
Project Report

Analysis of news for the prevention of
suicides

presented by

Nina Arndt
Studiengang: Software and system development
Matrikelnummer: 6799055

Melanie Budde
Studiengang: Computer science
Matrikelnummer: 6494505

Ariana Sliwa
Studiengang: Human-computer interaction
Matrikelnummer: 6816391

Faculty of Mathematics, Computer Science and Natural Sciences
Department of Computer Science
Research area Scientific Computing

Supervisor: Dr. Julian Kunkel

Hamburg, 2018-03-30

Abstract
This project report describes the analysis of large volumes of news articles for the case
of suicide prevention. In detail the handling of the data, the processing and the text
mining are described. Furthermore, approaches for the implementation of a sentiment
analysis for German language are presented.
The second part of the report describes the procedure to get started with a large amount
of medical data and present approaches of processing it.

Contents
1 Introduction 4

2 Media coverage and the relation to suicide 5

3 Technical Approach to a Suicide Prevention Tool 6
3.1 Design . 6
3.2 Technical approach . 6

3.2.1 Crawler . 6
3.2.2 Preprocessing . 7
3.2.3 Text mining . 7
3.2.4 Implementation and deployment 11
3.2.5 Performance . 13

3.3 Technical challenges . 14

4 Conclusion 15

5 UKE-Data 16
5.1 Introduction . 16
5.2 Data exploration . 16

5.2.1 Preprocessing . 17
5.2.2 Analysis . 17

5.3 Socket implementation . 20
5.3.1 Set-Up . 20
5.3.2 Data-Exchange . 21
5.3.3 Further thoughts . 22

Appendices 25

3

1 Introduction
Shorter runs and the battle for audiences influence the media coverage. If news tends to
be neutral and without judgment, some daily newspapers/yellow press tend to fall out
of the grid and provoke sensitive issues and a style of portraying that seems far from a
journalistic commitment. And the myth of the lack of influence of traditional media in
times of social networks and co is deceptive - 84% of about 70,000 Germans say in the
survey of act [3] that they inform themselves about about current events daily. 42% still
use newspapers and to the same extent the Internet as a source of information.
On the other hand, scientists are concerned with the extent to which society is influenced
by the reception of certain news.
This project report describes in particular the analysis of large amounts of news articles
and the presentation of suicide in them. The aim is to develop a prevention tool that
analyzes online published articles on hazardous content and lets the user download a
summary of selected news articles and their features.
After explaining the relevance of the connection between suicide and media reception,
the authors present the design and technical concept of the application. Subsequently,
technical challenges are described and an outlook for further development is given in the
conclusion.

4

2 Media coverage and the relation to
suicide

According to the WHO [4], around 800,000 people commit suicide each year. In Germany,
there were 10,000 suicides in 2015 [1]. 90% of people who die from suicide suffered from
a psychiatric illness, most commonly from depression [7]. The reception of media is a
proven risk factor for suicidal people. Scherr [12] provides a comprehensive overview
of the current state of research on the relationship between media, depression and suicides.

Werther Effect
Of particular relevance in this context is the so-called "Werther effect". According to
this theory, media reports of suicide can trigger additional suicides that would not have
occurred without this reporting [9].
Etzersdorfer et al. [6] assume a positive correlation between the extent, duration and
prominence of suicide reporting and subsequent imitation acts.

Papageno Effect
In 2010 Niederkrotenthaler et al. [8] found another effect: Articles about depressed people
whose coping with the crisis situations described constructively in a media report, have
a very positive effect on vulnerable people.

Sentiment
Another point to keep in mind is the influence of general media reception. How do reports
of negative events affect depression? Scherr [12] states that this area has been the least
explored so far. However, it can be shown that in connection with depression, a more
intensive use of media can be observed, as depressive persons increasingly consume media
content to operate so-called mood management and to modify their mood positively. In
their meta-analysis, Reinemann and Scherr [10] phrase the question of the influence of
reporting on wars and catastrophes, but also about unattainable ideals of beauty and
wealth. However, this research has not yet developed.

Journalistic guidelines
Because of this well-known influence of the media on people with suicidal thoughts, there
are guidelines for reporting suicide in Germany.[2] However, journalists are advised not
obliged to abide by them. A positive approach to the reporting of suicide was found in
articles from the Süddeutsche Zeitung, which distinguish the danger of imitation and
offer help in the form of the number of German crisis telephone. This procedure with
the exact same text could also be observed with other media, but not all.

