
Stream Processing (with Storm, Spark, Flink)

Lecture BigData Analytics

Julian M. Kunkel

julian.kunkel@googlemail.com

University of Hamburg / German Climate Computing Center (DKRZ)

2018-01-26

Disclaimer: Big Data software is constantly updated, code samples may be outdated.

julian.kunkel@googlemail.com

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Outline

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 2 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Stream Processing [12]

Stream processing paradigm = dataflow programming

Programming
Implement operations (kernel) functions and define data dependencies
Uniform streaming: Operation is executed on all elements individually

⇒ Default: no view of the complete data at any time

Advantages
Pipelining of operations and massive parallelism is possible
Data is in memory and often in CPU cache, i.e., in-memory computation
Data dependencies of kernels are known and can be dealt at compile time

Element Element Element Element

stream

Overcoming restrictions of the programming model

Windowing: sliding (overlapping) windows contain multiple elements

Stateless vs. stateful (i.e., keep information for multiple elements)

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 3 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 4 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Spark Streaming [60]

Streaming support in Spark
Data model: Continuous stream of RDDs (batches of tuples)
Fault tolerance: Checkpointing of states

Not all data can be accessed at a given time
Only data from one interval or a sliding window
States can be kept for key/value RDDs using updateStateByKey()

Not all transformation and operations available, e.g., foreach, collect
Streams can be combined with existing RDDs using transform()

Workflow: Build the pipeline, then start it
Can read streams from multiple sources

Files, TCP sources, ...

Note: Number of tasks assigned > than receivers, otherwise it stagnates

Source: [16]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 5 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Processing of Streams

Basic processing concept is the same as for RDDs, example:

1 words = lines.flatMap(lambda l: l.split(" "))

Source: [16]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 6 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Window-Based Operations

1 # Reduce a window of 30 seconds of data every 10 seconds
2 rdd = words.reduceByKeyAndWindow(lambda x, y: x + y, 30, 10)

Source: [16]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 7 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Streaming Application
1 from pyspark.streaming import StreamingContext
2 # Create batches every second
3 ssc = StreamingContext(sc, batchDuration=1)
4 ssc.checkpoint("mySparkCP")
5 # We should use ssc.getOrCreate() to restore a checkpoint, see [16]
6
7 # Create a stream from a TCP socket
8 lines = ssc.socketTextStream("localhost", 9999)
9

10 # Alternatively: read newly created files in the directory and process them
11 # Move files into this directory to start computation
12 # lines = scc.textFileStream("myDir")
13
14 # Split lines into tokens and return tuples (word,1)
15 words = lines.flatMap(lambda l: l.split(" ")).map(lambda x: (x,1))
16
17 # Track the count for each key (word)
18 def updateWC(val, stateVal):
19 if stateVal is None:
20 stateVal = 0
21 return sum(val, stateVal)
22
23 counts = words.updateStateByKey(updateWC) # Requires checkpointing
24
25 # Print the first 10 tokens of each stream RDD
26 counts.pprint(num=10)
27
28 # start computation, after that we cannot change the processing pipeline
29 ssc.start()
30 # Wait until computation finishes
31 ssc.awaitTermination()
32 # Terminate computation
33 ssc.stop()

Example output
Started TCP server
nc -lk4 localhost
9999

Input: das ist ein test
Output:
Time: 2015-12-27 15:09:43

(’das’, 1)
(’test’, 1)
(’ein’, 1)
(’ist’, 1)

Input: das ist ein haus
Output:
Time: 2015-12-27 15:09:52

(’das’, 2)
(’test’, 1)
(’ein’, 2)
(’ist’, 2)
(’haus’, 1)

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 8 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 9 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Storm Overview [37, 38]

Real-time stream-computation system for high-velocity data

Performance: Processes a million records/s per node

Implemented in Clojure (LISP in JVM), (50% LOC Java)

User APIs are provided for Java

Utilizes YARN to schedule computation

Fast, scalable, fault-tolerant, reliable, “easy” to operate

Example general use cases:

Online processing of large data volume
Speed layer in the Lambda architecture
Data ingestion into the HDFS ecosystem
Parallelization of complex functions

Support for some other languages, e.g., Python via streamparse [53]

Several high-level concepts are provided

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 10 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Data Model [37, 38]
Tuple: an ordered list of named elements

e.g., fields (weight, name, BMI) and tuple (1, “hans”, 5.5)
Dynamic types (i.e., store anything in fields)

