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1. Introduction 

Nowadays we are living in a vibrate world where everything is developed so fast. The capacity and the 

speed of the CPUs as well as memory chips are doubled every five years. A long with the fast developed 

technologies there is more focus on using the available technology more efficiently and to optimize it to 

match our needs. 

As a result of such new trend there is more demand on what so called “Performance Modeling”, where 

a model for the desired system is built before starting to optimize this model to match the desired 

performance then implementing it. 

1.1. Motivation 

When building a supercomputer to run a certain applications, it is always better to develop those 

applications based on a model for this supercomputer then starting to optimize both the software as 

well as the hardware when building this supercomputer. By doing that, a high optimized performance is 

achieved on a cheap cost without wasting a lot of money, time and power on optimization on a real 

system. 

1.2. Structure of this Paper 

This paper is divided into seven chapters. The first chapter provides a quick introduction about the 

performance modeling followed by a clear explanation about the performance modeling prospective 

and the factors affecting it in the second chapter. Moreover, the second chapter explains the difference 

between various performance models and how the performance components are integrated with each 

other’s. In chapter three the roofline model is in question. Furthermore, a real example where roofline 

model is used to optimize the performance is also discussed in the third chapter, while the fourth 

chapter shows a glimpse view of Execution-Cache-Memory which is considered to be as a refinement to 

the roofline model. A quick introduction about the roofline model in HPC was introduced in the fifth 

chapter. Additionally, a glance overview of other levels of optimization is also discussed in the sixth 

chapter. The seventh and the final chapter summarize the topic of this paper. 
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2. Performance Modeling 

2.1. What is Performance Modeling? 

Performance modeling is a structured and repeatable approach to model the performance of a system 

that is by defining an abstract architectural model or software to simulate this model. It begins during 

the early phases of any system/application design and continues throughout the system/application life 

cycle. 

 

2.2. Why Performance Modeling? 

 

Figure 2.1: Performance modeling illustration 

Let us assume that it is required to optimize applications to run on a multi-hundred-million dollar 

supercomputer that consumes as much energy as a small European town to solve computational 

problems at an international scale and advance science to the next level with “hero-runs” of scientific 

applications that cost $10 K and more per run. So, it is always better to plan ahead [1]. This is achieved by 

trying to extrapolate the performance from small machines to big one (see figure 2.1). 

Parallel application performance is complex which is often unclear how the optimizations impact 

performance, especially at scale of different architectures at different scale and at different architect 

with those numbers of different parameters. So the goal is actually assessing the performance of the 

large scale application. Moreover, another problem is how to optimize for a machine that does not exist 

because the optimized machine is going to run for couple of years. If the application is not ready when 

the machine is deployed, then a lot of money is going to be wasted. 

This means it is better to optimize for the application in the process or in parallel with deploying a 

machine, which means that the application cannot be ran on the machine looking for the performance, 

optimize it, running it again, optimize it, and so on because when this cycle is done, half of the life-time 

of the machine as well as a lot of compute power is wasted this way. 

This is considered to be a big issue for applications that ran on large-scale systems where guided 

optimization is needed. So a good understand of the performance characteristic of the running machine 

before the deployment and guiding this optimization in parallel with the system is the best approach. 
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An alternative way is to use some hardware accelerators but this solution does not pay any attention to 

the bandwidth cost of such a technique so it is better to understand the system before making any 

trade-off in design. 

So to sum up, Performance modeling provides several important benefits:  

 Guide optimization during application design. 

 Evaluate tradeoffs before building the solution. 

 Guiding future maintenance and expansion decisions. 

 Avoid performance surprises during application execution. 

 Provide a document of itemized scenarios for tracking performance goals. 

 

2.3. Prospective of Performance Modeling? 

 

Figure 2.2: Performance modeling prospective 

Performance modeling can be implemented on System/architectural level where the focus will be more 

on hardware optimization or on the kernel (application/services) level where the optimization will be 

carried only on the software side. Having both sides mean that the audience of the performance 

modeling are data centers, system administrators as a backend system/software developers or system 

administrators. On the other side there is the end user who is going to use this system/software (see 

figure 2.2). 
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2.4. Factors Affecting System Performance 

 

Figure 2.3: factors affecting system performance 

There are a lot of factors that should be taken into consideration when optimizing the performance. 

Some of those factors are CPU clock speed, cache memory, data bus; multi-core CPU, RAM and I/O 

connected devices as well as transfer rate (see figure 2.3). 

