possibly dots
on top or below the whiskers. The dots mark outliers, that are further than 1.5 times
the interquartile range away from the top or bottom of the end of the box. Interquartile
range equals the height of the box. The bottom and top of the box always show the first
and thirds quartile of the data. This means inside the box lie 50% of all data points.
The line in the box is the median of the distribution.

boxplots show many important informations about a distribution of data. Most
importantly, they show the variance. Two distributions can have the same mean or
median, but a completely different variance. boxplots allow to see that.

Figure 3.4 shows the data for ratio and compression speed from Table 3.5 in a boxplot.
Both sub-datasets from the MIRCA2000 dataset have shown the highest ratio. Their
results are so much higher than the rest of the results, that in order to plot them all in
one figure, a logarithmic scale on the y-axis had to be used. Aside form that, one can
see that the datasets from the Field Programmable Gate Arrays and from the Lucas
dataset are compressed better then the rest as well. The star catalog and the Protein
sequences have the worst ratio. FMRI measurements and Isabel datasets show slightly
better results. The Isabel datasets have a very high variance.
Compression speed and ratio show similar trends, but some differences. The star

catalog has a very low compression speed, whereas the Protein dataset shows a faster
compression speed than Electric, Lukas and FMRI. Isabel datasets are showing the
fastest average compression speed after the MIRCA datasets. The MIRCA datasets are
more than ten times faster than the Isabel datasets.

23

Figure 3.4.: boxplot showing Ratio (left) and Compression Speed (right) for all algorithms
for different datasets.

3.3. Discussion
In the last section the results were shown and explained from different point of views.
Now the important question is, what information can be drawn from these results about
semantic data analysis and compression. In the same order as the results were presented,
they will now be discussed and put into context.

Figure 3.2 nicely shows, that compressing files almost always results in some sort
of ratio-time trade-off. The more focus is put on achieving a very small compressed
output-file, the more time and computational resources are needed. This phenomena
seems very reasonable and can be observed in computer science frequently. The main
performance of an algorithm can be increased, but there is no free lunch (Wolpert &
Macready, 1997). More computational power in form of energy consumption, memory
usage and/or time are needed. On the one hand, this can be seen as a disadvantage
because there is no optimal solution that maximizes all the desired output metrics. On
the other hand it gives the user the freedom to decide for every use-case, what metric
should be focused on. It was explained in Section 2.2.2 that compression algorithms often
offer the possibility of selecting a level to decide within the same algorithm, if the fo-
cus should be put more on the resulting ratio or the compression and decompression speed.

It makes it hard, to compare compression algorithms in a general fashion though.
To solve this question of general performance of an algorithm two methods can be used:
Either all the metrics have to be put next to each other and looked at together or a score
is defined that takes in the information from all the metrics and returns one value, that
can be used for a general comparison. This score could for example look like:

ratio ∗ x + compression_speed ∗ y + decompression_speed ∗ z + further_metrics ∗ c

Assuming that all metrics are normalized and preprocessed in a way that bigger values
show better performance, then this score can be calculated for different algorithms and

24

compared directly. The weights for the different metrics are still to be decided by the user.

Taking a closer look at Table 3.4, it seems, that even though lzlib overall shows the best
ratio, certain complicated and not well structured datasets are better compressed by
other algorithms. The star catalog for example shows little repeating structure, due to it
being a catalog, and were best compressed by other algorithms than lzlib. When the
data was more structured like in the climate measurements, or the crop growing datasets
(irrigatedcrop and rainfedcrop) lzlib outperforms the other algorithms most of the time
with regards to ratio.

When averaging over the compression algorithms and also the different datasets from the
same dataset corpus, one can have a close look at the overall performance on different
classes of datasets. Table 3.5 and Figure 3.4 both offer that view. Especially the boxplot
shows clearly, that some datasets with the same underlying semantic information are
compressible very good and very fast. It can be assumed, that the MIRCA datasets
either have a lot of repeating patterns or a lot of repeating numbers. It makes sense,
when thinking about what the datasets represent. The monthly growing areas in hectares
for the same plant is likely quite similar at different positions. If the crop is growing
very similar, the resulting numbers are all very similar and might often be the same.
This allows for a easy and good compression. Protein and Star datasets on the other
hand have almost no repeating features and have a very low ratio compared to the rest
of the datasets. Especially the Star catalog has a ratio close to one, meaning that it is
hardly compressed at all. A catalog often is a list of different items. There is not much
connection between the items, that show patterns or repeating numbers.
The boxplot shows similar results as Table 3.4. What can be seen in the right figure

is that the Isabel dataset has a very high variance. This is due to the fact, that the
Isabel datasets contains 13 different measurements, all merged into one average. The
high variance shows, that these different measurements have different properties when it
comes to compression. Testing all 13 datasets individually would be very time intensive
and create many more different datasets. Since there is some assumed similarity between
the different Isabel datasets and to save time and space, the datasets were averaged
together. The very low variance of the Star dataset is because it only contains two files,
which are two representations of the same catalog. Protein, Electric and FMRI datasets
all have a very low variance and all seem to be semantically very similar. All datasets
show a low variance when it comes to compression speed.
This discussion shows, that the semantic information carried by different datasets

is highly responsible for the general compressibility of a dataset and also has a big
impact on how well compression algorithms will perform on said dataset. By knowing
the semantic information of a dataset beforehand, one could now assume if the file will
compress well and what algorithm to use.

25

3.4. Conclusion
This chapter covered the compression of different scientific datasets, analyzing the results
from different angles and discussing the implications of the results.

It was clearly visible, that different datasets with different semantic information react
very differently to compression. It was also shown, that certain algorithms perform better
or worse depending on the dataset. Knowing where the dataset comes from and what
sort of semantic information it carries, can thus be highly informative about the general
compressibility and maybe even the performance of different algorithms.

The connection between the datasets used in this study and the field of research they
represent should only be drawn with care. Mordern scientific research in one filed is no
longer limited to one or two different methods of measuring or observing, resulting in
few different datasets. On the contrary, as seen in the Isabel dataset, one scientific filed
can create various datasets with different measurements and data-structures.

This chapter builds a foundation for testing and analyzing scientific datasets in or-
der to find optimal compression algorithms for different datasets from scientific sources.
The implementations created alongside this work are general and can be used for different
benchmarks and datasets, in order to create an easy and fast way to benchmark various
algorithms against many datasets.

26

4. Decision Support Systems with
Machine Learning

This chapter will cover Decision Support Systems (DSS) (Power, Sharda, & Burstein, 2015;
Arnott & Pervan, 2008). DSS is a quite broad term, covering basically all systems from
facilitating decisions slightly to systems making decisions on their own. Support Systems
also have changed a lot in the past 50 years, and will keep changing in the future (Shim
et al., 2002). This paper will focus on recently developed DSS (Marakas, 2003): Systems
that are sophisticated and proactive. They try not only to aid decision making, but to
propose a decision for the user or to even make a decision on its own (Bojarski et al.,
2016).

In the end of this chapter, the use-case of choosing an optimal compression algorithm
for new and unknown data will be used to give theoretical ideas a more practical use-case.

4.1. Decisions
DSS can look very differently. They can be a simple program that restructures, visualizes
or highlights data (Li, Feng, & Li, 2001). They can make easy mathematic operations
like averaging over a list of values. In this case, the decision itself will still be placed
in human hands though. The system will not propose anything, it just makes the data
more easily accessible. In machine learning, unsupervised learning falls in this category.
When the only thing available is data, clustering can help to structure the data in a
more understandable way. Then a human can make a decision.
On the other hand one can think of a DSS that is aware of the different decisions

that are available (Goldman, Hartman, Fisher, & Sarel, 2004). It could for example be
explicitly implemented, that there are 38 different compression algorithms to choose
from in the end. In many use-cases this decision will be binary. A system predicting
the development of shares on the stock market (Zhang, Fuehres, & Gloor, 2011; Huang,
Nakamori, & Wang, 2005) for example should produce either a one for buying or a
zero for not-buying. Systems like that are often stochastic systems, that will return a
probability distribution over all existing categories or decision-options. Every decision
process can be modeled as a categorization problem. There is some sort of information
available in order to make a decision. The information will be used as the input for the
categorization algorithms and the decision will be the discrete output. So basically every
decision is a function mapping from information (input) to a decision (discrete value). If
one has a dataset of inputs and correct outputs, that data can be used for a supervised
learning model. These models will optimize a function to map every input as close as

27

possible to every given output.