Stream: a sequence of tuples
Spouts: a source of streams for a computation

e.g., Kafka messages, tweets, real-time data
Bolts: processors for input streams producing output streams

e.g., filtering, aggregation, join data, talk to databases
Topology: the graph of the calculation represented as network

Note: the parallelism (tasks) is statically defined for a topology

Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

Example topology

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 11 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Partitions and Stream Groupings [38]

Multiple instances (tasks) of spouts/bolts each processes a partition
Stream grouping defines how to transfer tuples between partitions
Selection of groupings:

Shuffle: send a tuple to a random task
Field: send tuples which share the values of a subset of fields to the same
task, e.g., for counting word frequency
All: replicate/Broadcast tuple across all tasks of the target bolt
Local: prefer local tasks if available, otherwise use shuffle
Direct: producer decides which consumer task receives the tuple

Source: [38]
Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 12 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Use Cases

Several companies utilize Storm [50]

Twitter: personalization, search, revenue optimization, ...

200 nodes, 30 topologies, 50 billion msg/day, avg. latency <50ms

Yahoo: user events, content feeds, application logs

320 nodes with YARN, 130k msg/s

Spotify: recommendation, ads, monitoring, ...

22 nodes, 15+ topologies, 200k msg/s

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 13 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 14 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Architecture Components [37, 38, 41]

Nimbus node (Storm master node)

Upload computation jobs (topologies)
Distribute code across the cluster
Monitors computation and reallocates workers

Upon node failure, tuples and jobs are re-assigned
Re-assignment may be triggered by users

Worker nodes runs Supervisor daemon which start/stop workers

Worker processes execute nodes in the topology (graph)

Zookeeper is used to coordinate the Storm cluster

Performs the communication between Nimbus and Supervisors
Stores which services to run on which nodes
Establishes the initial communication between services

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 15 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Architecture Supporting Tools

Kryo serialization framework [40]

Supports serialization of standard Java objects
e.g., useful for serializing tuples for communication

Apache Thrift for cross-language support

Creates RPC client and servers for inter-language communication
Thrift definition file specifies function calls

Topologies are Thrift structs and Nimbus offers Thrift service

Allows to define and submit them using any language

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 16 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Execution Model [37, 38, 41]

Multiple topologies can be executed concurrently

Usually sharing the nodes
With the isolation scheduler, exclusive node use is possible [42]

Worker process

Runs in its own JVM
Belongs to one topology
Spawns and runs executor threads

Executor: a single thread

Runs one or more tasks of the same bolt/spout
Tasks are executed sequentially!
By default one thread per task
The assignment of tasks to executors can change to adapt the parallelism
using the storm rebalance command

Task: the execution of one bolt/spout

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 17 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Execution Model: Parallelism [41]

Source: Example of a running topology [41] (modified)

1 topologyBuilder.setBolt("green-bolt", new GreenBolt(), 2).setNumTasks(4)

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 18 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Processing of Tuples [54]

A tuple emitted by a spout may create many derived tuples

What happens if processing of a tuple fails?

Storm guarantees execution of tuples!

Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

At-least-once processing semantics

One tuple may be executed multiple times (on bolts)
If an error occurs, a tuple is restarted from its spout

Restarts tuple if a timeout/failure occurs

Timeout: Config.TOPOLOGY_MESSAGE_TIMEOUT_SECS (default: 30)

Correct stateful computation is not trivial in this model

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 19 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Processing Strategy [11, 54]

Track tuple processing

Each tuple has a random 64 Bit message ID
Explicit record all spout tuple IDs a tuple is derived of

Acker task tracks the tuple DAG implicitly for each tuple

Spout informs Acker tasks of new tuple
Acker notifies all Spouts if a “derived” tuple completed
Hashing maps spout tuple ID to Acker task

Acker uses 20 bytes per tuple to track the state of the tuple tree1

Map contains: tuple ID to Spout (creator) task AND 64 Bit ack value
Ack value is an XOR of all “derived” tuple IDs and all acked tuple IDs
If Ack value is 0, the processing of the tuple is complete

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ... Spout 1

Bolt: Filter

Bolt: Join
 & Reduce

Broadcast

Spout 2

Bolt: Join

Output

1Independent of the size of the topology!

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 20 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Programming Requirements [11, 54]

Fault-tolerance strategy requires developers to:
Acknowledge (successful) processing of each tuple

Prevent (early) retransmission of the tuple from the spout

Anchor products (derived) tuple to link to its origin

Defines dependencies between products (processing of a product may fail)

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ...