 

2.5. Principle Components of Performance [2] 

 

Figure 2.4: Principle components of performance 

There are three principal components of performance [3]: 

1. Computation 

2. Communication 

3. Locality 

Note: each hardware architecture has a different balance between these three components as well as 

there is a different balance between those components on the kernel level (see figure 2.4). Performance 

is a question of how well a kernel’s characteristics map to architecture’s characteristics 
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1. Computation[4] 

The floating point performance (Gflop/s) is considered to be the main interest. The Peak in-core 

performance can be achieved through: 

• fully attainment Instruction-level parallelism (ILP), Data level parallelism (DLP), FMA; 

• non-FP instructions don’t deplete instruction BW; 

• branch mis-predictions are not often; 

• Threads converge. 

 

On the other hand, In-core parallelism is achieved if: 

• The used algorithm implements Inheritance; 

• The generated code has explicit. 

Double-precision floating-point format is a computer number format that occupies 8 bytes (64 bits) 

in computer memory 

Note: 

Gflops:  floating-point operations per second = (CPU Clock in GHz) × (Number of CPU Kernels) 

 

2. Communication [4] 

DRAM bandwidth (GB/s) is the main interest. Peak bandwidth can be achieved when specific 

optimizations are implemented: 

• SW Prefetching; 

• NUMA allocation; 

• NUMA usage; 

• Memory coalescing; 

• Few unit stride streams. 

 

3. Locality [4] 

Locality shows the location where the data is being processed. This means that, the traffic represents 

the volume of data to/from memory but not the number of loads and stores. Additionally, to reduce 

the communication it is better to increase the locality but there is still what so called “Compulsory 

Traffic” which is the minimum needed amount of communication that cannot be avoided. 

Locality optimization can be achieved on either the hardware level or on the software level. On the 

hardware level the modification of the hardware helps to reduce the communication. Such a 

hardware modification can be achieved through: 

• More cache associativities; 

• Increasing non-allocating caches; 

• Reduce capacity misses by increase cache capacities. 
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On the other hand, the software modification can be achieved by reducing the communication which 

is going to be done through: 

• Avoid capacity misses through blocking; 

• Avoiding conflict misses through Padding; 

• Increasing non-allocating stores. 

2.6. Integrating Performance Components 

As the performance is considered an equation of the three mentioned components, the question now is 

how to integrate those three components to optimize the performance (see figure 2.5). 

 

Figure 2.5: Integrating Performance Components 

As the Coordinates of a kernel are unique to each architecture, then the performance optimization will 

be unique to each architecture. Flops: Bytes is the parameter that allows us to convert bandwidth (GB/s) 

to performance (GFlop/s) this will be achieved through Arithmetic Intensity and this can be achieved 

through measurements. By measuring the total bytes, all cache behavior (Compulsory misses, Capacity 

misses, Conflict misses) and Locality can be incorporated (see figure 2.6) [5]. 

 

Figure 2.6: Caches Behavior 
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Cache behavior has three different types: 

1. Compulsory misses 

Misses caused by the first reference to a location in memory that a program has never 

requested before. 

2. Capacity misses 

Misses that occur regardless of associativity or block size, solely due to the finite size of the 

cache (pencil and paper or maybe performance counters). 

3. Conflict misses 

Misses that could have been avoided, had the cache not evicted an entry earlier.  

 

2.7. Different Performance Models 

For system/architectural Performance Modeling, we have the following models  

1. Stochastic Analytical Model 

2. Statistical Performance Model 

3. Roofline Model 

Each model has its own advantages and disadvantages. For example, both stochastic analytical and 

statistical performance models can predict program performance on multiprocessors 

accurately. However, they rarely provide insights into how to improve performance of 

programs, compilers, or computers or they can be hard to use by non-experts [6].  

On the other hand, Roofline model has a lot of advantages compared to the early mentioned two 

models. For example Roofline model provide a simpler approach to bound and bottleneck 

analysis. Furthermore, it provides valuable insight into the primary factors affecting the 

performance of computer systems. In particular, the critical influence of the system bottleneck 

is highlighted and quantified. Moreover, roofline model is also applicable to heterogeneous 

multicore computers. Nonetheless, roofline model ignores potentially important factors like 

block size, block allocation policy, and block replacement policy (see figure 2.7). 
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Figure 2.7: Pros and Cons of different Performance Models 

Due to the its easy-to-understand, this model has been popular for nearly 20 years because it 

offers insights into the behavior of programs, helping programmers, compiler writers, and 

architects improve their respective designs. 
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3. Roofline Model 

3.1. Goals of Roofline Model [7] 

The goals of Roofline model can be summarized in the following points: 

 Provide a visually intuitive performance model 

 Drive programmers towards better understanding of performance on modern computer 

architectures 

It does not only provide programmers with realistic performance expectations but also specifies 

potential challenges to performance 

 Drive programmers to implement particular classes of optimizations by knowing of system 

bottlenecks. 

