
Energy Efficient Programming
Merlin Steuer

2steuer@informatik.uni-hamburg.de

Seminar Effiziente Programmierung
Arbeitsbereich Wissenschaftliches Rechnen

Fachbereich Informatik
Fakultät für Mathematik, Informatik und Naturwissenschaften

Universität Hamburg

01.03.2017

Abstract
This article is a written report for a presentation given within the

seminar Effiziente Programmierung. The target of the presentation was
to give the listeners an overview over the fundamentals and techniques of
energy efficient programming.

Beginning with the basics, the potentials to save energy are described
for the hardware layer, the operating system and the application layer,
with a focus on the latter, as this is the field the majority of listeners is
most experienced in and will work on in the future.

- 1 / 12 -

Energy Efficient Programming Merlin Steuer

Contents
1 Introduction 3

2 Energy saving at the hardware layer 3
2.1 Dynamic Frequency and Voltage Scaling (DVFS) 3
2.2 Advanced Configuration and Power Interface (ACPI) 4

2.2.1 P-States . 4
2.2.2 C-States . 5

3 Energy saving at the OS layer 5

4 Energy saving at the application layer 7
4.1 Time efficiency . 7
4.2 Data efficiency . 8
4.3 Logging . 8
4.4 Letting the CPU rest . 8
4.5 Choosing a programming language 10
4.6 Libraries . 10

5 Tools to analyse energy efficiency 10
5.1 powertop (Unix) . 11
5.2 perfmon (Windows) . 11

6 Conclusion 11

- 2 / 12 -

Energy Efficient Programming Merlin Steuer

1 Introduction
With rising energy prices and the awareness that high energy consumption has
an effect on the environment, being energy efficient becomes more of a deal these
days. Being efficient in using the available ressources is now a big requirement
everywhere, especially in software and hardware projects.

Looking at High Performance Computing (HPC), the DKRZ1 has an annual
energy consumption of approx. 10.5 GWh[1] at a power as high as 1.2 MW.
This is the electrical energy 2800 households of 3 persons use per year[2]. These
numbers seem to be quite big, but get smaller when looking at the Top500 No.
2, the National Super Computer Center in Guangzhou, China[1] which has a
power consumption of 18MW, resulting in 160GWh of electrical energy being
used every year, which is as much as 41000 households[2] or 10 times as much as
a small German city like Reinfeld consume[3].

But not only in HPC, but also in every mobile device energy efficiency is a
big problem. To give an example: Batteries of mobile phones should last for
at least a day with rising display sizes, smaller space for the battery inside the
housing and bigger processors.

Within the next sections, the fundamental basics of writing energy efficient
programs will be described by going bottom-up from the hardware layer to the
application layer, outlining possibilities and potentials to save energy within
each layer.

2 Energy saving at the hardware layer
Having a wide variety of processors (and generally hardware) in the field makes
finding a generic approach of saving energy directly within the hardware compli-
cated. At the same time, saving energy directly within the hardware layer has
the most potential, since it may be possible to save energy without user-code
interaction. Two terms will be discussed here: Dynamic Voltage and Frequency
Scaling (DVFS) and Advanced Configuration and Power Interface (ACPI). The
combination of both create a partly-automatic approach to saving energy in the
hardware layer.

2.1 Dynamic Frequency and Voltage Scaling (DVFS)
DVFS is a very basic, but still very powerful approach to saving energy in a
clocked system2 as it makes use of their physical properties. The electrical power
used by a processor is a combination of two seperate terms:

• Pstatic = m · V [4] with m being a constant of the unit W
V and V being the

core voltage the processor is clocked at.
This term represents the power used statically by a processor. It is
independent from the clock frequency and is a result of leakage currents
within the semi-conductors inside the circuit.

• P = 1
2 C · V 2 · f + Pstatic [4] with

1Deutsches Klimarechenzentrum
2Every processing unit in computers are clocked systems, meaning the voltage within the

circuit changes cyclically.