5

3 Technical Approach to a Suicide
Prevention Tool

In this chapter, the authors describe the technical concept and the implementation of
the application. Starting with the description of the idea to the technical components
such as text mining, sentiment analysis and general execution of the program.

3.1 Design
Assuming that suicide is reported multiple times in local media, a tool for relevant
persons, e.g. local psychologists, telephone counseling, etc., could provide information
that may be relevant to the treatment of their patients:
How many suicide-related articles appeared on that day? Did the articles offer help for sui-
cidal people? What was the sentimentality of the text - rather positive or rather negative?

The tool has the form of an Excel spreadsheet, which shows the general sentiment
of the reporting of the day and shows with the help of a traffic light system at first glance
whether there is a threat from the media or not. If a suicide was reported on the day,
the articles are listed and the respective sentiment of the article is displayed. A column
indicates whether the article offers help to suicidal people, e.g. the request to seek help.

3.2 Technical approach
In the following section, we explain the technical procedure in detail and focus in
particular on emerging problems and their (possible) solutions.

3.2.1 Crawler
To get the articles to analyze, a crawler1 was run from mid-October 2017 to mid-March
2018 that wins news articles from selected rss feeds. For this, the rss feeds are checked
for new articles at a fixed interval. In this project, it was decided to include the ten most
widely read news sites in Germany and the ten most widely read news sites in Hamburg,
the complete list can be found in the appendix (5.3.3).

1crawly by Max Luebbering, https://github.com/le1nux/crawly.git

6

There were some challenges working with the crawler. For one thing, the server has been
down for a few days, which means that the data is incomplete. However, this hardly
plays a role in the question of this work, so that the results are meaningful despite the
lack of data. On the other hand, paywalls prevented the article texts from being saved
on some of the selected pages. A solution to this problem has not been achieved in the
context of this work, so that for some media, the article texts are incomplete. This
distorts the results of the sentiment analysis, which has to be considered in the evaluation.
Nevertheless, in order to be able to perform the keyword search for all articles, the article
description was included, which is available for all articles.

3.2.2 Preprocessing
Since the crawler saves the complete html text of the respective article page, it must be
cleaned up in order to be able to continue working as a running text. For this purpose, a
filter was written for each medium considered in this project, which finds the entypoint as
the html-tag of the article text. From this point the text is saved for further processing.
Furthermore, html-tags are defined, which will be deleted in the remaining text.
Difficulties occurred because the downloads did not contain all the html text, but only
JSON data. Here the filters can not find an entypoint. The authors chose to adopt the
raw text as a whole, since the programming terms have no impact on sentiment analysis
and keyword search.

1 filters = {
2 " not_impl_filter ": {},
3 " newsfeed .zeit.de": {
4 " standard_filter ": {
5 " entrypoints ": [{"tag": " article "}],
6 " delete ": [
7 {"tag": " script "},
8 {"tag": " style "},
9 {"tag": " figure "},

10 {"tag": " input "},
11 {"tag": "div", " attrs ": [
12 {"attr": " class ", " values ": [" metadata ", "article - heading ",

↪→ "article - footer ", "sharing -menu"]}
13]}
14]
15 }
16 },

Listing 3.1: Filter for www.newsfeed.zeit.de

The crawled articles were stored on the cluster throughout the period under consider-
ation and adjusted there in mid-March. Prior to this point, only individual files were
downloaded and filtered for testing purposes. The filtered files were then stored on local
computers and processed there.

3.2.3 Text mining
Text mining is about the automatic extraction of previously unknown information from
unstructured text sources. The goal is to put information in context and draw conclusions

7

from it. This task is commonplace and manageable for humans, but more difficult to
implement through algorithms and programs. The text documents to be examined are
available in different forms, so that a pre-structuring of the data is required.[13] For this
purpose, various packages and libraries are provided in Python, which are suitable for
processing natural language, e.g. the natural language processing toolkit (nltk).

