Universitat Hamburg

Faculty: Mathematik, Informatik und Naturwissenschaften
Department: Informatik

Group: Wissenschaftliches Rechnen

Ophidia Big Data Analytics Framework:
Performance Benchmark

Report

Project 'Big Data” WS 2017/18

Dominik Scherer, Nele Lips

Matr.Nr. 6540167, 6824157

Supervisors: Dr. Julian Kunkel, Jakob Luttgau

Hamburg, 31.03.2018

Ophidia Big Data Analytics Framework: Performance Benchmark

Abstract

The aim of this report is to give the reader an idea of what to expect in terms
of performance of the Ophidia platform. We will explain our approach, give a
brief overview of the Ophidia framework and present the results of the benchmark
in tabular form as well as in diagrams. Overall, we executed 5 different types of
queries in various conditions including compute, I/O and network intensive sce-
narious with varying amounts of data and an increasing number of CPU cores,
resulting in a total of 18 different test cases.

Contents

1 Introduction 2
2 Project Plan and Execution 2
3 Ophidia Overview 4
4 Benchmark Outline 4
5 Results 7
6 Analysis 20
7 Conclusion 21
Bibliography 22
Appendices 23
List of Figures 23
List of Tables 23

Dominik Scherer, Nele Lips

1 Introduction

Today’s scientific research produces immensely large amounts of data which cannot
be adequately processed via traditional tools. Often such tools will not scale well
for very large sets (tera- to petabyte scale) of multidimensional data [1]. Ophidia
aims to tackle these problems by providing a framework for big data access, analysis
and processing with a hierarchical storage model and parallel implementations of
primitives and operators for a variety of purposes such as data reduction, subsetting
and statistical analysis. Ophidia aims to process data locally and thus limits
internode connection as much as possible. The framework can be used in a variety
of scientific scenarious, including earth sciences, engineering, astrophysics and life
sciences [1].

Our project entailed the evaluation of the performance of the Ophidia framework
across different tasks. The goal was to investigate how well Ophidia works in
terms of speed and scalability. We modelled a series of test queries which we
then executed on the Ophidia cluster of the CMCC (Euro-Mediterranean Center
on Climate Change) on sets of randomly generated data. We became acquainted
with the Ophidia system and how it works over the past few months.

2 Project Plan and Execution

Our initial project plan, which we could only partially realize as outlined, was as
follows:

The first step of our project was to become familiar with the way Ophidia and its
storage model works. We also read up on the different operators Ophidia offers.
As a next step we wanted to install the system with all of its components and
learn how to use it. After that we planned to design different benchmarks to test
Ophidia thoroughly. We wanted to use different sizes of datacubes ranging from a
few gigabyte to a few hundered gigabyte to see how well Ophidia scales. To test
how well the parallelism of the framework is implemented we also planned to use
different amounts of cores varying from one core to about 64.

Then we wanted to execute our benchmarks and display the results in graphs
to illustrate the different execution times for the different cube sizes and core
numbers. In the final stages of our project we then wanted to analyze the results
of our benchmarks and draw conclusions about the performance of Ophidia. Our
overall aim was to find out, given the system and hardware used, whether Ophidia
is a fast and efficient solution for the problems it was designed to handle. We
also thought we might want to find out whether Ophidia was as good as or better
than other comparable systems and if it could potentially be used at the DKRZ
(German Climate Computing Center).

Over the course of the project we encountered a few problems which forced us
to adjust some aspects of our intial project plan, as described in the following
paragraph.