4.2. Unsupervised Learning
Unsupervised Learning is one of the two main classes of machine learning (Hastie,
Tibshirani, & Friedman, 2009). It describes the discovery of structures or underlying
informations in data. One can use unsupervised learning for unlabeled data. That means
just the plain data. Labeled data on the other hand describes data, that has already
been solved in a way (Seeger et al., 2001). Labeled data is only used to train a model.
More information will be given in Section 4.3.
Clustering data (Berkhin, 2006) can allow humans to make better judgment about

data and maybe help them come to a decision. Clustering means, to split the dataset
into a number of clusters or groups of data-points. A very famous and simple algorithm
to do this is the k-Means Algorithm (MacQueen, 1967; Lloyd, 1982).

The k-Means Algorithm is a very widely and quite simple algorithm to cluster data in
an unsupervised fashion. It needs the number of clusters (k) and a distance measurement
(often euclidean distance) beforehand. Then it clusters the data-samples by repeating
two steps until the clusters do not change any more.

After initializing k centroids randomly:

1. Every data-point is assigned its closest centroid.

2. Every centroid moves to the center of all points, assigned to it.

3. Repeating steps (1) and (2) until the algorithm converges and all the data-points
are clustered.

Figure 4.1 shows this for a simple 2-dimensional example. The algorithm can be used
for more complex data, though. K-Means is an easy and effective way of clustering data
without requiring any other knowledge about it. The results can be used for further
analysis of the data.
The disadvantages of k-Means are that we assume, that distance equals similarity,

which is not necessary in this case. It also does not care for internal structures in
the data and assumes that clusters are always spherical. Unsupervised algorithms like
Expectation-Maximization (EM) (Dempster, Laird, & Rubin, 1977) can handle cases
like that much better. Figure 4.2 shows the limitation of k-Means when the data has
internal structures. This structure can not be captures by simple calculating distances
between data points. Another negative point is, that k has to be chosen beforehand.
Self-Organizing-Maps (SOM) (Kohonen & Honkela, 2007) for example is an unsupervised
algorithm where that is not necessary.

28

(Lavrenko, 2014)

Figure 4.1.: K-Means: Start with unlabeled data (top-right); Random initialization of 2
centroids (top-left); Every point gets the label of its closest centroid (middle-
left); The centroids move to the center of all their points (middle-right);
Repeat until convergence (bottom)

29

(Chire, 2010)

Figure 4.2.: K-Means does not assume any underlying structures. Expectation-
Maximization can have a better prediction in that case.

4.3. Supervised learning
Unsupervised algorithms do not have the ability to propose any decision. Supervised
algorithms (Caruana & Niculescu-Mizil, 2006) do. In order to do so, they need labeled
data. That means, data-samples, that have already been labeled with the correct decision
or prediction. Coming back to the example of predicting the rise or the fall of a share:
In this case labeled data would contain the actual data (information about the company
and the economical situation e.g.) and the actual outcome: did the share actually rise or
fall in the situation, that is described by the input data.
Only when data, with already known solutions is available, we can train a system to

learn the correlation between the input data and the output, the target.

4.3.1. k-Nearest-Neighbor
To start with an easy example of a supervised algorithm, the k-Nearest-Neighbor (Altman,
1992; Burba, Ferraty, & Vieu, 2009) algorithm will be explained. This algorithm does
not actually learn any mapping from input to output, but it uses the same heuristic as
k-means: Distance.
If there are a number of data-points, that already have their correct label, than one

can do something very similar to what k-Means does. The k-Nearest-Neighbor algorithm
calculates the distance between a new unlabeled data-point and every other already
labeled data-point. It then looks at the k closest data-points and at their label. The
new data-point simply gets the most common label under the k closest neighboring
data-points.

This again is a very simple, but very effective way of assigning a label and thus a class
to a new data-point. The disadvantages are almost the same as for k-Means: Distance

30

as a measurement for similarity is assumed, structures in the data are not taken into
account and k has to be decided on beforehand. Additionally, computation time can
be quite high, if many, high dimensional data-points are available, since for every new
data-point, the distances to all other points have to be calculated.

4.3.2. Neural Networks
Neural Networks (Schmidhuber, 2015; Haykin & Network, 2004) are probably the most
famous algorithm in machine learning right now. Even though there are many more
sophisticated models like Convolutional Neural Networks (LeCun et al., 1989) and
Recurrent Neural Networks (Hochreiter & Schmidhuber, 1997), the principles of Neural
Networks are always the same. Every Neural Network - and every supervised learning
algorithm - ultimately is doing function approximation (Ferrari & Stengel, 2005). The
thing, that makes Neural Networks so unique and popular is, that they are able to model
very complex and high dimensional functions better than many other techniques.

Every network has n input-nodes and m output-nodes. The number of the input
nodes is defined by the number of features ones data has. A feature can be pretty much
anything, as long as it is a numerical value. In an intuitive way, one feature is one single
information value from the data. So when we want to know if a company is going to
increase or decrease their value in the next week, one would use information about the
company and the economy in general as features. One feature could for example be the
gross income of the company in the last month.
After selecting all features, they are stacked together into a feature vector. One

feature vector is now one data-point or one input vector. The size of the feature vector
determines the number of input neurons of the network.
The number of possible outcomes determines the number of output neurons. In the

same example the network would have two output neurons, one for ’rise’ and one for
’fall’ of the share. The output of these two neurons can be interpreted as the probability
of this action being the correct one. Figure 4.3 shows how a Neural Network looks
schematically.

The question now is, how is the input propagated through the network to finally create
the values for the output neurons? Figure 4.4 shows, what happens in every single node.
The inputs, coming either from the direct input or from previous nodes, are multiplied
by the weights on the connecting edges and summed up. The bias can be ignored for
now. The resulting value is put into an activation function and passed on to the next
node. If the node is an output node, it creates an output value.
The weights are initialized randomly and are the only thing, that changes in the

network during its training phase. The activation function for the last layer will map all
values from all nodes to probabilities, simply by dividing each one of them by the sum of
all values of output nodes. This activation function is called softmax and is normally
used in any categorization task.

When training a Neural Network for one step, one will use one labeled data-point. The
feature vector of this data-point is used as input and its label is transformed in a one-hot

31

(Chrislb, 2015)

Figure 4.3.: Neural Network with three input-neurons and two output-neurons.

(Kang, 2017)

Figure 4.4.: A perceptron: Incoming values are multiplied by the weights on the connect-
ing edges and summed up. The result goes through an activation function
and is passed on to the next node or is one output node.

32

encoding and used as target. The input-vector will be propagated through the network
until the output nodes yield the result for the given input. Now one can calculate the
difference between the actual observed output and the desired target output.
It is the goal of the network, to minimize this error. If this error between actual

outcome and target is close to zero, it shows, that the network effectively maps the given
input to the desired outcome.

To achieve this goal, different optimization techniques can be used (Pelikan, Goldberg,
& Lobo, 2002). The most frequently used one is a form of gradient based optimization
called gradient descent (Bottou, 2010). One formulates the error function, which is a
mapping from all changeable parameters of the network (its weights) to the average error
made for all data-points. Then the first derivative of this error function is calculated.
Now the gradient can be calculated for this error value. The gradient will be used to
change all the parameters in the direction of decreasing error. By repeatably doing this,
the error will converge to an optimal or suboptimal state, depending on the problem.
Neural Networks can model very complex functions and they are relatively easy to

build. Training can be time intensive, but after that the prediction for new data-samples
is rather fast.