In this project, it made sense to divide the body text into individual words, e.g. to
perform a keyword search, therefore, the article texts were subdivided into tokens using
the nltk word_tokenize function. Furthermore, before analyzing the text, words that
are important to the grammar but that are irrelevant to the meaning of the text (e.g.,
conjunctions) must be deleted. Again, nltk provides a function that also recognizes
German stopwords.

Keyword search to detect articles that address suicide
To detect the risk of a possible Werther effect, the crawled articles are searched in this
project with a simple keyword search for the german word "Suizid" or synonyms for it.

1 def findKeywordSuicide (text):
2 keywords = ['selbstmord ', 'suizid ', 'leben genommen ', 'sich umgebracht ',

↪→ 'freitod ', 'selbsttoetung ', 'lebensmuede ', 'leben beenden ',
↪→ 'selbstentleibung ', 'selbstvernichtung ']

3 found = 0
4 lowertext = text. lower ()
5 for k in keywords :
6 if k in lowertext :
7 found = 1
8 return found

Listing 3.2: Keyword search

If articles are found that contain at least one of these words, these articles will be
searched for help and support for those affected. In this case, the phone number of the
"Telefon Seelsorge" (crisis telephone) is searched because it can be assumed that help
offers contain this number (see chapter 2).

The problem with this approach is that it does not check what kind of text it is.
Accordingly, a police report on a local suicide is not distinguished from a fictional text,
a literary or film criticism in which a suicide is mentioned.

Sentiment Analysis

Sentiment analyses are based on the principle that text is analyzed on the basis of certain
training data. For example, with a certain probability, the text is more likely to be
positive or rather negative. These training data can be either very general or very specific
to the text to be analyzed.
The authors have found that for news articles in Germany no training data exist. One
possible reason for this might be that journalists are generally required to write their
report neutrally and without judging as much as possible.

8

Nevertheless, the authors develop two different approaches to analyze the sentiment of
the gained data.
The first approach uses a lexicon as training data, in which positive and negative words
have been classified. The second one learns by texts from the Internet. Both approaches
are explained below.

Sentiment Analysis with Dictionary Method

In this approach of sentiment analysis, the text to be classified is decomposed into
individual tokens and matched with a dictionary in which the words are labeled and
given a particular weighting with which they refer to the associated label. In the present
implementation, the German-language dictionary "SentiWS" of the University of Leipzig
[11] is used, which contains 1,650 positive and 1,818 negative words. The weighting of
the words is between -1 (negative) and 1 (positive). In the present implementation, after
being tokenized and cleaned up by stopwords, the texts to be classified are matched with
the positive and negative dictionaries, and the weighting of the found words is added to
or subtracted from the sentiment value. Finally, the sentiment value is being normalized
to the text length.

1 def sentiment_extraction (elem):
2 text = elem [5]
3 sentiment = 0
4 tokens = getFilteredTokens (text)
5 for t in tokens :
6 for elem in negative_words :
7 if t in elem:
8 sentiment += float (elem [1])
9 for elem2 in positive_words :

10 if t in elem2 :
11 sentiment += float (elem2 [1])
12 if (len(tokens) >0):
13 sentiment = normalize ((sentiment /len(tokens)) *100)
14 return sentiment

Listing 3.3: Sentiment analysis with dictionary

Sentiment Analysis with Naive Bayes Classifier

The Bayes Classifier is a classifier based on a mathematical theorem of probability theory.
Different classes are defined for the assignment, for example different subject fields or
attributes like "positive" and "negative". A function calculates the probabilities of an
object’s properties to belong to a particular class. When classifying the entire object, the
probability of the common occurrence of certain properties is included in the calculation.
In an example with three possible classes arranged in a triangle for a visual representation,
the classifier would start near the class that has the highest frequency. Then, for each
property of the object to be classified, a vector is drawn whose direction depends on
the class to which this property points. The length of the vector is determined by the
weighting of the probability of this assignment. The result is the class closest to the end
of the classification. [5]

9

In the present implementation of the Bayes Classifier, a sentiment analysis of German-
language news articles is performed. As training data serve different texts on happy or
sad topics, which are classified as "positive" or "negative". The selection of the training
data has been made according to subjective feelings and does not follow any defined
criteria.