As planned, after we familiarised ourselves with the Ophidia framework and its

Ophidia Big Data Analytics Framework: Performance Benchmark

inner workings, we tried to install the complete system but ultimately failed to
achieve this. Our first mistake was to try to install Ophidia on Ubuntu 16 but
that didn’t work since this Ubuntu version was not supported, so we encountered
many problems with compatibility and program versions during installation. The
big challenge with installing Ophidia was for one that there are many preliminaries
required (such as MySQL, Munge, Slurm, etc.) of which some had their own
problems during installation, and also that there are several different components
to the Ophidia system itself that need to be installed and properly configured
such as the Ophidia I/O Server, the Ophidia Server, the Ophidia Terminal and
the Ophidia Analytics Framework. So after our first failed attempt, we set up
Ubuntu 14 and redid the whole installation. This time most things went much more
smoothly. We still encountered some problems, mostly in regard to configuration
files, but we were able to solve all problems except for one. We always got the
the following error message in the Ophidia Terminal when submitting a request:
'Internal server error: no response has been received from analytics framework’.
We could not resolve this issue on our end even with help from the developers
and deemed it to time consuming to track the problem any further at that time,
so we resorted to using a virtual machine with a functional Ophidia system to
learn how to use the program. Since a virtual machine is of course not suitable
for benchmarking, the developers provided accounts for us for using the Ophidia
cluster at the CMCC to execute our test series on. To access the Ophidia system
installed on the cluster we only had to have the Ophidia Terminal installed on our
local machines. The Ophidia Terminal alone is quite easy to install in comparison
to the whole system so that wasn’t a problem. However, the accounts were limited
to using a maximum of 40 cores and there also seemed to be limits to computation
time and datacube sizes as we encountered problems when trying to execute queries
that took more than one hour to compute or produce datacubes that were larger
than 50GB.

Now that we finally had access to a functional instance of the Ophidia framework
on a system suitable for benchmarking we then created a series of tests queries
which we executed on the cluster. The first iteration of our benchmark was not
very accurate however. We mostly had to rely on our own understanding of Ophidia
which of course was not perfect and the developers were too busy at that time to
give feedback on a regular basis, thus leading to results that were not accurately
representing the performance of the Ophidia framework. Eventually the developers
had the time to assist us in revising some aspects of the benchmark and we redid
all of the tests. This time we obtained better results reflecting the performance
of the system much more accurately. As a side note, we hope it has become clear
that the suggestions made by the developers of Ophidia did have an impact on
the design and consequently the results of the benchmark which should be kept in
mind by the reader.

Dominik Scherer, Nele Lips

3 Ophidia Overview

We now want to give a brief introduction into the functionality and the architecture
of the Ophidia framework. The technical information in the following paragraphs
is based on the paper Ophidia: toward big data analytics for eScience by S. Fiore
et al. [1].

In Ophidia the multidimensional data is stored in datacubes which are made up
of dimensions and facts. In a climate science context, explicit dimensions could be
latitude and longitude. The facts are measure values which are stored in arrays
and could have time as implicit dimension in this example. Each of these arrays
is identified by a key which is the combination of the explicit dimensions. The
implicit dimension gives the positions of the measure values in the array. The
datacubes are stored in containers which can hold several, one or no datacubes at
all. All containers are part of a session. One can have multiple separate sessions
with different data to separate experiments. Sessions, containers, and datacubes
are all part of the virtual file system of Ophidia which is different from the real
file system. The real file system is external to Ophidia and is used to import and
export files from or to the Ophidia platform.

There are different kinds of commands in the Ophidia framework, operators and
primitives. The operators are divided into different catagories. Operators for data
analysis work mostly with datacubes. They take one or more datacubes as input
and output another datacube with the results (aggregations, duplication, merging,
reductions, subsetting, etc.). Further operators include commands for data im-
port and export (NetCDF, FITS, HTML), metadata (size, dimensions, etc.), the
virtual file system (creation/deletion of containers, folders and so on), workflow
management, administration and some other miscellaneous operators (commands
dealing with the real file system for example).

The Ophidia primitives are array-based. These primitves can be divided into the
following categories: operations on the core array (concatenations, permutations,
sorting, shifting, etc.), primitives for selection (extracting subsets, masking), arith-
metic operations, statistical operations, transformations, numerical analysis and
mining.

Ophidia manages data hierarchically. On the highest level we have multiple I/O
nodes (multi-host). Each host has multiple DBMS instances. Then there are mul-
tiple instances of physical databases on the same DBMS and multiple fragments
(smaller tables) on the same physical database. This storage model allows the
Ophidia framework to exploit data locality and limit internode-communication
which allows high scalability. Chosing the right fragment distribution for specific
purposes is a key aspect of working with the Ophidia system.