Simplified perspective; dependencies to Spout tuples.
Acknowledge a tuple when it is used, anchor all Spouts tuple IDs

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 21 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Illustration of the Processing (Roughly)

s1 Spout creates tuple T1 and derives/anchors additional T3 for broadcast

s2 Spout creates tuple T2

(a) Bolt anchors T6 with T1 and ack T1

(b) Bolt anchors T4 with T1, T2 and ack T2, T6

(c) Bolt anchors T5 with T1, T2 and ack T3, T4

(d) Bolt anchors T7 with T1, T2 and ack T5

Tuple Source XOR
1 Spout 1 T1xT3
2 Spout 2 T2

Table changes after (s2)

Tuple Source XOR
1 Spout 1 (T1xT1xT6xT6)xT3xT4
2 Spout 2 (T2xT2)xT4

Table changes after (b), x is XOR

(s1) T 1

(a) T 1

(c) T 5: 1,2,
 ...

Broadcast:
create new T3: 1

(s2) T 2

(b) T 4: 1,2T6

(d) T 7: 1,2,
 ...

Topology’s tuple processing

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 22 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Failure Cases [54]

Task (node) fault

Tuple IDs at the root of tuple tree time out
Start a new task; replay of tuples is started
Requires transactional behavior of spouts

Allows to re-creates batches of tuples in the exact order as before
e.g., provided by file access, Kafka, RabbitMQ (message queue)

Acker task fault

After timeout, all pending tuples managed by Acker are restarted

Spout task fault

Source of the spout needs to provide tuples again (transactional behavior)

Tunable semantics: If reliable processing is not needed

Set Config.TOPOLOGY_ACKERS to 0

This will immediately ack all tuples on each Spout

Do not anchor tuples to stop tracking in the DAG

Do not set a tuple ID in a Spout to not track this tuple

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 23 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Exactly-Once Semantics [11, 54]
Semantics guarantees each tuple is executed exactly once
Operations depending on exactly-once semantics

Updates of stateful computation
Global counters (e.g., wordcount), database updates

Strategies to achieve exactly-once semantics

1 Provide idempotent operations: f(f(tuple)) = f(tuple)

Stateless (side-effect free) operations are idempotent

2 Execute tuples strongly ordered to avoid replicated execution

Create tuple IDs in the spout with a strong ordering
Bolts memorize last seen / executed tuple ID (transaction ID)

Perform updates only if tuple ID > last seen ID
⇒ ignore all tuples with tuple ID < failure

Requirement: Don’t use random grouping

3 Use Storm’s transactional topology [57]
Separate execution into processing phase and commit phase

Processing does not need exactly-once semantics
Commit phase requires strong ordering

Storm ensures: any time only one batch can be in commit phase
Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 24 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Performance Aspects

Processing of individual tuples

Introduces overhead (especially for exactly-once semantics)
But provides low latency

Batch stream processing

Group multiple tuples into batches
Increases throughput but increases latency
Allows to perform batch-local aggregations

Micro-batches (e.g., 10 tuples) are a typical compromise

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

Batch
Tuple
Tuple
Tuple

stream

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 25 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 26 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Overview

Java is the primary interface

Supports Ruby, Python, Fancy (but suboptimally)

Integration with other tools

Hive

HDFS

HBase

Databases via JDBC

Update index of Solr

Spouts for consuming data from Kafka

...

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 27 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Code for a Bolt – See [38, 39] for More

1 public class BMIBolt extends BaseRichBolt {
2 private OutputCollectorBase _collector;
3

4 @Override public void prepare(Map conf, TopologyContext context, OutputCollectorBase
↪→ collector) {

5 _collector = collector;
6 }
7

8 // We expect a tuple as input with weight, height and name
9 @Override public void execute(Tuple input) {

10 float weight = input.getFloat(0);
11 float height = input.getFloat(1);
12 string name = input.getString(2);
13 // filter output
14 if (name.startsWith("h")){ // emit() anchors input tuple
15 _collector.emit(input, new Values(weight, name, weight/(height*height)));
16 }
17 // last thing to do: acknowledge processing of input tuple
18 _collector.ack(input);
19 }
20 @Override public void declareOutputFields(OutputFieldsDeclarer declarer) {
21 declarer.declare(new Fields("weight", "name", "BMI"));
22 }
23 }

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 28 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Code for a Spout [39]