One of their big disadvantages is the fact, that it is hard to interpret what the network
actually learns. Depending on the task it will learn underlying rules of the problem and
use those to solve the problem. But to extract these rules to a level that it is easy for
humans to understand is very hard to impossible. Models like Decision Trees do not
suffer so much from this disadvantage.

4.3.3. Decision Tree
Where Neural Networks work only with continuous values, Decision Trees (Quinlan,
1986) still use discrete boundaries to categorize data. There are various forms of Decision
Trees and even Decision Forests (Ho, 1995, 1998), which use many Decision Trees at the
same time.

In Figure 4.5 a very simple Decision Tree is shown. This simple example shows nicely
how a Decision Tree works in principal. Just like Neural Networks, they need labeled
training data in order to optimize themselves. The general idea is, to adapt the decision
boundaries in an optimal way. That means, that for as many training samples as possible
the correct outcome is predicted.

In the concrete example of Figure 4.5 one can assume, that if the training set contains
a lot of women who are taller than 180cm, the decision boundary will change in favour
of that. The model will also optimize where it has decision boundaries in the first place.
Adding a weight decision boundary after the first ’Yes’ might be a good idea in order to
also categorize tall women better. Especially when the input-vector gets bigger it is an
important question, between time and performance, how many boundaries a Decision
Tree needs.

As mentioned before, Decision Trees are easier to interpret than Neural Networks.
Especially when the problem is more discrete in its nature and not a purely mathematical
problem, interpreting a Decision Tree is much nicer than a Neural Network. When the

33

(Brownlee, 2016)

Figure 4.5.: Very simple example of a Decision Tree. The sex of a person is to be
determined by other information about the person.

problem becomes very complex and high-dimensional, Decision Trees might perform
worse than more complex models, like Neural Networks.

4.3.4. Example: Compression Algorithms
In order to link the two chapters together, this section will describe, how a decision unit
for the task of choosing an optimal compression algorithm for new, unseen data could
look like. Two situations could be imagined.
The first is, that there are plenty of different datasets and none of them are tested

with a compression benchmark yet. In this case unsupervised learning could be used,
to cluster the different data-samples into groups of similar data-samples. K-Means for
example could be used to cluster all the datasets in a fast and simple way. Then a certain
number of data-samples could be run through a compression benchmark and the results
could be analyzed. If many samples from one cluster are all compressed in a good or
optimal fashion by the same algorithm, one can choose that algorithm for the rest of the
data-samples from that cluster. This is a fast way to determine a compression algorithm
for every data-sample, without having to test all of them.

The second case would be, if there is already a number of data-samples, tested with a
benchmark and their results are stored. One can now take every data-sample that is
already tested and use an optimal compression algorithm with regards to a metric. E.g.
one could always take the algorithm with the best ratio as label for every data-sample. By
doing this, a labeled dataset is created. This dataset can now be used for any supervised
learning technique. A Neural Network or a Decision Tree with one dataset as input
and 38 different compression algorithms as output could be created. In the training

34

phase, the algorithm would be optimized, to map every dataset as close as possible to
the previously selected optimal compression algorithm. After the training phase, new,
untested data can be run through the trained model and a compression algorithm will
be predicted. This will save time and should yield a good accuracy with regards to the
optimal algorithm.

4.4. Conclusion
Machine learning can be of a great help when it comes to making decisions. Either
in structuring unlabeled data or in proposing the optimal decision when trained with
labeled data. DSS were originally built to assist humans in their decision making process,
but are evolving to systems, that are trained to make better decisions than humans ever
could. In all this, one should always try to understand why decisions are proposed or
taken, even if that can be hard sometimes.

35

5. Final Conclusion
This paper covered two important topics. The compression benchmark of scientific
datasets and the theoretical construction of DSS.

It was shown, how important semantical differences in datasets can be, when com-
pressing them. Data is defined by its underlying information and the structure of how
this information is stored. By acquiring and using this semantic information in a smart
way, time an resources can be saved. Realizing that certain datasets will only compress
very little while other can be reduced to a fraction of their original size can safe precious
of time.

This benchmark study should show, that these differences between datasets exists and
that they can be visualized by rigorous testing. More importantly it should have shown,
that creating an intuition for datasets and the information they represent can often save
the time and effort of analyzing ever single dataset.
After the data is stored in an efficient way, it can then be used to gather further

informations and make decisions based on those insights. The usage of computer based
models, automated visualizations, data clustering or even supervised models can greatly
increase the performance of any company or research institute. DSS help when making
decisions based on complex and unstructured data.

Deciding if data will be compressible well and if so which algorithm will achieve optimal
solutions is of course also a decision problem. This is why all the Methods presented in
the second chapter can be applied to this problem.

This trend of big data will further increase. The amount of data produced every day
is rising exponentially. Systems for measurements are getting better every day. Social
media creates millions of data-samples in the form of images, videos, tweets or comments
every second. Dealing with this massive amount of unstructured and high-dimensional
data will be a big task of computer science and data science. The goal: To store data as
efficient as possible, to automatically acquire all the information the dataset contains
and finally, to make the optimal decisions based on the give data.

36

References
Abel, D.-I. J. (2002). The data compression resource on the internet. Retrieved March

26, 2018, from www.data-compression.info
Acharya, T., & Tsai, P.-S. (2005). JPEG2000 Standard for Image Compression: Concepts,

Algorithms and VLSI Architectures. Hoboken, New Jersey: John Wiley & Sons.
Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46 (3), 175-185. Retrieved from http://www
.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879 doi: 10.1080/
00031305.1992.10475879

Arnott, D., & Pervan, G. (2008). Eight key issues for the decision support systems
discipline. Decision Support Systems, 44 (3), 657–672.

Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping
multidimensional data (pp. 25–71). Springer.

Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., . . . Zieba,
K. (2016). End to end learning for self-driving cars. CoRR, abs/1604.07316 . Re-
trieved from http://dblp.uni-trier.de/db/journals/corr/corr1604.html#
BojarskiTDFFGJM16

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of compstat’2010 (pp. 177–186). Springer.

Brandenburg, K., & Stoll, G. (1994). ISO/MPEG-1 audio: A generic standard for coding
of high-quality digital audio. Journal of the Audio Engineering Society, 42 (10),
780–792.

Brownlee, J. (2016). Classification and regression trees for machine learning. Retrieved
March 26, 2018, from https://machinelearningmastery.com/classification
-and-regression-trees-for-machine-learning/

Burba, F., Ferraty, F., & Vieu, P. (2009). k-nearest neighbour method in functional
nonparametric regression. Journal of Nonparametric Statistics, 21 (4), 453-469.
Retrieved from https://doi.org/10.1080/10485250802668909 doi: 10.1080/
10485250802668909

Caruana, R., & Niculescu-Mizil, A. (2006). An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on machine
learning (pp. 161–168).

Chen, M., & Fowler, M. L. (2014). The importance of data compression for energy
efficiency in sensor networks. In Hopkins university.