4 Benchmark Outline

Our benchmark is divided into two categories, ‘compute intensive’ and I/O and
network intensive’. The former consists of a series of test in which primitives were

4

Ophidia Big Data Analytics Framework: Performance Benchmark

used that apply computationally expensive formulas, the latter contains operators
that challenge the network and require more I/O but are not particularly taxing
on the CPU. We had to combine I/O and network into one category since they
are not easily separable due to the architecture of the Ophidia framework. The
tests of each category are further divided into two sets: constant workload with an
increasing number of cores, also known as strong scaling, and a constant number of
cores with increasing workload. In the first set, we applied the formulas f(z) = e*,
f(z) = (2% — 2?)/x and f(x) = Valsin@)/cos@) on the elements of datacubes of
sizes 10 Gigabyte and 50 Gigabyte for the ‘compute intensive’ test series, and ex-
ported and imported datacubes of sizes 10 Gigabyte, 20 Gigabyte and 50 Gigabyte
from Ophidia to NetCDF files and back again for the 'I/O and network intensive’
test series. The second set (increasing workload, fixed number of cores) consists of
the same operators as the first. We chose datacubes of sizes 1, 2, 5, 10, 20 and 50
Gigabytes for both categories. In the 'compute intensive’ tests cores were fixed to
32 and 16, in the 'I/O and network intensive’ tests we used 32, 16 and 4 cores.

We are now going to present and explain every command that was used in the
benchmark:

oph__apply cube=<PID>;query=oph_math(’OPH_DOUBLE’,
‘OPH_DOUBLE’, measure, 'OPH_MATH EXP’);ncores=<cores>

The command oph_ apply takes the datacube with the address <PID> and ex-
ecutes the query on it, generating an output datacube in the process. The query in
this case is the command oph__math. 1t applies the e-function (OPH_MATH _EXP)
on the measurement arrays of type double and outputs them again as double value.
The ncores parameter specifies the number of cores used for execution.

oph__apply cube=<PID>;query=oph_predicate(’OPH_DOUBLE",
‘'OPH_DOUBLE’, measure, '1’, ">0°, ’(z"3-x"2)/x’, "0’);ncores=<cores>

In this case, the query consist of the oph predicate command. Again, it takes
in and outputs double values on the measurement arrays. The fourth argument
can be any expression. If it satisfies the expression in the fifth argument, the sixth
argument will be executed, otherwise the last argument will be executed. In this
specific command the expression '1’ naturally always satifies >0, so the formula
(23 — 2?)/x is applied every time and the last argument is never executed. There
is currently no other way in Ophidia to apply a formula directly (without nesting
commands) to each element of the datacube arrays.

Dominik Scherer, Nele Lips

oph__apply cube=<PID>;query=oph__predicate(’OPH_DOUBLE’,
‘OPH_DOUBLE’, measure, '1°, ">0°, ’sqrt(x"(sin(x"3)/cos(x"2)))’, "0°);

ncores=<cores>

This query is the same as in the aforementioned command, only differing in the
formula that is being applied. In this case, the formula is vz (sin(@®)/cos(@?))

oph__exportnc? cube=<PID>;output_path=<path>;export_metadata=no;
ncores=<cores>

The command oph__exportnc?2 exports the datacube with the address <PID> to
the path specified in the output_path parameter as a single NetCDF file. Metadata
is not exported in this specific case (export metadata=no).

oph__itmportnc measure=measure;src_path=<path>;import_metadata=no;
ncores=<cores>

The command oph_importnc imports the specified measurement of a NetCDF
file with the location <path> into Ophidia as a datacube. Metadata is not im-
ported in this specific case (import_metadata=no).