1 public class TestWordSpout extends BaseRichSpout {
2 public void nextTuple() { // this function is called forever
3 Utils.sleep(100);
4 final String[] words = new String[] {"nathan", "mike", "jackson", "golda",};
5 final Random rand = new Random();
6 final String word = words[rand.nextInt(words.length)];
7 // create a new tuple:
8 _collector.emit(new Values(word));
9 }

10

11 public void declareOutputFields(OutputFieldsDeclarer declarer) {
12 // we output only one field called "word"
13 declarer.declare(new Fields("word"));
14 }
15

16 // Change the component configuration
17 public Map<String, Object> getComponentConfiguration() {
18 Map<String, Object> ret = new HashMap<String, Object>();
19 // set the maximum parallelism to 1
20 ret.put(Config.TOPOLOGY_MAX_TASK_PARALLELISM, 1);
21 return ret;
22 }
23 }

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 29 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Code for Topology Setup [39]
1 Config conf = new Config();
2 // run all tasks in 4 worker processes
3 conf.setNumWorkers(4);
4

5 TopologyBuilder builder = new TopologyBuilder();
6 // Add a spout and provide a parallelism hint to run on 2 executors
7 builder.setSpout("USPeople", new PeopleSpout("US"), 2);
8 // Create a new Bolt and define Spout USPeople as input
9 builder.setBolt("USbmi", new BMIBolt(), 3).shuffleGrouping("USPeople");

10 // Now also set the number of tasks to be used for execution
11 // Thus, this task will run on 1 executor with 4 tasks, input: USbmi
12 builder.setBolt("thins", new IdentifyThinPeople(),1)

↪→ .setNumTasks(4).shuffleGrouping("USbmi");
13 // additional Spout for Germans
14 builder.setSpout("GermanPeople", new PeopleSpout("German"), 5);
15 // Add multiple inputs
16 builder.setBolt("bmiAll", new BMIBolt(), 3)

↪→ .shuffleGrouping("USPeople").shuffleGrouping("GermanPeople");
17

18 // Submit the topology
19 StormSubmitter.submitTopology("mytopo", conf, builder.createTopology());

Rebalance at runtime

1 # Now use 10 worker processes and set 4 executors for the Bolt "thin"
2 $ storm rebalance mytopo -n 10 -e thins=4

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 30 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Running Bolts in Other Languages [38]

Supports Ruby, Python, Fancy
Execution in subprocesses
Communication with JVM via JSON messages

1 public static class SplitSentence extends ShellBolt implements IRichBolt {
2 public SplitSentence() {
3 super("python", "splitsentence.py");
4 }
5

6 public void declareOutputFields(OutputFieldsDeclarer declarer) {
7 declarer.declare(new Fields("word"));
8 }
9 }

1 import storm
2

3 class SplitSentenceBolt(storm.BasicBolt):
4 def process(self, tup):
5 words = tup.values[0].split(" ")
6 for word in words:
7 storm.emit([word])
8

9 SplitSentenceBolt().run()

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 31 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Running a Topology

Compile Java code 2

1 JARS=$(retrieveJars /usr/hdp/current/hadoop-hdfs-client/
↪→ /usr/hdp/current/hadoop-client/ /usr/hdp/current/hadoop-yarn-client/
↪→ /usr/hdp/2.3.2.0-2950/storm/lib/)

2 javac -classpath classes:$JARS -d classes myTopology.java

Start topology

1 storm jar <JAR> <Topology MAIN> <ARGS>

Stop topology

1 storm kill <TOPOLOGY NAME> -w <WAITING TIME>

Monitor topology (alternatively use web-GUI)

1 storm list # show all active topologies
2 storm monitor <TOPOLOGY NAME>

2The retrieveJars() function identifies all JAR files in the directory.

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 32 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Storm User Interface

Example for running the wc-test topology. Storm UI: http://Abu1:8744

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 33 / 59

http://Abu1:8744

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Storm User Interface

Topology details

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 34 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Storm User Interface

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 35 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Storm User Interface

Visualization of the word-count topology with bottlenecks

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 36 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Debugging [38]

Storm supports local [44] and distributed mode [43]

Like many other BigData tools

In local mode, simulate worker nodes with threads

Use debug mode to output component messages

Starting and stopping a topology

1 Config conf = new Config();
2 // log every message emitted
3 conf.setDebug(true);
4 conf.setNumWorkers(2);
5

6 LocalCluster cluster = new LocalCluster();
7 cluster.submitTopology("test", conf, builder.createTopology());
8 Utils.sleep(10000);
9 cluster.killTopology("test");