Chire. (2010). Different cluster analysis results on ’mouse’ data set. Retrieved March
26, 2018, from https://en.wikipedia.org/wiki/K-means_clustering

Chrislb. (2015). Multi-layer neural network-english version. Retrieved March
26, 2018, from https://commons.wikimedia.org/wiki/File:Single-Layer

37

www.data-compression.info
http://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://www.tandfonline.com/doi/abs/10.1080/00031305.1992.10475879
http://dblp.uni-trier.de/db/journals/corr/corr1604.html#BojarskiTDFFGJM16
http://dblp.uni-trier.de/db/journals/corr/corr1604.html#BojarskiTDFFGJM16
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://machinelearningmastery.com/classification-and-regression-trees-for-machine-learning/
https://doi.org/10.1080/10485250802668909
https://en.wikipedia.org/wiki/K-means_clustering
https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg
https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg

_Neural_Network-Vector-Blank.svg
Cleary, J., & Witten, I. (1984). Data compression using adaptive coding and partial

string matching. IEEE transactions on Communications, 32 (4), 396–402.
Collet, Y., & Turner, C. (2016). Smaller and faster data compression with zs-

tandard. Retrieved March 26, 2018, from https://code.facebook.com/
posts/1658392934479273/smaller-and-faster-data-compression-with
-zstandard/

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the royal statistical society.
Series B (methodological), 1–38.

Deorowicz, S. (2003). Silesia compression corpus. Retrieved March 26, 2018, from
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

Ferrari, S., & Stengel, R. F. (2005). Smooth function approximation using neural
networks. IEEE Transactions on Neural Networks, 16 (1), 24–38.

Fredericks, X., Nagle, D. B., & Kranenburg, C. J. (2017). Eaarl coastal topography
cape hatteras, north carolina, pre- and post-hurricane isabel, 2003. U.S. Geological
Survey. doi: 10.5066/f76w9879

Goldman, A. J., Hartman, J., Fisher, J., & Sarel, S. (2004, November 16). Method and
tool for data mining in automatic decision making systems. Google Patents. (US
Patent 6,820,070)

Haagsma, I., & Johanns, R. (1970). Decision support systems: An integrated and
distributed approach. WIT Transactions on Ecology and the Environment, 6 .

Hanke, M., Dinga, R., Häusler, C., Guntupalli, J., Casey, M., Kaule, F., & Stadler,
J. (2015). High-resolution 7-tesla fmri data on the perception of musical genres
– an extension to the studyforrest dataset [version 1; referees: 2 approved with
reservations]. F1000Research, 4 (174). doi: 10.12688/f1000research.6679.1

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. In The
elements of statistical learning (pp. 485–585). Springer.

Haykin, S., & Network, N. (2004). A comprehensive foundation. Neural networks,
2 (2004), 41.

Hipp, D. R. (2015). Sqlite. Retrieved March 26, 2018, from https://www.sqlite.org/
download.html

Ho, T. K. (1995). Random decision forests. In Document analysis and recognition, 1995.,
proceedings of the third international conference on (Vol. 1, pp. 278–282).

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20 (8), 832–844.

Hochreiter, S., & Schmidhuber, J. (1997, November). Long short-term memory. Neural
Comput., 9 (8), 1735–1780. Retrieved from http://dx.doi.org/10.1162/neco
.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735

Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market movement
direction with support vector machine. Computers & Operations Research, 32 (10),
2513–2522.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of the IRE , 40 (9), 1098–1101.

38

https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg
https://commons.wikimedia.org/wiki/File:Single-Layer_Neural_Network-Vector-Blank.svg
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
https://code.facebook.com/posts/1658392934479273/smaller-and-faster-data-compression-with-zstandard/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735

Kang, N. (2017). Multi-layer neural networks with sigmoid function— deep learning
for rookies. Retrieved March 26, 2018, from https://towardsdatascience.com/
multi-layer-neural-networks-with-sigmoid-function-deep-learning-for
-rookies-2-bf464f09eb7f

Katz, P. (1991, September 24). String searcher, and compressor using same. Google
Patents. Retrieved from https://www.google.com/patents/US5051745 (US
Patent 5,051,745)

Kohonen, T., & Honkela, T. (2007). Kohonen network. Scholarpedia, 2 (1), 1568. (revision
#122029) doi: 10.4249/scholarpedia.1568

Lavrenko, V. (2014). K-means clustering: how it works. Retrieved March 26, 2018, from
http://bit.ly/K-means

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., &
Jackel, L. D. (1989, December). Backpropagation applied to handwritten zip code
recognition. Neural Comput., 1 (4), 541–551. Retrieved from http://dx.doi.org/
10.1162/neco.1989.1.4.541 doi: 10.1162/neco.1989.1.4.541

Lelewer, D. A., & Hirschberg, D. S. (1987, September). Data compression. ACM
Comput. Surv., 19 (3), 261–296. Retrieved from http://doi.acm.org/10.1145/
45072.45074 doi: 10.1145/45072.45074

Li, T., Feng, S., & Li, L. X. (2001). Information visualization for intelligent decision
support systems. Knowledge-Based Systems, 14 (5-6), 259–262.

Lloyd, S. (1982). Least squares quantization in pcm. IEEE transactions on information
theory, 28 (2), 129–137.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth berkeley symposium on mathematical
statistics and probability, volume 1: Statistics (pp. 281–297). Berkeley, Calif.:
University of California Press. Retrieved from https://projecteuclid.org/
euclid.bsmsp/1200512992

Mahoney, M. (2012). Data compression explained. mattmahoney. net, updated May, 7 .
Marakas, G. M. (2003). Decision support systems in the 21st century (Vol. 134). Prentice

Hall Upper Saddle River, NJ.
Nevill-Manning, C. G., & Witten, I. H. (1999). Protein is incompressible. In Data

compression conference, 1999. proceedings. dcc’99 (pp. 257–266).
Pelikan, M., Goldberg, D. E., & Lobo, F. G. (2002). A survey of optimization by building

and using probabilistic models. Computational optimization and applications, 21 (1),
5–20.

Portmann, F. T., Siebert, S., Bauer, C., & Döll, P. (2008). Global dataset of monthly
growing areas of 26 irrigated crops : version 1.0 (No. 6).

Power, D. J., Sharda, R., & Burstein, F. (2015). Decision support systems. Wiley Online
Library.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1 (1), 81–106.
Robinson, A., & Cherry, C. (1967). Results of a prototype television bandwidth

compression scheme. Proceedings of the IEEE , 55 (3), 356–364.
Salomon, D., & Motta, G. (2010). Handbook of data compression. Springer Science &

Business Media.

39

https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://towardsdatascience.com/multi-layer-neural-networks-with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
https://www.google.com/patents/US5051745
http://bit.ly/K-means
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://doi.acm.org/10.1145/45072.45074
http://doi.acm.org/10.1145/45072.45074
https://projecteuclid.org/euclid.bsmsp/1200512992
https://projecteuclid.org/euclid.bsmsp/1200512992

Sayood, K. (2000). Introduction to data compression. Morgan Kaufman Publishers.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,

61 , 85–117.
Seeger, M., et al. (2001). Learning with labeled and unlabeled data (Tech. Rep.). technical

report, University of Edinburgh.
Shim, J. P., Warkentin, M., Courtney, J. F., Power, D. J., Sharda, R., & Carlsson, C.

(2002). Past, present, and future of decision support technology. Decision support
systems, 33 (2), 111–126.

Sikora, T. (1997, Feb). The MPEG-4 video standard verification model. IEEE
Transactions on Circuits and Systems for Video Technology, 7 (1), 19-31. doi:
10.1109/76.554415

SlidePlay. (2016). Lempel-ziv compression techniques. Retrieved March 26, 2018, from
http://slideplayer.com/slide/5173265/

Storer, J. A. (1985). Textual substitution techniques for data compression. In A. Apos-
tolico & Z. Galil (Eds.), Combinatorial algorithms on words (pp. 111–129). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Welch, T. A. (1984, June). A technique for high-performance data compression. Computer ,
17 (6), 8-19. doi: 10.1109/MC.1984.1659158

Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing gigabytes: Compressing and
indexing documents and images (2nd ed.). San Francisco, CA: Morgan Kaufmann.