The data with which we worked with was randomly generated. Conveniently,
Ophidia already offers a command to generate datacubes filled with random val-
ues called oph_randcube. Every datacube that was used in this benchmark was
created with the following command with only the <size> parameter changed as
needed:

oph__randcube container=benchmark;nhost=2;ndbms=1,ndb=1;nfrag=64;
ntuple=1000;measure=measure,measure__type=double;exp ndim=2;
dim=lat/lon[time;concept_level=c|c|d;dim__size=128/1000/<size>;
compressed=no;host__partition=test__3;filesystem=local;
toserver=ophidiaio__memory

The parameter <size> corresponds roughly to the size of the datacube produced in
MB. For example, if a datacube of size 1GB=1000MB was used in the benchmark,
the datacube was created with the above command with <size>=1000, a 10GB
datacube with <size>=10000, 50GB with <size>=50000 and so on. The exact
size of each datacube can be obtained by using the command oph_ cubesize which
is provided as well for every test. The specific oph randcube command shown
above creates a random datacube with 2 hosts, 1 DBMS per host, 1 database per
host, 64 fragments per database and 1000 tuples per fragment. Each tuple then

Ophidia Big Data Analytics Framework: Performance Benchmark

contains <size> elements of type double. We just called these measurements 'mea-
sure’ for our tests. The dimensions are ’lat’, lon’” and 'time’ and the datacubes are
not compressed. The last arguments of the command specifiy the host partition,
filesystem and the ioserver, for which we used the natively supported inmemory
server that works in the RAM.

The infrastructure of the Ophidia cluster on which the benchmark was executed
consists of 5 IBM x3650 BD dual-processor nodes with Intel Xeon E5-2660v2 CPUs
(10 cores @ 2.2GHz), 256GB RAM and 12TB of raw disk space each, for a total
of 100 cores and 1280GB of memory. As described above, two of these nodes
where used in our test series (nhost=2). The nodes are interconnected through a
dedicated high-speed 10-Gigabit network. Input and output files are stored on a
GlusterF'S shared file system installed over the node hard drives which uses the
same communication network.

All time measurements seen in the results of the benchmark were copied as dis-
played in the Ophidia Terminal 1.2.0 after each execution of a command.

5 Results
Test Series 1: strong scaling with compute intensive operators
Test 1.1:

Datacube size:

10GB (OPH__CUBESIZE=9773.438477 MB)

Command executed:
oph__apply cube=<PID>;query=oph_math(’'OPH_DOUBLE’,
'OPH_DOUBLE’, measure, 'OPH_MATH FEXP’)ncores=<cores>

Test 1.2:

Datacube size:

10GB (OPH__CUBESIZE=9773.438477 MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,

measure, '1°, ">0°, '(x°3-x"2)/x’, "0°);ncores=<cores>

Dominik Scherer, Nele Lips

Test 1.3:

Datacube size:

10GB (OPH__CUBESIZE=9773.438477 MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,

measure, '1°, ">0°, ‘sqrt(x”(sin(x"3)/cos(x"2)))’, 0’);ncores=<cores>

Table 1: Test 1.1, 10GB, e*

Test 1.4:

Datacube size:

number of cores | time in seconds number of cores | time in seconds
1 49.11 1 210.27
2 25.75 2 107.77
4 14.02 4 56.59
8 7.60 8 31.05
16 4.99 16 16.46
32 3.95 32 10.07

Table 2: Test 1.2, 10GB, (2 — %) /x

number of cores | time in seconds
1 510.71
2 258.25
4 133.71
8 70.08
16 38.16
32 20.53

Table 3: Test 1.3, 10GB, V/xsin(a?)/cos(z?)

50GB (OPH__CUBESIZE=48835.938477 MB)

Command executed:
oph__apply cube=<PID>;query=oph_math(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, 'OPH_MATH _EXP’);ncores=<cores>

Ophidia Big Data Analytics Framework: Performance Benchmark

Compute Intensive, Strong Scaling, Datacube Size 10GB
500 ® e
® (x'3-x*2)/x

sqrt(x"(sin(x*3)
100 /cos(x*2)))

Time in seconds

Figure 1: Tests 1.1-1.3

Test 1.5:

Datacube size:
50GB (OPH__ CUBESIZE=48835.938477 MB)

Command executed:
oph__apply cube=<PID>;query=oph__ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, '1°, ">0°, (x°3-x°2)/x’, 0’);ncores=<cores>

Test 1.6:

Datacube size:
50GB (OPH__CUBESIZE=48835.938477 MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, '1°, ">0°, ‘sqrt(x”(sin(x"3)/cos(x"2)))’, 0°);ncores=<cores>

Dominik Scherer, Nele Lips

number of cores | time in seconds
1 241.10
2 122.90
4 66.05
8 35.36
16 17.53
32 12.75

Table 4: Test 1.4, 50GB, e*

number of cores | time in seconds
1 1060.24
2 532.32
4 275.22
8 143.50
16 75.51
32 42.71

Table 5: Test 1.5, 50GB, (2* — 2?)/x

number of cores

time in seconds

1 missing value (error)
2 1281.59
4 660.59
8 339.55
16 180.91
32 93.16

Table 6: Test 1.6, 50GB, V/xsin(a?)/cos(z?)

Compute Intensive, Strong Scaling, Datacube Size 50GB

1000

Time in seconds

Figure 2: Tests 1.4-1.6

Ophidia Big Data Analytics Framework: Performance Benchmark

Test Series 2: workload scaling with compute intensive operators
Test 2.1:

Datacube sizes:

1GB (OPH_ CUBESIZE=984.375977MB)
2GB (OPH__ CUBESIZE=1960.938477MB)
5GB (OPH__ CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH__ CUBESIZE=19539.063477MB)
50GB (OPH_CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>:query=oph_math(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, 'OPH_MATH EXP’);ncores=32

Test 2.2:

Datacube sizes:

1GB (OPH__CUBESIZE=984.375977MB)
2GB (OPH__ CUBESIZE=1960.938477MB)
5GB (OPH__ CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH_ CUBESIZE=19539.063477MB)
50GB (OPH_CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>;query=oph__predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, '1°, ">0°, '(x°3-x"2)/x’, '0°);ncores=32

Test 2.3:

Datacube sizes:

1GB (OPH__ CUBESIZE=984.375977MB)
2GB (OPH__CUBESIZE=1960.938477MB)
5GB (OPH__ CUBESIZE=4890.625977MB)
10GB (OPH_CUBESIZE=9773.438477MB)
20GB (OPH_ CUBESIZE=19539.063477MB)
50GB (OPH__CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, '1°, >0, ‘sqrt(x"(sin(x"3)/cos(x"2)))’, '0’);ncores=32

11

Dominik Scherer, Nele Lips

datacubesize in GB | time in seconds datacubesize in GB | time in seconds
1 1.73 1 2.99
2 1.94 2 3.94
5 2.64) 6.78
10 3.84 10 11.32
20 6.59 20 18.94
50 12.75 20 42.71

Table 7: Test 2.1,

32 cores, e*

datacube size in GB | time in seconds
1 4.32
2 6.84
5 11.37
10 20.52
20 39.44
50 93.16
Table 9: Test 2.3, 32 cores, V xsin(z?)/cos(z?)

Compute Intensive, Workload Scaling, 32 Cores

Time in seconds

Table 8: Test 2.2, 32 cores, (z° — 2°)/x

Figure 3: Test Series 2.1-2.3

12

Ophidia Big Data Analytics Framework: Performance Benchmark

Test 2.4:

Datacube sizes:

1GB (OPH__CUBESIZE=984.375977MB)
2GB (OPH_CUBESIZE=1960.938477MB)
5GB (OPH_CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH__ CUBESIZE=19539.063477MB)
50GB (OPH_ CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>:query=oph_math(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, 'OPH_MATH _EXP’);ncores=16

Test 2.5:

Datacube sizes:

1GB (OPH__CUBESIZE=984.375977MB)
2GB (OPH_ CUBESIZE=1960.938477MB)
5GB (OPH__CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH__ CUBESIZE=19539.063477MB)
50GB (OPH_ CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH _DOUBLE’,
measure, '1°, '>0°, (x°3-x°2)/x’, 0’);ncores=16

Test 2.6:

Datacube sizes:

1GB (OPH__CUBESIZE=984.375977MB)
2GB (OPH__ CUBESIZE=1960.938477MB)
5GB (OPH__CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH__ CUBESIZE=19539.063477MB)
50GB (OPH__ CUBESIZE=48835.938477MB)