10 cluster.shutdown();

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 37 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

HDFS Integration: Writing to HDFS [51]

HdfsBolt can write tuples into CSV or SequenceFiles
File rotation policy (includes action and conditions)

Move/delete old files after certain conditions are met
e.g., a certain file size is reached

Synchronization policy
Defines when the file is synchronized (flushed) to HDFS
e.g., after 1000 tuples

Example [51]

1 // use "|" instead of "," for field delimiter
2 RecordFormat format = new DelimitedRecordFormat().withFieldDelimiter("|");
3 // sync the filesystem after every 1k tuples
4 SyncPolicy syncPolicy = new CountSyncPolicy(1000);
5 // rotate files when they reach 5MB
6 FileRotationPolicy rotationPolicy = new FileSizeRotationPolicy(5.0f, Units.MB);
7

8 FileNameFormat fileNameFormat = new DefaultFileNameFormat().withPath("/foo/");
9 HdfsBolt bolt = new HdfsBolt().withFsUrl("hdfs://localhost:54310")

10 .withFileNameFormat(fileNameFormat).withRecordFormat(format)
11 .withRotationPolicy(rotationPolicy).withSyncPolicy(syncPolicy);

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 38 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

HBase Integration [55]

HBaseBolt: Allows to write columns and update counters

Map Storm tuple field value to HBase rows and columns

HBaseLookupBolt: Query tuples from HBase based on input

Example HBaseBolt [55]

1 // Use the row key according to the field "word"
2 // Add the field "word" into the column word (again)
3 // Increment the HBase counter in the field "count"
4 SimpleHBaseMapper mapper = new SimpleHBaseMapper()
5 .withRowKeyField("word").withColumnFields(new Fields("word"))
6 .withCounterFields(new Fields("count")).withColumnFamily("cf");
7

8 // Create a bolt with the HBase mapper
9 HBaseBolt hbase = new HBaseBolt("WordCount", mapper);

10 // Connect the HBase bolt to the bolt emitting (word, count) tuples by mapping "word"
11 builder.setBolt("myHBase", hbase, 1).fieldsGrouping("wordCountBolt", new Fields("word"));

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 39 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Hive Integration [56]

HiveBolt writes tuples to Hive in batches
Requires bucketed/clustered table in ORC format
Once committed it is immediately visible in Hive
Format: DelimitedRecord or JsonRecord

Example [56]

1 // in Hive: CREATE TABLE test (document STRING, position INT) partitioned by (word
↪→ STRING) stored as orc tblproperties ("orc.compress"="NONE");

2

3 // Define the mapping of tuples to Hive columns
4 // Here: Create a reverse map from a word to a document and position
5 DelimitedRecordHiveMapper mapper = new DelimitedRecordHiveMapper()
6 .withColumnFields(new Fields("word", "document", "position"));
7

8 HiveOptions hiveOptions = new HiveOptions(metaStoreURI,dbName, "myTable", mapper)
9 .withTxnsPerBatch(10) // Each Txn is written into one ORC subfile

10 // => control the number of subfiles in ORC (will be compacted automatically)
11 .withBatchSize(1000) // Size for a single hive transaction
12 .withIdleTimeout(10) // Disconnect idle writers after this timeout
13 .withCallTimeout(10000); // in ms, timeout for each Hive/HDFS operation
14

15 HiveBolt hiveBolt = new HiveBolt(hiveOptions);

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 40 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 41 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Distributed RPC (DRPC) [47]

DRPC: Distributed remote procedure call

Goal: Reliable execution and parallelization of functions (procedures)

Can be also used to query results from Storm topologies

Helper classes exist to setup topologies with linear execution

Linear execution: f(x) calls g(...) then h(...)

Client code

1 // Setup the Storm DRPC facilities
2 DRPCClient client = new DRPCClient("drpc-host", 3772);
3

4 // Execute the RPC function reach() with the arguments
5 // We assume the function is implemented as part of a Storm topology
6

7 String result = client.execute("reach", "http://twitter.com");

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 42 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Processing of DRPCs

1 Client sends the function name and arguments to DRPC server
2 DRPC server creates a request ID
3 The Topology registered for the function receives tuple in a DRPCSpout
4 The Topology computes a result
5 Its last bolt returns request id + output to DRPC server
6 DRPC server sends result to the client
7 Client casts output and returns from blocked function

Source: [47]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 43 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Using the Linear DRPC Builder [47]
Function implementation