Wolpert, D. H., & Macready, W. G. (1997, April). No free lunch theorems for optimization.
Trans. Evol. Comp, 1 (1), 67–82. Retrieved from http://dx.doi.org/10.1109/
4235.585893 doi: 10.1109/4235.585893

Zhang, X., Fuehres, H., & Gloor, P. A. (2011). Predicting stock market indicators
through twitter “i hope it is not as bad as i fear”. Procedia-Social and Behavioral
Sciences, 26 , 55–62.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE TRANSACTIONS ON INFORMATION THEORY , 23 (3), 337–343.

Ziv, J., & Lempel, A. (1978, September). Compression of individual sequences via
variable-rate coding. IEEE Transactions on Information Theory, 24 (5), 530-536.
doi: 10.1109/TIT.1978.1055934

40

http://slideplayer.com/slide/5173265/
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/4235.585893

A. Appendix

Table A.1.: Results of one full run with lzBench: This table is plotted in Figure 3.2

No. Name Comp.
speed

Decomp.
speed Ratio Filename

0 lzlib 1.8 -9 1.23 56.68 7.86 CLOUDf08.bin
1 brotli 2017-03-10 -11 0.72 288.82 7.86 CLOUDf08.bin
2 lzlib 1.8 -0 28.21 52.01 7.67 CLOUDf08.bin
3 xz 5.2.3 -9 8.16 82.42 7.65 CLOUDf08.bin
4 lzma 16.04 -9 5.67 76.84 7.65 CLOUDf08.bin
5 lzma 16.04 -0 26.78 86.33 7.65 CLOUDf08.bin
6 xz 5.2.3 -6 7.99 84.07 7.65 CLOUDf08.bin
7 csc 2016-10-13 -5 9.83 58.56 7.64 CLOUDf08.bin
8 lzlib 1.8 -6 6.87 58.37 7.63 CLOUDf08.bin
9 lzma 16.04 -5 8.07 94.03 7.62 CLOUDf08.bin
10 xz 5.2.3 -0 25.28 83.71 7.62 CLOUDf08.bin
11 lzlib 1.8 -3 11.87 56.35 7.60 CLOUDf08.bin
12 csc 2016-10-13 -1 20.92 50.71 7.59 CLOUDf08.bin
13 lzma 16.04 -2 28.62 89.44 7.58 CLOUDf08.bin
14 csc 2016-10-13 -3 15.71 61.52 7.57 CLOUDf08.bin
15 xz 5.2.3 -3 16.55 83.33 7.56 CLOUDf08.bin
16 brotli 2017-03-10 -8 13.2 371.42 7.56 CLOUDf08.bin
17 brotli 2017-03-10 -5 27.96 289.68 7.55 CLOUDf08.bin
18 lzham 1.0 -d26 -0 7.39 327.84 7.54 CLOUDf08.bin
19 zstd 1.3.1 -22 2.2 1569.28 7.50 CLOUDf08.bin
20 zstd 1.3.1 -15 40.8 1492.43 7.50 CLOUDf08.bin
21 zstd 1.3.1 -11 76.53 1594.26 7.49 CLOUDf08.bin
22 lzma 16.04 -4 20.92 87.97 7.49 CLOUDf08.bin
23 zstd 1.3.1 -8 84.35 1566.48 7.49 CLOUDf08.bin
24 lzham 1.0 -d26 -1 3.81 313.51 7.47 CLOUDf08.bin
25 xpack 2016-06-02 -9 74.95 998.53 7.46 CLOUDf08.bin
26 zstd 1.3.1 -5 129.61 1549.42 7.46 CLOUDf08.bin
27 zstd 1.3.1 -18 23.82 1625.43 7.45 CLOUDf08.bin
28 zstd 1.3.1 -2 464.77 1535.61 7.45 CLOUDf08.bin
29 zstd 1.3.1 -1 622.5 1566.92 7.45 CLOUDf08.bin
30 libdeflate 0.7 -12 5.86 1047.23 7.43 CLOUDf08.bin
31 tornado 0.6a -16 4.43 228.65 7.41 CLOUDf08.bin

41

32 xpack 2016-06-02 -6 97.7 942.11 7.41 CLOUDf08.bin
33 libdeflate 0.7 -9 22.2 956.07 7.41 CLOUDf08.bin
34 zlib 1.2.11 -9 15.85 351.8 7.37 CLOUDf08.bin
35 brotli 2017-03-10 -2 165.87 273.31 7.35 CLOUDf08.bin
36 libdeflate 0.7 -6 115.02 944.34 7.35 CLOUDf08.bin
37 tornado 0.6a -13 20.55 221.39 7.35 CLOUDf08.bin
38 xpack 2016-06-02 -1 118.27 992.5 7.34 CLOUDf08.bin
39 tornado 0.6a -10 5.59 191.75 7.34 CLOUDf08.bin
40 zlib 1.2.11 -6 52.31 329.83 7.32 CLOUDf08.bin
41 tornado 0.6a -7 16.66 196.07 7.32 CLOUDf08.bin
42 lzfse 2017-03-08 57.05 438.09 7.31 CLOUDf08.bin
43 tornado 0.6a -5 56.58 177.78 7.29 CLOUDf08.bin
44 tornado 0.6a -6 35.83 181.82 7.29 CLOUDf08.bin
45 zling 2016-01-10 -3 58.85 240.19 7.28 CLOUDf08.bin
46 zling 2016-01-10 -4 56.75 246.7 7.28 CLOUDf08.bin
47 zling 2016-01-10 -2 62.23 248.78 7.27 CLOUDf08.bin
48 libdeflate 0.7 -3 140.65 982.2 7.27 CLOUDf08.bin
49 libdeflate 0.7 -1 146.88 870.22 7.26 CLOUDf08.bin
50 zling 2016-01-10 -1 52.11 237.27 7.26 CLOUDf08.bin
51 zling 2016-01-10 -0 56.85 239.18 7.25 CLOUDf08.bin
52 tornado 0.6a -4 166.16 248.54 7.22 CLOUDf08.bin
53 tornado 0.6a -3 253 253.95 7.21 CLOUDf08.bin
54 zlib 1.2.11 -1 90.34 470.36 7.07 CLOUDf08.bin
55 lizard 1.0 -29 0.22 4551.26 6.78 CLOUDf08.bin
56 lizard 1.0 -19 0.49 4577.43 6.73 CLOUDf08.bin
57 lizard 1.0 -39 0.48 3860.41 6.73 CLOUDf08.bin
58 lizard 1.0 -49 0.21 2793.22 6.72 CLOUDf08.bin
59 lz4hc 1.7.5 -12 0.03 2995.85 6.70 CLOUDf08.bin
60 lz4hc 1.7.5 -9 15.92 3338.65 6.65 CLOUDf08.bin
61 lizard 1.0 -45 52.71 2445.4 6.64 CLOUDf08.bin
62 lizard 1.0 -25 53.97 2307.52 6.63 CLOUDf08.bin
63 lizard 1.0 -15 53.34 1455.77 6.63 CLOUDf08.bin
64 lz4hc 1.7.5 -4 104.48 3157.39 6.62 CLOUDf08.bin
65 lizard 1.0 -35 102.11 1585.19 6.61 CLOUDf08.bin
66 lzo1y 2.09 -999 3.15 944.97 6.59 CLOUDf08.bin
67 yalz77 2015-09-19 -12 17.26 614.85 6.58 CLOUDf08.bin
68 lzo1b 2.09 -999 3.08 676.82 6.58 CLOUDf08.bin
69 yalz77 2015-09-19 -8 31.11 624.39 6.58 CLOUDf08.bin
70 lzo1z 2.09 -999 3.53 967.14 6.57 CLOUDf08.bin
71 lzo1x 2.09 -999 3.43 972.77 6.57 CLOUDf08.bin
72 lz4hc 1.7.5 -1 142.82 2913.56 6.57 CLOUDf08.bin
73 lzo1c 2.09 -999 3.14 757.78 6.57 CLOUDf08.bin
74 lzo1f 2.09 -999 2.88 686.15 6.56 CLOUDf08.bin
75 yalz77 2015-09-19 -4 43.65 568.68 6.56 CLOUDf08.bin