Command executed:
oph__apply cube=<PID>;query=oph_ predicate(’OPH_DOUBLE’, 'OPH_DOUBLE’,
measure, '1°, ">0°, ‘sqrt(x”(sin(x"3)/cos(x"2)))’, 0’);ncores=16

13

Dominik Scherer, Nele Lips

datacubesize in GB | time in seconds datacubesize in GB | time in seconds
1 2.15 1 3.32
2 2.48 2 4.82
5 3.68) 9.41
10 5.78 10 17.07
20 9.21 20 31.91
50 17.53 50 75.51
Table 10: Test 2.4, 16 cores, €* Table 11: Test 2.5, 16 cores, (23 — z?)/x

datacube size in GB | time in seconds
1 5.29
2 9.33
5 20.01
10 38.73
20 65.37
50 180.91

Table 12: Test 2.6, 16 cores, v/ gsin(z?®)/cos(z?)

Compute Intensive, Workload Scaling, 16 Cores

Time in seconds

Figure 4: Test Series 2.4-2.6

14

Ophidia Big Data Analytics Framework: Performance Benchmark

Test Series 3: strong scaling with I/O and network intensive operators
Test 3.1:

Datacube size:

10GB (OPH__CUBESIZE=9773.438477MB)

Commands executed

EXPORT:

oph__exportnc?2 cube=<PID>;output_path=<path>; export metadata=no;ncores=<cores>
IMPORT:

oph__importnc measure=measure;src__path=<path>; import _metadata=no;ncores=<cores>

Test 3.2:

Datacube size:
20GB (OPH__ CUBESIZE=19539.063477MB)

Commands executed

EXPORT:

oph__exportnc2 cube=<PID>;output_path=<path>; export metadata=no;ncores=<cores>
IMPORT:

oph__importnc measure=measure;src__path=<path>; import_metadata=no;ncores=<cores>

Test 3.3:

Datacube size:
50GB (OPH_ CUBESIZE=48835.938477MB)

Commands executed

EXPORT:

oph__exportnc2 cube=<PID>;output_path=<path>; export metadata=no;ncores=<cores>
IMPORT:

oph__importnc measure=measure;src_path=<path>; import metadata=no;ncores=<cores>

15

Dominik Scherer, Nele Lips

number of cores | time in seconds EXPORT | time in second IMPORT
1 73.79 64.99
2 61.80 47.34
4 54.30 44.70
8 50.89 73.53
16 50.43 118.42
32 47.28 71.80

Table 13: Test 3.1, 10GB, Ophidia to NetCDF to Ophidia

number of cores | time in seconds EXPORT | time in second IMPORT
1 141.69 119.32
2 115.50 91.63
4 100.28 81.00
8 98.14 128.24
16 88.77 203.22
32 83.04 123.16

Table 14: Test 3.2, 20GB, Ophidia to NetCDF to Ophidia

number of cores | time in seconds EXPORT | time in second IMPORT

1 275.46 259.64
2 217.02 184.08
4 197.60 167.36
8 195.28 195.03
16 192.51 262.79
32 179.48 169.86

Table 15: Test 3.3, 50GB, Ophidia to NetCDF to Ophidia

Test Series 4: workload scaling with I/O and network intensive operators

Test 4.1:

Datacube sizes:

1GB (OPH_CUBESIZE=984.375977MB)
2GB (OPH__ CUBESIZE=1960.938477MB)
5GB (OPH__CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH__ CUBESIZE=19539.063477MB)
50GB (OPH__CUBESIZE=48835.938477MB)

16

Ophidia Big Data Analytics Framework: Performance Benchmark

Commands executed

EXPORT:

oph__exportnc2 cube=<PID>;output_path=<path>; export _metadata=no;ncores=32
IMPORT:

oph__importnc measure=measure;src__path=<path>; import _metadata=no;ncores=32

Test 4.2:

Datacube sizes:

1GB (OPH__CUBESIZE=984.375977MB)
2GB (OPH__ CUBESIZE=1960.938477MB)
5GB (OPH__ CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH_CUBESIZE=19539.063477MB)
50GB (OPH__ CUBESIZE=48835.938477MB)