- 3 / 12 -

Energy Efficient Programming Merlin Steuer

– C being the capacitance of the clocked circuit3

– V being the voltage the circuit is clocked at
– f being the frequency the circuit is clocked at

This term represents the overall power consumption of a clocked system.
To save power, we need to reduce one or more of the parameters C, V and
f . The constant m is usually nothing which can be influenced easily, since
it highly depends on the layout of the circuit. Changing C can be done
in small dimensions in modern processing units by disabling peripherals
within the processor. This will be discussed in section 3.
What can be done quite easily and has a big effect on the power consumption
of a system is changing the voltage and frequency of the clocked system.
Let us first look at the voltage as the power is dependent quadratically on
it. Reducing the voltage by 50% means saving 75% of the energy. Also
reducing the frequency by 50% halves energy consumption.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100%
 P

o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

o
f

1
0

0
%

 C
o
re

 V
o
lt

a
g
e
)

% Core Frequency

Power consumption by core frequency

Power

Figure 1: Power vs. Frequency

Figure 1 and 2 give a graphical representation of the dependencies on
frequency and voltage within the above formula.

2.2 Advanced Configuration and Power Interface (ACPI)
ACPI is an industry standard used in every processor for home computers
and servers. It makes use of the previously described DVFS to reduce power
consumption of the processor. To accomplish this, it introduces so-called P- and
C-States, which represent different states of the processor.

2.2.1 P-States

3To speak in simple words, the capacitance of a clocked circuit is dependent on the number
of electrons moved around in every power cycle. This is by far not the physical definition, but
should make the point.

- 4 / 12 -

Energy Efficient Programming Merlin Steuer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100%
 P

o
w

e
r

C
o
n
su

m
p
ti

o
n
 (

o
f

1
0

0
%

 C
o
re

 V
o
lt

a
g
e
)

% Core Voltage

Power consumption by core voltage

Power

Figure 2: Power vs. Voltage

i Vi (V) fi (GHz)
0 1.23 2.00
1 1.17 1.50
2 1.12 1.20
3 1.09 1.00
4 1.06 0.80

Figure 3: Example: P-
States of the AMD Opte-
rion 6128 @ 2 GHz[5]

The P-States (Performance-States) represent the state
of the processor according to voltage and frequency.
A processor in P0 is in normal operation with voltage
and frequency being at 100%. As the index i in Pi

rises, voltage and/or frequency are lowered and by this
the power consumption is reduced.

The different P-States may be set by the oper-
ating system, allowing it to gradually set the power
consumption when the processor is not (fully) needed.

2.2.2 C-States

The C- or Core-States have even more potential to
save energy than the P-States, but can not be set by the OS. C0 again represents
the state of the processor, in which it is in normal operation. The difference
to the P-States is, that in Ci as soon as i gets bigger than 0, the processor is
halted and no more code is executed. As i rises, more and more functions of the
processor are switched off, resulting in a higher transition time from Ci to C0,
meaning it takes the processor longer to resume normal operation. Since the
operating system cannot directly send the processor into a specific C-State it has
to establish conditions, in which the chipset decides to enter a specific C-State.

Figure 4 gives a schematic overview over the C-States. Both P- and C-States
may be set on socket- or core-level, depending on the processor used.

3 Energy saving at the OS layer
The operating system is a piece of software with the main task of managing and
serving resources for the user code above the OS. It is intuitively clear that the
OS can have quite some impact on the overall power consumption of a system, as
it is able to set the processor’s voltage and frequency (using ACPI) and manage
all peripherals found within a typical computer.

Processors nowadays come with a lot of integrated peripherals, mainly used
for communication between cores, between processor and peripherals on the

- 5 / 12 -

Energy Efficient Programming Merlin Steuer

motherboard or between processor and other connected peripherals. These
communication modules can, if unused, usually be switched off. Depending on
the design of the processor, switching off modules may reduce the capacitance
of the clocked circuits, which, as of section 2.1, has linear impact on the power
consumption of a processor.

Figure 4: Schematic overview outlining the different
C-States[6]

In the following sec-
tions the main power
consumers within a typ-
ical computer system are
listed with potentially
power-saving actions which
may be taken by the oper-
ating system.

CPU
As described above, the
OS can lower the power
consumption of a CPU
by lowering the voltage
and/or the frequency the
CPU is working at. If the
operating system has an
efficient scheduler there is
potential to enter higher
P- or even C-States more
often when the processor
is idle.

Graphics card
For graphics cards, very similar rules apply as for general processing units. When
idle, the processing units on the card may be driven at lower speed and lower
voltage, resulting in similar power savings. In some computer systems there
even are two graphics cards: A high-performance card which is only activated
when it’s needed and a smaller one, doing the less complex tasks. With this
method, a lot of energy may be saved, because the smaller graphics card can
have a very specific design for energy efficiency, while the high-performance card
can be designed with only the performance in mind.