 Focus on architecture-oriented roofline models (not using performance counters) 

 

3.2. Explanation of Roofline Model [7] 

 
Source: http://crd-legacy.lbl.gov/~oliker/papers/blw10_chapter_autotune.pdf, page 13 

Figure 3.1: Simple Kernel Structure 

 
Let us assume simple kernels that do the following processes: 

1. Transfer Bytes of data from Memory0 
2. Perform F/2 FLOPs on both CPUs 
3. Memory can support Peak Bandwidth Bytes/sec 
4. The two CPUs combined can perform Peak Performance FLOPs/sec 

 
Pmax: Loop peak performance taking in consideration the data transfer from L1 cache (not 
necessarily Ppeak) 
 
Computational intensity (I): “work” per byte transferred through the slowest data path (“the 
bottleneck”) (measured in flops/bytes). [6] 
 
Code balance (Bc) = I-1 
 
bs:  Peak bandwidth of the slowest data path (byte/sec) 
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Thus the Expected Performance will be the minimum of both Pmax and I.bs 

P = min (Pmax, I . bs) 
 
 
3.3. Roofline Model Analysis for Intel Sandy Bridge [8] [9] 
 
In the following example Intel® SandyBridge™ is going to be used as an example to apply 
roofline model analysis on it. Assume also that all instructions in a loop are maintained 
independently to different ports and the sum number of penalty cycles for each cycle with 
Advanced Vector Extensions (AVX) (see figure 3.2). 
 

 
Source: http://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-talk.pdf, page 5 

Figure 3.2: Intel SandyBridge Internal Structure 

 
 

 one AVX MULT + one AVX ADD; 

 One load instruction + ½ store instruction. 
 
Per cycle with SSE or scalar 

 Two load instruction; 

 One MULT + one ADD instruction. 
 
There is maximum of four micro-ops but considering three is more realistic. 
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Assuming the following code: 

Double *A, *B, *C, *D; 
For (int i=0; i<N; i++) { 
A[i] = B[i] + C[i] * D[i]} 

 
The number of cycles to process one AVX-vectorized iteration will be as following: 

Cycle 1: LOAD + ½ STORE + MULT + ADD 
Cycle 2: LOAD + ½ STORE 
Cycle 3: LOAD  

 
As one AVX iteration (3 cycles) performs 4 x 2 = 8 Flops  -> 8 Flops / 3 cy 

3 Gcy/s * 8 F / 3 cy = 8 GFlops/s 
 
Bandwidth Calculation: 

8 GFlops/s * 32 Byte / 2 Flops = 128 GBytes/s 
Assume 3 GHz 8-core Sandy Bridge chip 
bs = 40 GB/s 

 
Bc = (4+1) Words / 2 Flops = 2.5 W/F  
I = 0.4 F/W = 0.05 F/B 
 I ∙ bs = 2.0 GF/s (1.04 % of peak performance) 
 
Ppeak = 192 Gflop/s (8 cores x (4+4) Flops/cy x 3.0 GHz) 
Pmax = 8 x 8 Gflop/s = 64 Gflop/s (33% peak) 
 
 
Now, taking the minimum of both Pmax and I.bs 
 

 P = min( Pmax, I.bs) = min (64,2.0) GFlop/s = 2.0 GFlops 
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For simplicity and diversity, AMD® Opteron™ 2356 (Barcelona) will be considered to show the 

optimization options and how each factor is going to affect the optimization graph of the AMD® 

Opteron™ processor (see figure 3.3) [10]. 

 
Source: http://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-talk.pdf, page 21 

Figure 3.3: Optimization graph for AMD® Opteron™ 2356 

 
Note: On log-log scale, line always appears at a 45-degree angle. 

From the previous graphs we notice that 

 There is no standard/single ordering or roofline model. 

 The ceiling order is generally bottom up. 

 Addition, Multiplication and FMA are balanced inherent in many linear algebra routines. 

 Addition is the most dominant operation thus the multipliers and FMA go underutilized. 
 Processor can access its local memory faster than non-local or shared memory 

 Memory access time depends on memory location relative to processor 

 

As Instruction-Level parallelism (ILP) measures the number of operations that a program can be 

performed simultaneously. If the thread of execution falls short of expressing this degree of parallelism, 

functional units will go idle, and performance will be negatively affected. 

Prefetching occurs when a processor requests an instruction from main memory before it is actually 

needed. Once the instruction comes back from memory, it is placed in a cache. When an instruction is 
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actually needed, the instruction can be accessed much more quickly from the cache than if it had to 

make a request from memory. 

4. Execution-Cache-Memory (ECM) 

Execution-Cache-Memory (ECM) model refines the well-known roofline model, since it can 
predict the scaling and the saturation behavior of bandwidth-limited loop kernels on a 
multicore chip [11]. 
 

 Refines the roofline model to predict the behavior of saturation and scaling of 
bandwidth-limit. 

 Provides a clear understand of the single and multi-core performance of streaming 
kernels.  

 

Execution-Cache-Memory (ECM) model describes the single and multi-core performance of 
streaming kernels [11] [12]. 
 