Commands executed

EXPORT:

oph__exportnc2 cube=<PID>;output_path=<path>; export _metadata=no;ncores=16
IMPORT:

oph__importnc measure=measure;src__path=<path>; import_metadata=no;ncores=16

I/0 & Network Intensive, Strong Scaling, EXPORT

300

4 10GB
& 20GB

50GB

200

Time in seconds

Figure 5: Tests 3.1-3.3 Export

17

Dominik Scherer, Nele Lips

I/0 & Network Intensive, Strong Scaling, IMPORT

¢ 10GB
& 20GB

50GB

Time in seconds

Figure 6: Tests 3.1-3.3 Import

Test 4.3:

Datacube sizes:

1GB (OPH_ CUBESIZE=984.375977MB)
2GB (OPH_ CUBESIZE=1960.938477MB)
5GB (OPH__ CUBESIZE=4890.625977MB)
10GB (OPH__CUBESIZE=9773.438477MB)
20GB (OPH_ CUBESIZE=19539.063477MB)
50GB (OPH__CUBESIZE=48835.938477MB)

Commands executed

EXPORT:

oph__exportnc2 cube=<PID>;output_path=<path>; export_metadata=no;ncores=4
IMPORT:

oph__importnc measure=measure;src__path=<path>; import_metadata=no;ncores=4

datacube size in GB | time in seconds EXPORT | time in second IMPORT
1 11.99 10.30
2 12.47 19.20
5 25.62 40.26
10 47.28 71.80
20 83.04 123.16
50 179.48 169.86

Table 16: Test 4.1, 32 cores, Ophidia to NetCDF to Ophidia

18

Ophidia Big Data Analytics Framework: Performance Benchmark

datacube size in GB | time in seconds EXPORT | time in second IMPORT
1 7.11 13.99
2 11.31 26.84
5 28.92 65.91
10 50.43 118.42
20 88.77 203.22
50 192.51 262.79

Table 17: Test 4.2, 16 cores, Ophidia to NetCDF to Ophidia

datacube size in GB | time in seconds EXPORT | time in second IMPORT
1 8.61 6.97
2 12.78 11.00
5 28.64 24.29
10 54.30 44.70
20 100.28 81.00
50 197.60 167.36

Table 18: Test 4.3, 4 cores, Ophidia to NetCDF to Ophidia

I/0 & Network Intensive, Workload Scaling, EXPORT

& 32cores
4 l6cores

Time in seconds

Figure 7: Tests 4.1-4.3 Export

19

Dominik Scherer, Nele Lips

I/0 & Network Intensive, Workload Scaling, IMPORT

& 32cores
& 16 cores

200

Time in seconds

Figure 8: Tests 4.1-4.3 Import

6 Analysis

The results of test series 1 are consistently good. In these types of tests, the opti-
mal result theoretically would be a speedup that is linear. The Ophidia framework
comes close to that in almost all instances if we take into account that time mea-
surements are subject to inaccuracies and that most tests did not run for very long
absolutely speaking (seconds to minutes), so slight deviations affect the speedup
values more drastically. While these results are good, they were also to be expected
considering the architecture of the framework. Due to the fact that Ophidia tries
to exploit data locally and thus limits internode communication, very little com-
munication overhead is created which makes queries scale very well. Considering
this, we would expect the speedup values to stay this good even on a much larger
scale (more nodes, more data volume).

However, as previously mentioned, a suitable fragment distribution has to be cho-
sen for specific purposes to use the system optimally, not only for performance
reasons but also for practical reasons. For example, if one wants to calculate the
averages in a datacube by using the operator oph_aggregate, the group size of
which the average is to be calculated can at most be set to a value equal to how
many tuples are in the table. Depending on what averages of which values need to
be computed, the fragmentation scheme of the datacube might has to be changed.
The results of test series 2 are in line with those of test series 1. When workload is
increased, resources can usually be used more efficiently, meaning that when data
size is doubled we ideally need less than double the amount of time. This is the
case with all the results obtained in this test series.