Network interfaces
Network communication between two (or more) end points takes place by sending
clocked data over a long cable. As one might guess, this can also be interpreted
as a clocked system like in section 2.1 with the same formulas applying in this
scenario.

Having this in mind, reducing the speed of a network interface to e.g.
100Mbit/s instead of 1Gbit/s has a significant impact on the power consumption
of the network interface. Of course, this only applies if the faster connection is
not needed.

- 6 / 12 -

Energy Efficient Programming Merlin Steuer

HDD
Hard disks with conventional magnetic discs inside need about 10W each when
running[7]. By better scheduling and organizing disc accesses and using optimized
caching of data, accesses to the disc can be reduced by the operating system.
When the hard drive is not accessed, the motor can potentially be turned off,
resulting in a significantly smaller energy consumption. It is important to note,
that a hard drive with it’s motor shut down takes a relatively long time (102 to
103 milliseconds) to start up. This should be considered, as the first access to
the data is delayed and cannot take place immediately.

Main memory
It is important to have the main memory (RAM) in mind when talking about
energy efficiency. RAM accesses need a specific amount of energy, which means
that more RAM accesses need more energy. Additionally, accesses to the
main memory need quite some time, which means a lot of RAM accesses slow
down programs significantly. By mindfully using the caching functionality of
a processor, programs can be sped up by multiple orders of magnitude, also
resulting in a higher efficiency and lower power consumption.

4 Energy saving at the application layer
Having the basics from sections 2 and 3 in mind, the programmer has probably
the biggest impact on the energy efficiency of the code he writes. He has to
know what happens under the hood to make good decisions in terms of energy
efficiency.

Within the following sections, some general and basic techniques are described
which help developers to write energy efficient code. These techniques mostly
apply to both conventional and mobile computing, as they are not platform-
specific. Operating system- or architecture-specific rules are not discussed within
this article.

4.1 Time efficiency
The most intuitive approach to making a program more energy efficient is making
it more time efficient. The energy a program needs is proportional to the time
it needs to execute, i.e. the CPU cycles needed. Many problems which occur
while programming have faster alternative algorithms than the trivial approach.
A good example here is sorting. Sorting an array of n elements using the
most basic sorting algorithm called Bubblesort takes O(n2) steps4 in average,
which is significantly worse than for example Quicksort, having an average time
complexity of O(n · log(n))[8]. Using real numbers, sorting an array of 1.000.000
completely unordered elements takes 1012 steps using Bubblesort, and only 6 ·106

steps using Quicksort, which is 6 orders of magnitude faster.
Another example is searching for sub-strings of length m in a string of length

n. The trivial approach takes O(n ·m) steps4, while the Boyer-Moore algorithms
accomplishes the same task in O(n + m) steps[8].

4Knowledge about the trivial approaches is presumed here

- 7 / 12 -

Energy Efficient Programming Merlin Steuer

4.2 Data efficiency
Data efficient programs cause less memory operations, which increases both
energy efficiency in terms of memory and time efficiency. Data efficiency includes
writing programs which cause a lot of cache hits5, also reducing memory accesses.

Having the memory layout in mind when writing programs is very important
for data efficiency. Taking some time to choose the correct data structure for the
given scenario may improve efficiency in multiple orders of magnitude. Looking
at linked lists (from SE I) in comparison to arrays as data containers clarifies
this point: A read access to a linked lists takes O(n

2) time, while reading an
element from an array takes place in O(1), i.e. constant time[9]. Additionally, in
a linked list, when reading by iterating over all link containers, each container is
usually located in a different memory location, which results in a cache miss for
almost every step within the iteration. Algorithms with a lot of read-accesses
(like Bubblesort) get very inefficient when using linked lists. A programmer
should use linked lists only when a lot of data is appended to the list (which
takes place in constant time, independent from the size of the list), but has no
need for a lot of read-accesses.

Data efficiency is always a contrast to time efficiency. Algorithms are usually
optimized for either data efficiency or time efficiency, resulting in the need for a
good and well-considered design by the programmer to choose the best trade-off
between both points.

4.3 Logging
Logging is a great tool during development to track and find errors. In production
environments, logging can still be extremely useful to find errors that were not
found until the time of occurrence. Logging usually is done by writing to the hard
drive. When a lot of information is written, the hard drive is constantly running
and using energy which could be saved by only logging important information.
Additionally, logging log messages and writing them in a batch helps to reduce
the load on the hard drive.