1 def classification (elem):
2 neg_texts = getWordList (neg_files , " negative ")
3 pos_texts = getWordList (pos_files , " positive ")
4 train_set = neg_texts + pos_texts
5 classifier = NaiveBayesClassifier . train (train_set)
6
7 if isinstance (elem [5] , str):
8 words = getDictionary (elem [5])
9 sent_value = 0

10 result = classifier . classify (words)
11 if (result == " positive "):
12 sent_value = 1
13 return sent_value * 100

Listing 3.4: Sentiment analysis with Naive Bayes Classifier

For the current state of the project, the training texts are each 10 texts of Wikipedia
entries which occur to the authors as positive or negative perceived topics. For English-
speaking countries, there are databases with training data on different types of text,
but this is unfortunately not yet available for German-language texts, which makes the
generation of training data more complex. Presumably, better prepared training data
which are classified according to comprehensible criteria, would significantly improve the
results.

Topic classification with Naive Bayes Classifier

Due to the difficulty of dividing news articles that claim to be neutral into "positive" and
"negative" and the fact that the influence of depressive people due to the sentiment of a
text is controversial, the idea came up while working on this project, that any other text
classification parameters might be more useful.

With the Bayes Classifier it is possible to determine the topic of an article using a
training dataset. As part of this project, the three topics "war", "diseases" and "sport"
were trained with five articles each. A larger scope of topics and training data could
not be implemented due to time constraints, but would be mandatory for a meaningful
evaluation. Accordingly, the present implementation can only be seen as an idea for
possible further developments. Furthermore, it remains to be examined whether a
classification of the topics from a therapeutic point of view would be useful and could
be used in the context of a therapy. A starting point could be that therapists have the
opportunity to specifically target patients who are triggered by certain topics, if they are
discussed more often than average.

10

3.2.4 Implementation and deployment
To visualize the data, two different approaches were used in this project. First, an Excel
sheet can be created per day. For this the keyword search and both approaches of the
sentiment analysis are carried out in all articles of the csv file. The average sentiment
value of the day is added to the Excel sheet, as well as the articles are listed, which
contain keywords that indicate a suicide. Furthermore, a field red, yellow or green is
marked and should represent as a kind of warning system. If a suicide was mentioned
the field is filled in red (see : 3.1). In the case that no suicide was mentioned and the
sentiment value is positive the field is filled in green (3.2). This type of visualization
is intended as an offer for therapists working with suicidal and depressive people. The
analysis could be done on a daily basis at the cluster of DKRZ and send therapists the
Excel sheet by e-mail, so that the following day they can talk to their clients about
possible suicides or particularly negative-tuned articles.

Figure 3.1: Excel sheet for 25th November 2017

Figure 3.2: Excel sheet for 12th December 2017

Second, some of the calculated values were visualized in diagrams. For example, the
two sentiment values can be displayed as a bar chart per medium. Furthermore, the
average sentiment value using the Dictionary method per medium was displayed as a
line chart over the week. As can be seen in the following graphics 3.3, 3.4, 3.5, it is
noticeable that the values hardly differ between the different media and that there are
no major fluctuations over time. This is probably partly due to the fact that the articles
are written relatively neutrally, as it corresponds to the journalistic standard. Partly
better training data would probably also contribute to a better result, that is more
differentiated.

11

Figure 3.3: Mean sentiment value for 19th to 25th of February 2018

Figure 3.4: Mean sentiment value for 13th to 19th of November 2017

12

Figure 3.5: Mean sentiment value for 20th to 26th of November 2017

3.2.5 Performance
The following section lists some of the runtimes of the code created in the project to
assess its performance:

• One csv file per day (at 110 days) with all articles of the day was filtered on the
cluster. Here, 15 cores were used. Running time: 45 minutes.

• The function create_Excel was executed on a local computer with intel core i7 and
16 GB of RAM. Running time per csv file (about 25 MB): approx. 15 minutes.

• The average sentiment values with dictionary per day over one week were also
calculated on a local computer (intel core i7, 16 GB of RAM) and plotted in a line
chart. Running time for seven csv files: about 45 minutes.

13

3.3 Technical challenges
The work on this project posed some challenges to the authors: Two out of three people
had previously not worked with the programming language Python and had to get used
to it. Furthermore, the handling of the cluster had to be learned. After a substantive
introduction to the topics of text mining and sentiment analysis, the problem arose
that many of the libraries and packages available in this area are designed for the
English-speaking world, so for English texts there are provided Databases with training
data that are not available for German texts. In the group, the impression arose that
basically there are few examples of a sentiment analysis for the German-speaking world.
As a result, it took a little longer to get into this topic, but it was also possible to gain a
good insight and basic understanding of this area of work.