As seen in test series 3 and 4, I/O and network intensive tasks suffer from a signifi-
cantly worse speedup which is to be expected. All data has to be sent and collected
in one NetCDF file for the export tests and distributed again into an Ophidia dat-

20

Ophidia Big Data Analytics Framework: Performance Benchmark

acube for the import tests. Taking a look at test series 3 regarding export, we can
see that for datacubes of smaller sizes (Test 3.1 for example, Table 13) increasing
the number of cores does not make a huge difference in terms of speed. Even with
a datacube size of 50GB (Test 3.3, Table 15) going above 2 cores does not yield
any significant performance increase. Regarding import, increasing the number of
cores beyond 4 even decreases performance quite significantly, indicating that a
large amount of overhead is being created and that there is probably not enough
parallelism intrinsic to the operation.

Scaling behaviour is a lot better again with fixed numbers of cores and increasing
workloads as seen in test series 4 for export as well as import tasks. Taking both
I/O and network test series into consideration, the best overall performance for the
datacube sizes tested here can be achieved when using 4 cores for these types of
operations. Looking at Figure 5 and Figure 7 and taking time measure inaccura-
cies into account, one could even assume that not more than 4 cores are being used
for export tasks even if ncores is set to a higher value than 4. However, this does
not seem to be the case for import tasks since performance is clearly decreasing
when using more than 4 cores.

7 Conclusion

We have shown and discussed the results of our benchmark aimed at analysing
the performance of the Ophidia framework. It has become clear that the system
is particularly suited for handling compute intensive tasks on large amounts of
data due to its good scaling behaviour which is mainly achieved by employing a
hierarchical storage model. The I/O and network test results have shown that the
export of data does not profit from using more than 4 cores and that the import
oeration even suffers performance loss when using more than 4 cores.

Moreover we have revealed how we carried out the project and also discussed the
problems we had to overcome. We mostly struggeled in the beginning with the
installation of the framework which ultimately was unsuccessful despite our best
efforts. Once we had access to an operational Ophidia system things became easier
and the project went on much more smoothly. In the end we were able to design
and execute an extensive benchmark with the help of the developers of the Ophidia
platform.

21

Dominik Scherer, Nele Lips

Bibliography

[1] S. Fiore, A. D’Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio. Ophidia:
toward big data analytics for eScience. Elsevier B.V., 2013.

22

Ophidia Big Data Analytics Framework: Performance Benchmark

Appendices

List of Figures

CO 1 O Ul W

Tests 1.1-1.3 9
Tests 1.4-1.6 10
Test Series 2.1-2.3 12
Test Series 2.4-2.6 14
Tests 3.1-3.3 Export 17
Tests 3.1-3.3 Import 18
Tests 4.1-4.3 Export 19
Tests 4.1-4.3 Import 20

List of Tables

CO I O U= W N+

e e e el e =
CO 3O Ui W NN — O

Test 1.1,
Test 1.2,
Test 1.3,
Test 1.4,
Test 1.5,
Test 1.6,
Test 2.1,
Test 2.2,
Test 2.3,
Test 2.4,
Test 2.5,
Test 2.6,
Test 3.1,
Test 3.2,
Test 3.3,
Test 4.1,
Test 4.2,
Test 4.3,

10GB, e® 8
10GB, (23 —2?)/x 8
10GB, Vagsin@®)/eos(=) 8
50GB, e® . .. 10
50GB, (3 —2%)/x 10
50GB, Vasin(@®)/cos@?) L 10
32 cores, € 12
32 cores, (x3 —a®)/x 12
32 cores, Vasin(@®)/eos(@®) 12
16 cores, ¥ 14
16 cores, (23 —a®)/x 14
16 cores, Vgsin(@®)/cos(=®) 14
10GB, Ophidia to NetCDF to Ophidia 16
20GB, Ophidia to NetCDF to Ophidia 16
50GB, Ophidia to NetCDF to Ophidia 16
32 cores, Ophidia to NetCDF to Ophidia 18
16 cores, Ophidia to NetCDF to Ophidia 19
4 cores, Ophidia to NetCDF to Ophidia 19

23