42

76 lizard 1.0 -22 280.6 3996.42 6.54 CLOUDf08.bin
77 lizard 1.0 -42 235.78 4001.14 6.54 CLOUDf08.bin
78 shrinker 0.1 978.08 1189.52 6.53 CLOUDf08.bin
79 lzo1c 2.09 -99 92.94 739.61 6.51 CLOUDf08.bin
80 pithy 2011-12-24 -9 1233.34 3542.66 6.51 CLOUDf08.bin
81 lzo1b 2.09 -99 93.43 740.43 6.51 CLOUDf08.bin
82 yalz77 2015-09-19 -1 94.45 475.09 6.51 CLOUDf08.bin
83 pithy 2011-12-24 -6 1305.52 3315.2 6.51 CLOUDf08.bin
84 pithy 2011-12-24 -3 1844.14 3483.27 6.49 CLOUDf08.bin
85 lz4 1.7.5 1300.46 2950.81 6.47 CLOUDf08.bin
86 pithy 2011-12-24 -0 1982.51 3630.78 6.46 CLOUDf08.bin
87 lzo1b 2.09 -9 173.16 590.87 6.46 CLOUDf08.bin
88 lizard 1.0 -12 187.58 3093.69 6.45 CLOUDf08.bin
89 lzo1c 2.09 -9 160.82 534.91 6.45 CLOUDf08.bin
90 lzo1b 2.09 -6 245.2 1498.06 6.44 CLOUDf08.bin
91 lzo1b 2.09 -3 248.15 1251.94 6.44 CLOUDf08.bin
92 lzo1c 2.09 -6 284.69 1375.07 6.44 CLOUDf08.bin
93 lzo1c 2.09 -3 279.87 1339.57 6.43 CLOUDf08.bin
94 lizard 1.0 -32 164.08 3575.91 6.43 CLOUDf08.bin
95 lzo1f 2.09 -1 282.66 1844.08 6.42 CLOUDf08.bin
96 lzo1c 2.09 -1 281.7 2342.11 6.42 CLOUDf08.bin
97 lz4fast 1.7.5 -3 1320.86 3334.5 6.42 CLOUDf08.bin
98 lzo1b 2.09 -1 239.92 2376.15 6.41 CLOUDf08.bin
99 ucl_nrv2b 1.03 -9 6 409.16 6.38 CLOUDf08.bin
100 ucl_nrv2e 1.03 -9 5.9 435.95 6.37 CLOUDf08.bin
101 ucl_nrv2d 1.03 -9 6.01 443.9 6.37 CLOUDf08.bin
102 blosclz 2015-11-10 -9 556.74 1085.87 6.37 CLOUDf08.bin
103 fastlz 0.1 -2 439.01 1753.47 6.36 CLOUDf08.bin
104 slz_zlib 1.0.0 -1 454.04 475.85 6.35 CLOUDf08.bin
105 slz_zlib 1.0.0 -2 413.92 476.32 6.35 CLOUDf08.bin
106 slz_zlib 1.0.0 -3 461.42 451.4 6.35 CLOUDf08.bin
107 lzo1y 2.09 -1 1592.93 892.5 6.34 CLOUDf08.bin
108 ucl_nrv2b 1.03 -6 33.43 391.42 6.34 CLOUDf08.bin
109 lzo1x 2.09 -1 1639.28 908.71 6.33 CLOUDf08.bin
110 lzo1x 2.09 -15 1479.33 858.54 6.33 CLOUDf08.bin
111 lzo1x 2.09 -12 1361.29 831.88 6.33 CLOUDf08.bin
112 lzo1x 2.09 -11 1405.92 821.76 6.33 CLOUDf08.bin
113 ucl_nrv2d 1.03 -6 35.35 430.37 6.31 CLOUDf08.bin
114 ucl_nrv2e 1.03 -6 33.08 421.98 6.31 CLOUDf08.bin
115 lzo1a 2.09 -99 122.57 565 6.28 CLOUDf08.bin
116 lzo1 2.09 -99 88.67 408.79 6.28 CLOUDf08.bin
117 brotli 2017-03-10 -0 554.79 296.91 6.27 CLOUDf08.bin
118 ucl_nrv2b 1.03 -1 44.63 379.55 6.27 CLOUDf08.bin
119 lzvn 2017-03-08 77.34 649.35 6.26 CLOUDf08.bin

43

120 ucl_nrv2d 1.03 -1 43.1 418.23 6.26 CLOUDf08.bin
121 ucl_nrv2e 1.03 -1 43.35 413.27 6.26 CLOUDf08.bin
122 lzo2a 2.09 -999 3.35 537.22 6.25 CLOUDf08.bin
123 lzo1a 2.09 -1 248.73 1555.44 6.25 CLOUDf08.bin
124 lzo1 2.09 -1 233.31 1340.64 6.25 CLOUDf08.bin
125 lz4fast 1.7.5 -17 2328.88 2961.52 6.22 CLOUDf08.bin
126 lzmat 1.01 26.57 474.59 6.21 CLOUDf08.bin
127 lzf 3.6 -1 264.44 545.69 6.19 CLOUDf08.bin
128 lzf 3.6 -0 345.37 529.25 6.19 CLOUDf08.bin
129 fastlz 0.1 -1 382.46 1615.6 6.19 CLOUDf08.bin
130 lzg 1.0.8 -8 36.05 481.4 6.18 CLOUDf08.bin
131 lzg 1.0.8 -6 54.16 406.89 6.15 CLOUDf08.bin
132 lzg 1.0.8 -4 57.4 468.22 6.15 CLOUDf08.bin
133 lzg 1.0.8 -1 52.2 501.36 6.14 CLOUDf08.bin
134 crush 1.0 -2 11.01 409.37 6.12 CLOUDf08.bin
135 crush 1.0 -1 30.5 378.36 6.11 CLOUDf08.bin
136 wflz 2015-09-16 486.82 1535.09 6.08 CLOUDf08.bin
137 brieflz 1.1.0 106.6 312.96 6.05 CLOUDf08.bin
138 crush 1.0 -0 42.88 342.36 6.04 CLOUDf08.bin
139 tornado 0.6a -2 421.51 665.59 6.01 CLOUDf08.bin
140 blosclz 2015-11-10 -6 569.43 1523.19 5.90 CLOUDf08.bin
141 quicklz 1.5.0 -2 202.46 657.28 5.84 CLOUDf08.bin
142 quicklz 1.5.0 -1 590.15 820.59 5.76 CLOUDf08.bin
143 quicklz 1.5.0 -3 60.25 1233.96 5.70 CLOUDf08.bin
144 density 0.12.5 beta -3 310.62 210.26 5.63 CLOUDf08.bin
145 lzsse8 2016-05-14 -12 18.5 3356.71 5.55 CLOUDf08.bin
146 lzsse8 2016-05-14 -16 18.2 3202.31 5.55 CLOUDf08.bin
147 lzsse8 2016-05-14 -6 17.52 3299.13 5.52 CLOUDf08.bin
148 tornado 0.6a -1 607.72 665.96 5.36 CLOUDf08.bin
149 lzsse4 2016-05-14 -16 21.09 3044.37 5.31 CLOUDf08.bin
150 lzsse4 2016-05-14 -12 20.28 3105.63 5.31 CLOUDf08.bin
151 lzsse4 2016-05-14 -6 18.21 2998.13 5.29 CLOUDf08.bin
152 gipfeli 2016-07-13 491.8 907.54 5.28 CLOUDf08.bin
153 snappy 1.1.4 1728.1 1869.66 5.27 CLOUDf08.bin
154 lzjb 2010 322.33 339.16 5.27 CLOUDf08.bin
155 lzsse8 2016-05-14 -1 28.59 2945.76 5.21 CLOUDf08.bin
156 lzsse4 2016-05-14 -1 33.04 2686 5.07 CLOUDf08.bin
157 yappy 2014-03-22 -100 36.17 3370.26 4.99 CLOUDf08.bin
158 lzsse2 2016-05-14 -12 22.56 2249.47 4.96 CLOUDf08.bin
159 lzsse2 2016-05-14 -16 21.1 2104.69 4.96 CLOUDf08.bin
160 lzsse2 2016-05-14 -6 20.67 2245.36 4.94 CLOUDf08.bin
161 density 0.12.5 beta -2 732.78 552.4 4.77 CLOUDf08.bin
162 lzsse2 2016-05-14 -1 33.43 2103.93 4.68 CLOUDf08.bin
163 lzrw 15-Jul-1991 -5 85.05 461.25 3.86 CLOUDf08.bin