1 public static class ExclaimBolt extends BaseBasicBolt {
2 // A BaseBasicBolt automatically anchors and acks tuples
3 public void execute(Tuple tuple, BasicOutputCollector collector) {
4 String input = tuple.getString(1);
5 collector.emit(new Values(tuple.getValue(0), input + "!"));
6 }
7 public void declareOutputFields(OutputFieldsDeclarer declarer) {
8 declarer.declare(new Fields("id", "result"));
9 }

10 }
11 public static void main(String[] args) throws Exception {
12 // The linear topology builder eases building of sequential steps
13 LinearDRPCTopologyBuilder builder = new LinearDRPCTopologyBuilder("exclamation");
14 builder.addBolt(new ExclaimBolt(), 3);
15 }

Run example client in local mode

1 LocalDRPC drpc = new LocalDRPC(); // this class contains our main() above
2 LocalCluster cluster = new LocalCluster();
3 cluster.submitTopology("drpc-demo", conf, builder.createLocalTopology(drpc));
4 System.out.println("hello -> " + drpc.execute("exclamation", "hello"));
5 cluster.shutdown();
6 drpc.shutdown();

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 44 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Example Using the DRPC Builder [47]

Running a client on remote DRPC

Start DRPC servers using: storm drpc

Configure locations of DRPC servers (e.g., in storm.yaml)

Submit and start DRPC topologies on a Storm Cluster

1 StormSubmitter.submitTopology("exclamation-drpc", conf, builder.createRemoteTopology());
2 // DRPCClient drpc = new DRPCClient("drpc.location", 3772);

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 45 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Trident [48]

High-level abstraction for realtime computing

Low latency queries
Construct data flow topologies by invoking functions
Similarities to Spark and Pig

Provides exactly-once semantics

Allows stateful stream processing

Uses, e.g., Memcached to save intermediate states
Backends for HDFS, Hive, HBase are available

Performant

Executes tuples in micro batches
Partial (local) aggregation before sending tuples

Reliable

An incrementing transaction id is assigned to each batch
Update of states is ordered by a batch ID

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 46 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Trident Functions [58, 59]

Functions process input fields and append new ones to existing fields

User-defined functions can be easily provided

Stateful functions persist/update/query states

List of functions

each: apply user-defined function on specified fields for each tuple

Append fields

1 mystream.each(new Fields("b"), new MyFunction(), new Fields("d"));

Filter

1 mystream.each(new Fields("b", "a"), new MyFilter());

project: keep only listed fields

1 mystream.project(new Fields("b", "d"))

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 47 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Trident Functions [58, 59]

partitionAggregate: run a function for each batch of tuples and partition

Completely replaces fields and tuples
e.g., partial aggregations

1 mystream.partitionAggregate(new Fields("b"), new Sum(), new Fields("sum"))

aggregate: reduce individual batches (or groups) in isolation

persistentAggregate: aggregate across batches and update states

stateQuery: query a source of state

partitionPersist: update a source of state

groupBy: repartitions the stream, group tuples together

merge: combine tuples from multiple streams and name output fields

join: combines tuple values by a key, applies to batches only

1 // Input: stream1 fields ["key", "val1", "val2"], stream2 ["key2", "val1"]
2 topology.join(stream1, new Fields("key"), stream2, new Fields("key2"),
3 new Fields("key", "val1", "val2", "val21")); // output

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 48 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Grouping

Source: [58]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 49 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Trident Example [48]

Compute word frequency from an input stream of sentences

1 TridentTopology topology = new TridentTopology();
2 TridentState wordCounts = topology.newStream("spout1", spout)
3 .each(new Fields("sentence"), new Split(), new Fields("word"))
4 .groupBy(new Fields("word"))
5 .persistentAggregate(new MemoryMapState.Factory(), new Count(), new Fields("count"))
6 .parallelismHint(6);

Query to retrieve the sum of word frequency for a list of words

1 topology.newDRPCStream("words").each(new Fields("args"), new Split(), new Fields("word"))
2 .groupBy(new Fields("word"))
3 .stateQuery(wordCounts, new Fields("word"), new MapGet(), new Fields("count"))
4 .each(new Fields("count"), new FilterNull()) // remove NULL values
5 .aggregate(new Fields("count"), new Sum(), new Fields("sum"));

Client setup for queries

1 DRPCClient client = new DRPCClient("drpc.server.location", 3772);
2 System.out.println(client.execute("words", "cat dog the man");

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 50 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