4.4 Letting the CPU rest
In terms of energy efficiency, a sleeping CPU is a good CPU. This means we
should use techniques which help the OS to set the processor to sleep. One
common technique is described below by using the example of two different
implementations of network communication.

The implementations of network communication in figure 5 and 6 schemat-
ically show two different implementations of reading from a network socket.
Although both code snippets accomplish the same thing, the listing in figure
5 prevents the CPU from going to sleep for long times. It polls the network
socket for incoming data, if there is nothing to read, it yields the execution of
the program for a specific amount of time and then tries again. The delay of one
second within this example is relatively long, usually delays in the magnitude of
milliseconds are chosen to repeat the query. This type of reading from a network
might have performance benefits, but has significant downsides in energy effi-
ciency, as the CPU has to wake up and execute user code for every read operation.

5Accessing regions of the memory which are already within the cache of the processor

- 8 / 12 -

Energy Efficient Programming Merlin Steuer

1 while (true)
2 {
3 // Read data
4 result = recv(serverSocket , buffer , bufferLen , 0);
5
6 // Handle data
7 if(result != 0)
8 {
9 HandleData (buffer);
10 }
11
12 // Sleep and repeat
13 Sleep (1000) ;
14 }

Figure 5: A bad implementation of network communication[6]

1 WSANETWORKEVENTS NetworkEvents ;
2 WSAEVENT wsaSocketEvent ;
3 wsaSocketEvent = WSACreateEvent ();
4 WSAEventSelect (serverSocket , wsaSocketEvent , FD_READ | FD_CLOSE);
5 while (true)
6 {
7 // Wait until data will be available in the socket
8 WaitForSingleObject (wsaSocketEvent , INFINITE);
9 // Read data
10 result = recv(serverSocket , buffer , bufferLen , 0);
11
12 // Handle data
13 if(result != 0)
14 {
15 HandleData (buffer);
16 }
17 }

Figure 6: A good implementation of network communication[6]

The code listing in figure 6 shows a different approach. After configuring the
socket, the code tells the operating system to yield code execution until data has
been received. The operating system then waits for new data and can decide to
send the CPU to power saving states during this period. When data is available,
the operating system resumes code execution and the read operation is more
likely to be successful. This approach is called event driven and is usually the
better choice when it comes to energy efficiency. One downside of this approach
can be the operating system needing some time to handle incoming data and to
wake up waiting programs, so for time-critical applications polling might still be
the better solution.

As discussed before, network communication consumes energy on a lot
of different layers. Since communication becomes more and more important
nowadays, especially for mobile applications further considerations should be done
before implementing a communication protocol. Each byte sent over a network
(mobile or wired) needs energy, so it is important to reduce communication to
the minimum needed when talking about energy efficiency. It is a good idea to

- 9 / 12 -

Energy Efficient Programming Merlin Steuer

keep protocols slim and reduce communication overhead to the least possible
amount[10]. Another thing to keep in mind is - especially considering the above
code samples - that is should be preferred to send big messages less frequent
than sending small messages very often, as this would wake up the CPU even in
event driven implementations very often.

4.5 Choosing a programming language[9]
Before starting a project, a programmer should always put some time into
choosing a good programming language for the task to accomplish. A trade-off
has to be made between the convenience high-level languages like Java or C# and
the abilities to have very granular control on execution and memory management
in lower-level languages like C or C++. When it comes to energy efficiency, the
low-level languages are almost always the better choice, as there is more potential
to control, optimize and improve both memory layout and management as well as
execution of single commands. The ability to embed assembler instructions into
the code does not necessarily make it easier to maintain, but - if used correctly
- improves execution times and energy efficiency. On lower level languages,
the compiler might help to optimize the code by using architecture-specific
instructions or executing instructions in other orders, which both can have huge
impact on the instruction counts per task and by this on the efficiency.

One more important consideration concerns interpreted languages like Python
or Ruby. These languages are not compiled into machine code once, but every
time a program is started. This increases execution time and gives the interpreter
less freedom to optimize the code, because the user wants the program to
immediately start. Both points lead to a less energy efficient program, so
compiled languages should always be preferred over interpreted ones when
writing energy efficient code.

4.6 Libraries
One last thing to have in mind before starting to write a program should be to
look for libraries. A lot of problems have been solved already, those solutions
have usually been developed over years and include lots of improvements and
bug fixes. For multi threading and parallel computing the libraries OpenMP and
MPI take a lot of work away from the developer, giving him the chance to focus
on the important things. Albeit, the developer should read the documentation of
libraries carefully, as the developers of libraries might have had different targets
in mind (e.g. performance over energy efficiency), which can lead to unexpected
results.