When working with the crawler, this project benefited greatly from the fact that it
was possible to draw on the preparatory work of another student. So crawlers and filters
had to be modified and adapted to the required newsfeeds for this project. Nevertheless,
some problems arose in this area: For example, the texts were not transferred correctly
on some pages, as some media apparently prevented this by a paywall. Furthermore, the
filters had to be adjusted individually for each medium several times, which was time
consuming.

14

4 Conclusion
As a conclusion from the project can be found that the keyword search works well and
finds all articles with the specified keywords. However, there are often articles that do
not report a real suicide, but use the word for example as a metaphor. In order to achieve
more differentiated results, a possibility would have to be developed to further analyze
the texts found and assign them more precisely to a genre. One possible approach for
this is, for example, the topic classification with the Naive Bayes Classifier, which has
been implemented in the present work.
Sentiment analysis using the dictionary method works well. However, the classification
of news articles into positively and negatively tuned texts makes only limited sense in
this case. This also explains the barely changing values.
The sentiment analysis with the Naive Bayes Classifier has not a high performance and
gives only little satisfactory results. However, this is probably largely due to the lack
of quality of the training data. The authors came to the conclusion that differentiated
selected data would lead to significantly better results and that it would be worthwhile
to continue working in this direction.
Furthermore, it could be exciting to analyze the individual articles in more detail. For
example, it might be enlightening to have the most common words printed in articles.
This could be a clue to identifying which words most often lead to a positive or negative
sentiment value. It would also be interesting to use an advanced Bayes Classifier for
topic classification to identify the most important topics of the day.
As mentioned in Chapter 2, the state of research on the impact of media content on
people with depression is still relatively unexplored. Future research, based on the
sentiment analysis related to the topics of the reports, could address a link between these
and other statistics in the field of suicide and depression.

15

5 UKE-Data

5.1 Introduction
In the beginning of this project, one of the main approaches was to find correlations be-
tween suicides and news articles about this topic. Therefore the Psychology-Department
of UKE wanted to reveal a data-set with suicide information from the pathology. That
did not work out because the contact was not available anymore, so we got another set
of data. The following chapter is an additional excurse to the main topic, containing
data exploration from a different data-set and the implementation of a socket connection
for data exchange.

5.2 Data exploration
The Department of Neurophysiology at UKE is working on an experiment to gain knowl-
edge about the correlations between interaction, empathy and social health. Therefore
they developed a computer game where two subjects have to coordinate one ball to
collect coins and avoid obstacles together. They provided two matlab files containing
meta information about the attended subjects and parameter-value pairs for each trial
of the game. In this section Python was used and especially the libraries:

• numpy

• scipy.io

• matplotlib

to take a closer look at the data and understanding the game which was not seen or
played by the authors yet. All that was known, is that there are obstacles an coins which
have to be collected by two players controlling one ball. Further knowledge about the
game was gained by the following two chapters.

16

5.2.1 Preprocessing
First of all scipy.io is used to store the mat file into a dictionary with variable names as
keys, and loaded matrices as values, so the data is accessible via key or index.

1 game = scipy.io. loadmat ('Data_BallGame_6pairs .mat ')
2 player = scipy.io. loadmat ('Data/ meta_info_6pairs .mat ')

This also allows to get meta-information about the data, for instance the dimension of
the matrices or data type.
game = (6, 3)
player = (2, 2)

For further examination,

• the properties of game were stored in a file → properties.py
It is easier to read and extract data from game if the indices from the dict are
connected to their value-keys.

• the subject properties of player were stored in a class → subject.py
It creates an instance of subject which has access to it’s properties via a function
and returns the information needed. This way it is possible to easily extract data
from the set.

This is the foundation for a more complex analysis.

5.2.2 Analysis
Within the structure that was created for analysis, it is possible to ask more complex
questions in extract.py. For example: How is the age-distribution among the subjects in
player?