1 Overview

2 Spark Streaming

3 Storm

4 Architecture of Storm

5 Programming and Execution

6 Higher-Level APIs

7 Apache Flink

8 Summary

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 51 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Flink [62]

One of the latest tools part of Apache since 2015

“4th generation of big data analytics platforms” [61]

Supports Scala and Java; rapidly growing ecosystem

Similarities to Storm and Spark

Features

One concept for batch
processing/streaming

Iterative computation

Optimization of jobs

Exactly-once semantics

Event time semantics

Source: [62]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 52 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Programming Model

A DAG of streams applies transformations

Source
DataStream<String> lines = env.addSource(

new FlinkKafkaConsumer<>(…));

DataStream<Event> events = lines.map((line) -> parse(line));

DataStream<Statistics> stats = events
.keyBy("id")
.timeWindow(Time.seconds(10))
.apply(new MyWindowAggregationFunction());

stats.addSink(new RollingSink(path));

Source map()

Transformation

Transformation

Source
Operator

keyBy()/
window()/
apply()

Sink

Transformation
Operators

Sink
Operator

Stream

Sink

Streaming Dataflow

Source: [65]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 53 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Parallelization

Parallelization via stream partitions and operator subtasks
One-to-one streams preserve the order, redistribution changes them

Source map()
keyBy()/
window()/
apply()

Sink

Operator
Subtask

Source
[1]

map()
[1]

keyBy()/
window()/
apply()

[1]

Sink
[1]

Source
[2]

map()
[2]

keyBy()/
window()/
apply()

[2]

Stream
Partition

Operator Stream

Streaming Dataflow
(parallelized view)

Streaming Dataflow
(condensed view)

parallelism = 1parallelism = 2

Source: [65]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 54 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Execution

Master/worker concept can be integrated into YARN
The client (Flink Program) is an external process

Flink Program

Client

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

JobManager

(Worker)

(Master / YARN Application Master)

Dataflow Graph

Actor System

Actor
System

Deploy/Stop/
Cancel Tasks

Trigger
Checkpoints

Task Status

Heartbeats

Statistics

…

…

TaskManager

Task
Slot

Task
Slot

Task

Task
Slot

Task

Network Manager

Actor System

Memory & I/O Manager

(Worker)

Data Streams

Submit job
(send dataflow) Cancel /

update job

Status
updates Statistics &

results

Program
code

Scheduler

Checkpoint
Coordinator

Optimizer /
Graph Builder

Dataflow graph

Program
Dataflow

Source: [65]
Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 55 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Optimization

Operator chaining optimizes caching/thread overhead [65]

Back pressure mechanism stalls execution if processing is too slow [66]

Data plan optimizer and visualizer for the (optimized) execution plan

Source: [63]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 56 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Semantics [62]

Event Time Semantics [67]

Support out-of-order events

Need to assign timestamps to events

Stream sources may do this

Watermarks indicate that all events
before this time happened

Intermediate processing updates
(intermediate) watermark

Source: [62]

Stream (out of order). Source: [67]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 57 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Lambda Architecture using Flink

Source: Lambda Architecture of Flink [64]

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 58 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Summary

Streams are series of tuples

Tools: Storm/Spark/Flink

Stream groupings defines how tuples are transferred

Realization of semantics is non-trivial

At-least-once processing semantics
Reliable exactly-once semantics can be guaranteed

Internals are non-trivial; they rely on tracking of Spout tuple IDs

Flink: Event-time semantics

Micro-batching increases performance

Dynamic re-balancing of tasks is possible

High-level interfaces

DRPC can parallelize complex procedures
Trident simplifies stateful data flow processing
Flink programming and Trident have similarities

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 59 / 59

Overview Spark Streaming Storm Architecture of Storm Programming and Execution Higher-Level APIs Apache Flink Summary