5 Tools to analyse energy efficiency[11]
Quite a variety of tools is available for multiple platforms and architectures
to analyse the energy efficiency of programs. These tools usually monitor the
overall system action, allowing the data to be analysed in detail after recording
it. In this article, two tools will be covered, one for Windows operating systems
and one for Unix based operating systems.

- 10 / 12 -

Energy Efficient Programming Merlin Steuer

This list is neither comprehensive nor complete, but points to the two most
important tools on the two most important platforms widely used. There are
similar tools available for all other platforms like mobile phones.

5.1 powertop (Unix)
Powertop is a powerful tool to detect energy inefficient applications in Unix/Linux
environments. When started while a specific program is running, it records
detailed statistics about CPU usage, CPU time, memory usage, caching infor-
mation and statistics about P- and C-States as well as the different frequencies
the CPU was clocked at during measurement. It helps developers to detect
applications that cause the CPU to wake up very often and records detailed
information about sleep/wake-up times. This tool should be within the basic
toolbox of every developer concerned about energy efficiency in Linux/Unix
environments.

5.2 perfmon (Windows)
Perfmon is successor of System Monitor from older Windows Versions and
has similar abilities like powertop mentioned above. It can display a lot of
information about the system in a handy chart or in numerical form. It also
has the ability to display all the information in real-time, enabling for faster
debugging of applications during development on Windows machines.

6 Conclusion
Writing energy efficient code is not a fully intuitive task. The developer needs
to know a lot about the processor, the operating system and the hardware used.
By knowing what happens under the hood, better decisions can be made in
terms of energy efficiency. It is also not easy to write generic programs which
are efficient on every platform out there, as requirements for mobile computing
and high performance computing for example differ significantly. Nevertheless,
some simple rules described in this article help developers in making good
decisions and writing more efficient code. It is also always a good idea to look up
documentation for the platform used, as there are often considerations already
made about energy efficiency. It’s important to keep in mind that the trivial
approach to a problem is hardly ever the best, so putting some energy into
solving problems better potentially improves energy efficiency significantly.

References
[1] Top500.org. Top500 List November 2016. Accessed: 15.11.2016. [Online].

Available: https://www.top500.org/list/2016/11/

[2] B. für politische Bildung. Bevölkerung und Haushalte. Accessed: 15.11.2016.
[Online]. Available: http://www.bpb.de/nachschlagen/zahlen-und-fakten/
soziale-situation-in-deutschland/61584/bevoelkerung-und-haushalte

[3] Reinfeld.de. Starting page. Accessed: 15.11.2016. [Online]. Available:
http://www.reinfeld.de/

- 11 / 12 -

Energy Efficient Programming Merlin Steuer

[4] M. Travers, “CPU Power Consumption Experiments and Results
Analysis of Intel i7-4820K,” p. 5, 2015. [Online]. Available: http:
//async.org.uk/tech-reports/NCL-EEE-MICRO-TR-2015-197.pdf

[5] M. Dolz, “Paving the way towards energy-
aware high-performance-computing,” p. 18, 2014. [Online].
Available: https://wr.informatik.uni-hamburg.de/_media/teaching/
wintersemester_2014_2015/eep-1415-eehpc.pdf

[6] Cprogramming. Green Code Developement. Accessed: 15.11.2016. [Online].
Available: http://www.cprogramming.com/appup6.html

[7] buildcomputers. Power Consumption of PC Components in Watts.
Accessed: 15.11.2016. [Online]. Available: http://www.buildcomputers.net/
power-consumption-of-pc-components.html

[8] B. e. a. Vöcking, Taschenbuch der Algorithmen. Springer: Heidelberg,
Berlin, 2008.

[9] D. Lohmann, “Energy aware programming tech-
niques,” 2014. [Online]. Available: https://wr.informatik.
uni-hamburg.de/_media/teaching/wintersemester_2014_2015/
eep-1415-lohmann-programming-techniques.pdf

[10] C. Weekly. 8 ways to make your software applica-
tions more energy efficient. Accessed: 15.11.2016. [On-
line]. Available: http://www.computerweekly.com/blog/Green-Tech/
8-ways-to-make-your-software-applications-more-energy-efficient

[11] F. Goekkus, “Energy Efficient Programming. An overview of problems,
solutions and methodologies,” p. 52, 2013.

- 12 / 12 -