1 def age_distribution (card_sub , teen , twen , old):
2 x = teen
3 y = twen
4 z = old
5 card_game = 0
6 while card_game < len(data):
7 age = sb. Subject (card_sub , card_game).age ()
8 if age <= 20:
9 x = x + 1
10 elif 21 <= age <= 30:
11 y = y + 1
12 else:
13 z = z + 1

17

14 card_game = card_game + 1
15 card_sub = card_sub + 1
16 if card_sub < 2:
17 age_distribution (card_sub , x, y, z)
18 else:
19 print("%d are younger that 20" % x)
20 print("%d are between 20 and 30" % y)
21 print("%d is older than 30 \n" % z)

This example of a simple query can be exposed to various complexity, like:
How is the age-distribution among the subjects according to their age in player?

Figure 5.1: Metainfo about subjects

To get a better understanding of how the game actually works, the x and y coordinates
of the ball and location of the obstacles and coins for each frame in one trial were plotted.
Matplotlip was used not only for plotting, but for a little animation of one game in
anime.py:

18

Figure 5.2: Animation of game-play

Every time the ball hits an obstacle it turns red and whenever it is collecting a coin, it
turns green. The following knowledge was gained by the animation:

• There are 9 obstacles and

• 4 coins to collect.

• These items are placed randomly in every trial

• The obstacles do not have a physical body which stops the ball, it only slows down.

19

5.3 Socket implementation
The ball-game from previous section is implemented in LabView, a system-design platform
and development environment for visual programming. In future for an upcoming
bachelor-thesis there will be an artificial intelligence implemented, that is capable to play
the game against one subject and behave in certain ways, depending on the personality
coefficients and correlations gained from subject’s meta-data. Python will be used for
the implementation of the AI. In order to exchange and typecast the data-type ’cluster’
from Labview to Python, a socket connection is needed that is capable of taking JSON
via TCP to process the data for purposes of communication in Python.

5.3.1 Set-Up
To combine Linux advantages in software-development, like paket-manager and development-
tools, with Windows based LabView, a second environment and connection between them
is needed. VirtualBox was used to install Windows 10 on a virtual machine, embedded
in the Linux host-system. The installation of LabView and all the dependencies needed
in the project like matlab and the used packages and engines, took nearly three days
and the computer had to be in the subnet of the Department for Neurophysiology at
UKE. For future collaboration on the project, the network will be configured, so it can
be possible to access the data via UHH and VPN. To establish a connection between the
host and the virtual machine, a host-only adapter was configured.

Figure 5.3: Interface in virtual box

• NAT allows the vm to connect to the host’s network but also establishes a
router/firewall which protects the vm from other devices, so this is not suitable for
purposes of a client-server model.

• Bridge fits for applications which have to be accessible within a network for many
clients, which is not the case here.

20

• Host-only creates on the vm and hostsystem a virtual network-interface which
manages the communication via IP and suites our needs for data-exange.

These steps have been necessary to connect both systems in general. This is the setup to
implement a proper socket connection.

5.3.2 Data-Exchange
The communication is realized as client-server model where the Python application serves
as client and LabView as the server. Due to easy typecasting the format of data that
will be exchanged is JSON and will be transmitted using TCP sockets.
This is the code for the python-socket:

1 import socket
2 import json
3
4 TCP_IP = '172.18.101.69 '
5 TCP_PORT = 1337
6 BUFFER_SIZE = 1
7 MESSAGE = "Hello , World!"
8 s = socket.socket(socket.AF_INET , socket. SOCK_STREAM)
9 s. connect ((TCP_IP , TCP_PORT))
10
11 fr_rec = False
12 byteA = bytearray ()
13 while not fr_rec:
14 data = s.recv(BUFFER_SIZE)
15 if data [0] == 10:
16 fr_rec = True
17 else:
18 byteA.append(data [0])
19
20 a = json.loads(byteA)
21 s.send(MESSAGE)
22 s.close ()

.
Normally a buffer-size is set and if the received data is smaller than the buffer-size it
should work as well, but there are time-outs. The workaround is to set the buffer-size
to 1, set a stop flag at the end of each frame and loop over each input bit until the
If the stop-flag (data[0]==10) at the end of each package arrives. It is important to
have buffer-size of 1 because otherwise the stop-flag could not be recognized. If the
buffer-size is 15, it means that 15 chars will be transmitted, but our break condition only
considers the first bits for checking, this could cause timeouts as well. At this state a
fluid connection between the two systems is established.