44

164 lzrw 15-Jul-1991 -4 480.92 553.15 3.83 CLOUDf08.bin
165 lzrw 15-Jul-1991 -3 465.74 709.06 3.83 CLOUDf08.bin
166 yappy 2014-03-22 -10 67.01 3575.89 3.71 CLOUDf08.bin
167 lzrw 15-Jul-1991 -1 377.61 671.38 3.64 CLOUDf08.bin
168 blosclz 2015-11-10 -3 612.34 1370.12 3.07 CLOUDf08.bin
169 blosclz 2015-11-10 -1 1037.62 1536.04 2.31 CLOUDf08.bin
170 lizard 1.0 -40 157.79 3070.95 2.15 CLOUDf08.bin
171 lizard 1.0 -20 447.72 3552.96 2.15 CLOUDf08.bin
172 yappy 2014-03-22 -1 106.87 1895.22 2.05 CLOUDf08.bin
173 lizard 1.0 -10 497.55 2889.2 2.04 CLOUDf08.bin
174 lizard 1.0 -30 465.87 3467.25 2.04 CLOUDf08.bin
175 density 0.12.5 beta -1 819.16 729.42 1.67 CLOUDf08.bin
176 memcpy 4537.5 4271.75 1.00 CLOUDf08.bin

45

Table A.2.: Results from Geographical Data
Data sample best ratio second best ratio third best ratio fourth best ratio
irrigated_crop_01_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -2 lzlib 1.8 -3 xz 5.2.3 -1
irrigated_crop_02_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4
irrigated_crop_03_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_04_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 xz 5.2.3 -1
irrigated_crop_05_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_06_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_07_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_08_irrigated_12 lzlib 1.8 -2 lzlib 1.8 -1 lzlib 1.8 -3 lzlib 1.8 -4
irrigated_crop_09_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -4 xz 5.2.3 -1
irrigated_crop_10_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4
irrigated_crop_11_irrigated_12 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7 brotli 2017-03-10 -8
irrigated_crop_12_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_13_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4
irrigated_crop_14_irrigated_12 zstd 1.3.1 -1 zstd 1.3.1 -2 zstd 1.3.1 -3 zstd 1.3.1 -4
irrigated_crop_15_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -6 xz 5.2.3 -1 xz 5.2.3 -2
irrigated_crop_16_irrigated_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4
irrigated_crop_17_irrigated_12 lzlib 1.8 -1 xz 5.2.3 -0 xz 5.2.3 -1 xz 5.2.3 -2
irrigated_crop_18_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_19_irrigated_12 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7
irrigated_crop_20_irrigated_12 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -9
irrigated_crop_21_irrigated_12 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4 xz 5.2.3 -0
irrigated_crop_22_irrigated_12 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7
irrigated_crop_23_irrigated_12 brotli 2017-03-10 -4 brotli 2017-03-10 -5 brotli 2017-03-10 -6 brotli 2017-03-10 -7
irrigated_crop_24_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_25_irrigated_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
irrigated_crop_26_irrigated_12 lzlib 1.8 -6 xz 5.2.3 -1 xz 5.2.3 -2 xz 5.2.3 -3
rainfed_crop_01_rainfed_12 lzlib 1.8 -4 lzlib 1.8 -0 lzlib 1.8 -3 lzlib 1.8 -6
rainfed_crop_02_rainfed_12 xz 5.2.3 -1 lzma 16.04 -0 lzma 16.04 -1 lzma 16.04 -2
rainfed_crop_03_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -6 xz 5.2.3 -0 xz 5.2.3 -1
rainfed_crop_04_rainfed_12 lzlib 1.8 -6 xz 5.2.3 -7 xz 5.2.3 -8 lzlib 1.8 -0
rainfed_crop_05_rainfed_12 lzlib 1.8 -6 xz 5.2.3 -5 xz 5.2.3 -6 xz 5.2.3 -8
rainfed_crop_06_rainfed_12 xz 5.2.3 -6 xz 5.2.3 -8 lzlib 1.8 -0 lzlib 1.8 -1
rainfed_crop_07_rainfed_12 lzlib 1.8 -6 lzlib 1.8 -1 lzlib 1.8 -3 xz 5.2.3 -1
rainfed_crop_08_rainfed_12 xz 5.2.3 -1 xz 5.2.3 -6 xz 5.2.3 -7 lzma 16.04 -0
rainfed_crop_09_rainfed_12 xz 5.2.3 -7 xz 5.2.3 -8 lzlib 1.8 -1 lzlib 1.8 -2
rainfed_crop_10_rainfed_12 xz 5.2.3 -1 xz 5.2.3 -2 xz 5.2.3 -3 lzma 16.04 -0
rainfed_crop_11_rainfed_12 lzlib 1.8 -5 lzlib 1.8 -6 xz 5.2.3 -4 xz 5.2.3 -6
rainfed_crop_12_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_13_rainfed_12 lzlib 1.8 -4 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2
rainfed_crop_14_rainfed_12 lzlib 1.8 -3 lzlib 1.8 -4 lzlib 1.8 -5 lzlib 1.8 -6
rainfed_crop_15_rainfed_12 lzlib 1.8 -6 xz 5.2.3 -7 xz 5.2.3 -6 xz 5.2.3 -8
rainfed_crop_16_rainfed_12 xz 5.2.3 -6 xz 5.2.3 -8 lzlib 1.8 -1 lzlib 1.8 -6
rainfed_crop_17_rainfed_12 xz 5.2.3 -6 lzlib 1.8 -1 xz 5.2.3 -1 xz 5.2.3 -3
rainfed_crop_18_rainfed_12 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3 lzlib 1.8 -4
rainfed_crop_19_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_20_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_21_rainfed_12 lzlib 1.8 -6 xz 5.2.3 -1 xz 5.2.3 -2 xz 5.2.3 -5
rainfed_crop_22_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_23_rainfed_12 lzlib 1.8 -3 lzlib 1.8 -4 lzlib 1.8 -5 xz 5.2.3 -4
rainfed_crop_24_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_25_rainfed_12 lzlib 1.8 -0 lzlib 1.8 -1 lzlib 1.8 -2 lzlib 1.8 -3
rainfed_crop_26_rainfed_12 lzlib 1.8 -3 lzlib 1.8 -0 lzlib 1.8 -2 xz 5.2.3 -1

46

Table A.3.: Results from Electrical Engineering Data
Data sample best ratio second best ratio third best ratio fourth best ratio
Electric_D067966 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Electric_D070707 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Electric_D070835 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6
Electric_D070436 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Electric_D059546 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Electric_D061283 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Electric_D070802 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9
Electric_D070437 lzlib 1.8 -6 lzlib 1.8 -9 lzma 16.04 -5 xz 5.2.3 -6