Bibliography
10 Wikipedia
11 Book: N. Marz, J. Warren. Big Data – Principles and best practices of scalable real-time data systems.
12 https://en.wikipedia.org/wiki/Stream_processing
37 http://hortonworks.com/hadoop/storm/
38 https://storm.apache.org/documentation/Tutorial.html
39 Code: https://github.com/apache/storm/blob/master/storm-core/src/jvm/backtype/storm/testing/
40 https://github.com/EsotericSoftware/kryo
41 http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/
42 http://storm.apache.org/2013/01/11/storm082-released.html
43 https://storm.apache.org/documentation/Running-topologies-on-a-production-cluster.html
44 https://storm.apache.org/documentation/Local-mode.html
45 Storm Examples: https://github.com/apache/storm/tree/master/examples/storm-starter
46 https://storm.apache.org/documentation/Using-non-JVM-languages-with-Storm.html
47 DRPC https://storm.apache.org/documentation/Distributed-RPC.html
48 Trident Tutorial https://storm.apache.org/documentation/Trident-tutorial.html
49 http://www.datasalt.com/2013/04/an-storms-trident-api-overview/
50 http://www.michael-noll.com/blog/2014/09/15/apache-storm-training-deck-and-tutorial/
51 http://storm.apache.org/documentation/storm-hdfs.html
52 http://hortonworks.com/hadoop-tutorial/real-time-data- ingestion-hbase-hive-using-storm-bolt/
53 Python support for Storm https://github.com/Parsely/streamparse
54 https://storm.apache.org/documentation/Guaranteeing-message-processing.html
55 http://storm.apache.org/documentation/storm-hbase.html
56 http://storm.apache.org/documentation/storm-hive.html
57 http://storm.apache.org/documentation/Transactional-topologies.html
58 http://storm.apache.org/documentation/Trident-API-Overview.html
59 http://storm.apache.org/documentation/Trident-state
60 http://spark.apache.org/docs/latest/streaming-programming-guide.html
61 https://www.youtube.com/watch?v=8RJy42bynI0
62 https://flink.apache.org/features.html
63 https://ci.apache.org/projects/flink/flink-docs-release-0.8/programming_guide.html
64 http://www.kdnuggets.com/2015/11/fast-big-data-apache-flink-spark-streaming.html
65 https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/index.html
66 http://data-artisans.com/how-flink-handles-backpressure/
67 https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_time.html

Julian M. Kunkel Lecture BigData Analytics, WiSe 17/18 60 / 59

https://en.wikipedia.org/wiki/Stream_processing
http://hortonworks.com/hadoop/storm/
https://storm.apache.org/documentation/Tutorial.html
https://github.com/apache/storm/blob/master/storm-core/src/jvm/backtype/storm/testing/
https://github.com/EsotericSoftware/kryo
http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/
http://storm.apache.org/2013/01/11/storm082-released.html
https://storm.apache.org/documentation/Running-topologies-on-a-production-cluster.html
https://storm.apache.org/documentation/Local-mode.html
https://github.com/apache/storm/tree/master/examples/storm-starter
https://storm.apache.org/documentation/Using-non-JVM-languages-with-Storm.html
https://storm.apache.org/documentation/Distributed-RPC.html
https://storm.apache.org/documentation/Trident-tutorial.html
http://www.datasalt.com/2013/04/an-storms-trident-api-overview/
http://www.michael-noll.com/blog/2014/09/15/apache-storm-training-deck-and-tutorial/
http://storm.apache.org/documentation/storm-hdfs.html
http://hortonworks.com/hadoop-tutorial/real-time-data-ingestion-hbase-hive-using-storm-bolt/
https://github.com/Parsely/streamparse
https://storm.apache.org/documentation/Guaranteeing-message-processing.html
http://storm.apache.org/documentation/storm-hbase.html
http://storm.apache.org/documentation/storm-hive.html
http://storm.apache.org/documentation/Transactional-topologies.html
http://storm.apache.org/documentation/Trident-API-Overview.html
http://storm.apache.org/documentation/Trident-state
http://spark.apache.org/docs/latest/streaming-programming-guide.html
https://www.youtube.com/watch?v=8RJy42bynI0
https://flink.apache.org/features.html
https://ci.apache.org/projects/flink/flink-docs-release-0.8/programming_guide.html
http://www.kdnuggets.com/2015/11/fast-big-data-apache-flink-spark-streaming.html
https://ci.apache.org/projects/flink/flink-docs-release-1.2/concepts/index.html
http://data-artisans.com/how-flink-handles-backpressure/
https://ci.apache.org/projects/flink/flink-docs-release-1.2/dev/event_time.html

	Overview
	Introduction

	Spark Streaming
	Spark Streaming

	Storm
	Overview
	Data Model

	Architecture of Storm
	Components
	Execution Model
	Processing of Tuples
	Exactly-Once Semantics
	Performance Aspects

	Programming and Execution
	Overview
	Example Java Code
	Running a Topology
	Storm Web UI
	HDFS Integration
	HBase Integration
	Hive Integration

	Higher-Level APIs
	Distributed RPC (DRPC)
	Trident

	Apache Flink
	Apache Overview

	Summary