21

5.3.3 Further thoughts
It is not clear yet, if this simple exchange is enough. Right now the socket connection is
able to receive and send data. For improved interaction, another loop could be wrapped
around the exchange (line 11-21), switching between sending and receiving data. That
could be one way to analyze incoming values and calculate the AI’s response. The reason
this is not done, is because it is not exactly clear yet, how the AI will communicate and
if it has to be re implemented with Burkley-Sockets like ZeroMq for being able to have
several Ports to address different services of the application.

22

Bibliography
[1] Statistisches Bundesamt. Todesursachen. URL https://www.destatis.

de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/
Todesursachen.html. Accessed: 14.03.2018.

[2] Leitlinien zur Suizidberichterstattung. URL http://frans-hilft.de/presse.

[3] ACTA - Berichtsband, Nov 2016. URL www.acta-online.de. Accessed: 14.03.2018.

[4] WHO. Suicide Fact sheet, 2018. URL http://www.who.int/mediacentre/
factsheets/fs398/en/. Accessed: 14.03.2018.

[5] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with
Python: analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",
2009.

[6] Elmar Etzersdorfer and Martin Voracek and Gernot Sonneck. A Dose-Response
Relationship Between Imitational Suicides and Newspaper Distribution, volume 8.
Routledge, 2004. doi: 10.1080/13811110490270985. URL https://doi.org/10.
1080/13811110490270985. PMID: 16006399.

[7] José Manoel Bertolote and Alexandra Fleischmann and Diego De Leo and Danuta
Wasserman. Psychiatric Diagnoses and Suicide: Revisiting the Evidence. Crisis,
25(4):147–155, 2004. doi: 10.1027/0227-5910.25.4.147. URL https://doi.org/10.
1027/0227-5910.25.4.147. PMID: 15580849.

[8] Thomas Niederkrotenthaler, Martin Voracek, Arno Herberth, Benedikt Till, Markus
Strauss, Elmar Etzersdorfer, Brigitte Eisenwort, and Gernot Sonneck. Role of media
reports in completed and prevented suicide: Werther v. Papageno effects. 197(03):
234–243, sep 2010. doi: 10.1192/bjp.bp.109.074633. URL https://doi.org/10.
1192/bjp.bp.109.074633.

[9] David P. Phillips. The Influence of Suggestion on Suicide: Substantive and Theoret-
ical Implications of the Werther Effect. 39:340, 06 1974.

[10] Carsten Reinemann and Sebastian Scherr. Der Werther-Defekt Plädoyer für einen
neuen Blick auf den Zusammenhang von suizidalem Verhalten und Medien. Pub-
lizistik, 56(1):89–94, 2011. doi: 10.1007/s11616-010-0109-y.

[11] R. Remus, U. Quasthoff, and G. Heyer. Sentiws – a publicly available german-
language resource for sentiment analysis. In Proceedings of the 7th International
Language Resources and Evaluation (LREC’10), 2010.

23

https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Todesursachen.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Todesursachen.html
https://www.destatis.de/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/Todesursachen/Todesursachen.html
http://frans-hilft.de/presse
www.acta-online.de
http://www.who.int/mediacentre/factsheets/fs398/en/
http://www.who.int/mediacentre/factsheets/fs398/en/
https://doi.org/10.1080/13811110490270985
https://doi.org/10.1080/13811110490270985
https://doi.org/10.1027/0227-5910.25.4.147
https://doi.org/10.1027/0227-5910.25.4.147
https://doi.org/10.1192/bjp.bp.109.074633
https://doi.org/10.1192/bjp.bp.109.074633

[12] Sebastian Scherr. Depression – Medien – Suizid - Zur empirischen Relevanz von
Depressionen und Medien für die Suizidalität. Springer-Verlag, Berlin Heidelberg
New York, 2015. ISBN 978-3-658-11162-5.

[13] Sholom M Weiss, Nitin Indurkhya, and Tong Zhang. Fundamentals of predictive
text mining. Springer, 2015.