Table A.4.: Results from FMRI Data
Data sample best ratio second best ratio third best ratio fourth best ratio
FMRI_task-01 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5
FMRI_task-03 csc 2016-10-13 -1 lzlib 1.8 -0 brotli 2017-03-10 -5 zstd 1.3.1 -8
FMRI_task-04 csc 2016-10-13 -1 lzlib 1.8 -0 brotli 2017-03-10 -5 zstd 1.3.1 -8
FMRI_task-05 csc 2016-10-13 -5 csc 2016-10-13 -3 lzlib 1.8 -9 xz 5.2.3 -9
FMRI_task-06 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5
FMRI_task-07 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5
FMRI_task-08 csc 2016-10-13 -1 lzlib 1.8 -0 lzma 16.04 -0 brotli 2017-03-10 -5

Table A.5.: Results from Climate Data
Data sample best ratio second best ratio third best ratio fourth best ratio
Isabell_Wf01 lzma 16.04 -9 xz 5.2.3 -9 lzham 1.0 -d26 -1 lzlib 1.8 -9
Isabell_Uf01 lzlib 1.8 -3 lzlib 1.8 -6 xz 5.2.3 -6 lzlib 1.8 -9
Isabell_QSNOWf01 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6
Isabell_QCLOUDf01 lzlib 1.8 -9 brotli 2017-03-10 -11 lzma 16.04 -9 xz 5.2.3 -6
Isabell_QRAINf01 lzlib 1.8 -9 brotli 2017-03-10 -11 lzma 16.04 -9 xz 5.2.3 -6
Isabell_Pf01 lzlib 1.8 -3 lzlib 1.8 -6 lzlib 1.8 -9 xz 5.2.3 -6
Isabell_QGRAUPf01 lzlib 1.8 -9 xz 5.2.3 -6 xz 5.2.3 -9 lzma 16.04 -9
Isabell_Vf01 lzlib 1.8 -3 lzlib 1.8 -6 xz 5.2.3 -6 lzlib 1.8 -9
Isabell_CLOUDf01 lzma 16.04 -5 lzlib 1.8 -9 lzlib 1.8 -3 lzlib 1.8 -6
Isabell_QVAPORf01 csc 2016-10-13 -5 csc 2016-10-13 -3 csc 2016-10-13 -1 lzlib 1.8 -3
Isabell_QICEf01 lzlib 1.8 -9 xz 5.2.3 -6 lzlib 1.8 -3 lzma 16.04 -5
Isabell_PRECIPf01 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 lzma 16.04 -5
Isabell_TCf01 csc 2016-10-13 -3 csc 2016-10-13 -5 csc 2016-10-13 -1 lzlib 1.8 -3

47

Table A.6.: Results from Lukas Data
Data sample best ratio second best ratio third best ratio fourth best ratio
Lukas_lukas_2d_16_breast_0 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Lukas_lukas_2d_16_thorax_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_pelvis_0 csc 2016-10-13 -3 csc 2016-10-13 -5 csc 2016-10-13 -1 lzlib 1.8 -9
Lukas_lukas_2d_16_thorax_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9
Lukas_lukas_2d_16_breast_1 lzlib 1.8 -6 lzlib 1.8 -9 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_pelvis_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_sinus_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_spine_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9
Lukas_lukas_2d_16_head_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 lzma 16.04 -5
Lukas_lukas_2d_16_food_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_knee_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_leg_0 lzlib 1.8 -9 xz 5.2.3 -6 xz 5.2.3 -9 lzlib 1.8 -6
Lukas_lukas_2d_16_hand_0 lzlib 1.8 -6 lzlib 1.8 -9 lzma 16.04 -5 lzma 16.04 -9
Lukas_lukas_2d_16_head_1 lzlib 1.8 -9 lzlib 1.8 -6 xz 5.2.3 -6 xz 5.2.3 -9
Lukas_lukas_2d_16_spine_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6
Lukas_lukas_2d_16_sinus_1 lzlib 1.8 -9 lzma 16.04 -9 xz 5.2.3 -6 xz 5.2.3 -9
Lukas_lukas_2d_16_hand_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_knee_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_leg_1 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -9 xz 5.2.3 -6
Lukas_lukas_2d_16_food_0 lzlib 1.8 -9 lzlib 1.8 -6 lzma 16.04 -5 lzma 16.04 -9

Table A.7.: Results from Protein Data
Data sample best ratio second best ratio third best ratio fourth best ratio
Protein_mj brotli 2017-03-10 -11 zstd 1.3.1 -18 zstd 1.3.1 -22 zstd 1.3.1 -1
Protein_sc brotli 2017-03-10 -11 csc 2016-10-13 -5 zstd 1.3.1 -22 csc 2016-10-13 -3
Protein_hi brotli 2017-03-10 -11 zstd 1.3.1 -18 zstd 1.3.1 -22 zstd 1.3.1 -1
Protein_hs brotli 2017-03-10 -11 zstd 1.3.1 -22 csc 2016-10-13 -5 csc 2016-10-13 -3

Table A.8.: Results from Stars Data
Data sample best ratio second best ratio third best ratio fourth best ratio
Stars_SAOra xz 5.2.3 -6 xz 5.2.3 -9 lzma 16.04 -5 lzlib 1.8 -6
Stars_SAO lzma 16.04 -9 lzlib 1.8 -6 lzma 16.04 -5 xz 5.2.3 -6

48

List of Figures
2.1. The different measurements from the Isabel Datasets. 8
2.2. Compression speed and ratio for different compression levels for zstd,

brotli and lzlib. 11
2.3. Using LZ78 on a string. Every arrow symbolizes one step. 12

3.1. Options available for running lzBench. 15
3.2. Plot of ratio, compression and decompression speed for one of the Isabel

datasets. 20
3.3. Histogram for algorithms/levels and the number of times, they achieved

the best ratio for a dataset. 21
3.4. boxplot showing Ratio (left) and Compression Speed (right) for all algo-

rithms for different datasets. 24

4.1. K-Means: Start with unlabeled data (top-right); Random initialization
of 2 centroids (top-left); Every point gets the label of its closest centroid
(middle-left); The centroids move to the center of all their points (middle-
right); Repeat until convergence (bottom) 29

4.2. K-Means does not assume any underlying structures. Expectation-
Maximization can have a better prediction in that case. 30

4.3. Neural Network with three input-neurons and two output-neurons. 32
4.4. A perceptron: Incoming values are multiplied by the weights on the

connecting edges and summed up. The result goes through an activation
function and is passed on to the next node or is one output node. 32

4.5. Very simple example of a Decision Tree. The sex of a person is to be
determined by other information about the person. 34

49

List of Tables
3.1. The first 18 algorithms used by lzBench 16
3.2. The second 18 algorithms used by lzBench 17
3.3. Part of the results plotted in Figure 3.2 for one dataset from the Isabel

datasets . 19
3.4. Four best algorithms regarding ratio for different datasets. 22
3.5. Average performance of all algorithms over different datasets. 23

A.1. Results of one full run with lzBench: This table is plotted in Figure 3.2 . 41
A.2. Results from Geographical Data . 46
A.3. Results from Electrical Engineering Data 47
A.4. Results from FMRI Data . 47
A.5. Results from Climate Data . 47
A.6. Results from Lukas Data . 48
A.7. Results from Protein Data . 48
A.8. Results from Stars Data . 48

50

	Motivation and Introduction
	Scientific Data and Compression
	Data
	Climate Data
	Geographical/Biological Data
	Protein Corpus
	Electrical Engineering and Robot Data
	Medical Imaging Data
	Astronomical Data

	Compression
	Lossless and lossy compression
	Level of compression
	Lempel-Ziv algorithms

	Experiment: Compression Benchmark with lzBench
	Experiment Design
	lzBench
	Algorithms
	Methods

	Results
	Discussion
	Conclusion

	Decision Support Systems with Machine Learning
	Decisions
	Unsupervised Learning
	Supervised learning
	k-Nearest-Neighbor
	Neural Networks
	Decision Tree
	Example: Compression Algorithms

	Conclusion

	Final Conclusion
	References
	Appendix
	List of Figures
	List of Tables