24

Appendices

25

Work distribution
within the group

Crawler & filter
code: Max Lübbering
adjustments: Ariana Sliwa, Melanie Budde, Nina Arndt
report: Ariana Sliwa, Nina Arndt

Preprocessing
code: Ariana Sliwa, Nina Arndt
report: Ariana Sliwa, Nina Arndt

Textmining
code: Ariana Sliwa, Nina Arndt
report: Ariana Sliwa, Nina Arndt

Impl. and deployment
code: Ariana Sliwa, Nina Arndt
report: Ariana Sliwa, Nina Arndt

UKE-Data
code: Melanie Budde
report: Melanie Budde

26

Used software, languages and libraries:

Languages
Python

Libraries
beautifulSoup
nltk
pandas
matplotlib
scipy.io
socket
json

Software
code: Pycharm, JupyterLab, VirtualBox
report: LATEX, Overleaf

27

Media List used to install the crawler

National Media:
10 most visited news sites BRD Sep 2017:
(Source: https://de.statista.com/statistik/daten/studie/165258/umfrage/reichweite-der-
meistbesuchten-nachrichtenwebsites/)

http://www.focus.de/
http://rss.focus.de/fol/XML/rss_folnews.xml

http://www.bild.de
http://www.bild.de/rssfeeds/rss3-20745882,feed=alles.bild.html

http://www.spiegel.de/
http://www.spiegel.de/schlagzeilen/index.rss

http://www.welt.de/
https://www.welt.de/feeds/latest.rss

http://www.zeit.de/
http://newsfeed.zeit.de/all

http://www.sueddeutsche.de/
http://www.sueddeutsche.de/updates-rss

http://www.n-tv.de/
http://www.n-tv.de/rss

http://www.stern.de/
https://www.stern.de/feed/standard/alle-nachrichten/

http://www.faz.net/aktuell/
http://www.faz.net/rss/aktuell/

http://www.rp-online.de/
http://www.rp-online.de/feed.rss

Regional Media:
(Source: https://www.hk24.de/blob/hhihk24/servicemarken/presse/downloads/1141414/e144b334830de884f6f2219daec38c2a/presseverzeichnis-
2016_2017-data.pdf -> Some media no longer exist, have been summarized as ePaper
without Rss or do not offer a Rss feed at all)

https://www.abendblatt.de/
https://www.abendblatt.de/hamburg/?service=Rss

28

http://www.mopo.de/
https://www.mopo.de/feed/index.rss

http://www.zeit.de/hamburg/index
http://www.bild.de/regional/hamburg/hamburg-regional/home-16344102.bild.html

Anzeigen- und Wochenblätter

www.elbe-wochenblatt.de
http://www.elbe-wochenblatt.de/feed/action/mode/realm/ID/0/

www.nie-wo.de
https://www.niendorfer-wochenblatt.de/feed/

www.hamburger-wochenblatt.de
http://www.hamburger-wochenblatt.de/feed/action/mode/realm/ID/0/

www.ndr.de
http://www.ndr.de/homepage985-rss2.xml

www.radiohamburg.de
http://www.radiohamburg.de/rss/feed/meldungen

http://rtlnord.de/hamburg-schleswig-holstein.html
http://rtlnord.de/share/rss.xml

www.antenne.com
https://www.antenne.com/rss.xml

www.hamburg1.de
http://www.hamburg1.de/feed.rss

www.hamburgschnackt.de
https://hamburgschnackt.de/feed/

www.hamburg.de
http://www.hamburg.de/,rss

www.hamburg-magazin.de
https://www.hamburg-magazin.de/rssfeed

www.hinzundkunzt.de
https://www.hinzundkunzt.de/feed/

29

http://www.taz-hamburg.de/
http://www.taz-hamburg.de/!p4608;rss/

http://www.tagesschau.de
http://www.tagesschau.de/xml/rss2/

Polizeimeldungen
http://www.presseportal.de/blaulicht/l/hamburg
http://www.presseportal.de/rss/polizei/laender/5.rss2

	Introduction
	Media coverage and the relation to suicide
	Technical Approach to a Suicide Prevention Tool
	Design
	Technical approach
	Crawler
	Preprocessing
	Text mining
	Implementation and deployment
	Performance

	Technical challenges

	Conclusion
	UKE-Data
	Introduction
	Data exploration
	Preprocessing
	Analysis

	Socket implementation
	Set-Up
	Data-Exchange
	Further thoughts

	Appendices