Intel© SandyBridge™ processor exposes part of its power characteristics to the programmer 
through “Running Average Power Limit” feature. 
 

 The majority of numerical codes are based on streaming loop kernels. 

 Kernels are always limited by the bandwidth of memory that leads to a distinct scaling 
behavior across the cores of a multicore chip [13]. 

 
Roofline model is used to anticipate the performance 

 
 
 
Execution-Cache-Memory (ECM) composes of [20]: 
 

1. Core Time (Tcore): 
Time taken to execute all instructions, with all operands of loads/ stores coming from/ 
going to the L1 data cache. 

 
2. Data Delay (Tdata): 

Time taken to transfer data to/ from L1 through the memory hierarchy. This value will 
be larger if the required cache line(s) are “far away”.  

 
 
 
 
 
 
 



P a g e  | 17 

 

The ECM analysis of a single core processor is as shown below (figure 4.1), while the ECM 
analysis for multicore scaling is as shown in (figure 4.2) as well as (figure 4.3) [17] [19]. 
 

 
Source: http://moodle.rrze.uni-erlangen.de/mod/resource/view.php?id=3976, page 6 

Figure 4.1: ECM Analysis for Single core  

 

 

 
Source: http://moodle.rrze.uni-erlangen.de/mod/resource/view.php?id=3976, page 6 

Figure 4.2: ECM Analysis for Multicore Scaling 
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Source: http://moodle.rrze.uni-erlangen.de/mod/resource/view.php?id=3976, page 7 

Figure 4.3: ECM Analysis for Multicore Scaling 

 
 
As shown in figure (4.3) the performance of the processor is drastically improved by using full 
overlap beyond L2 compared using only single –ported as well as no overlap [18] [19]. 
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5. Roofline in HPC Overview 

 
Source: https://redmine.scorec.rpi.edu/attachments/111/roofline_for_FastMath.pdf, page 4 

Figure 5.1: Roofline model for HPC 

 
As shown in the figure 5.1 the following points are recommended after applying Roofline model 
on HPC [10]: 
 

 Certain arithmetic intensity is exceeding by local store space. 

 Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 

 Some HPC kernels have a constant arithmetic intensity. 
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6. Software/Service Optimization 

6.1. Software Optimization 

Considering software optimization for AMD® Opteron™ 2356 processor there are a lot of 

recommendations that will help to improve the performance of the processor such as NUMA wise 

allocation and long unite stride as well as software prefetching (see figure 6.1) [10] [16]. 

 

Source: http://crd.lbl.gov/assets/pubs_presos/parlab08-roofline-talk.pdf, page 20 

Figure 6.1: Software Optimization 

6.2. Application/Service Modeling 

Other way of performance modeling is to model a communication between 
application/services [14]. 
 

Inputs 

 Scenarios and design documentation about critical and significant use cases; 

 Application design and target infrastructure and any constraints imposed by the 
infrastructure; 

 QoS requirements and infrastructure constraints, including service level agreements 
(SLAs); 

 Workload requirements derived from marketing data on prospective customers. 
 

Outputs 

 A performance model document; 

 Test cases with goals. 
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For example if we are developing an online booking system then we measure the performance 
of the system with respect to our pre-defined SLA (see figure 6.2) [14] [20]. 
e.g. 

 Number of Co-current booking requests; 

 Number of Running Vusers; 

 Number of Hit per Second; 

 CPU etc. 
 
Tools: 
Commercial Tools like HP LoadRunner® or Open-source Tool like JMeter®. 
 

 

Figure 6.2: Service Analysis using HP LoadRunner 
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7. Summary 

In the previous chapters, the concept of performance modeling was explained in details. Moreover the 

difference between the various performance models as well as the factors affecting it was clarified. 

Roofline model was discussed with an example; furthermore a refinement to the roofline model was 

explained in the fifth chapter which predicts the behavior of saturation and scaling of the bandwidth-

limit. Furthermore, as mentioned in chapter five, how some HPC kernels have a constant arithmetic 

intensity and how it is connected with the local available store space. The sixth chapter helped us to 

understand the relation between the software optimization and the system performance. Additionally, 

the application and/or service modeling was introduced where some commercial as well as open-Source 

tools were suggested.  

Although, the roofline performance modeling provides a visual assistance through a realistic forecast of 

performance and productivity of the system as well as shows hardware constraint for a given kernel. It is 

not suitable for those who are interested in fine tuning (+5%) as well as those who are challenged by 

parallel kernel correctness. Execution-Cache-Memory (ECM) describes the scaling characteristics of 

bandwidth bound codes on a multicore chip better than a simple bottleneck analysis. [15] [21] [22] 

A recommendation optimization guide is shown in figure 7.1 where five steps will help to significantly 

improve the system performance. Starting from reaching the bandwidth bottleneck through a good 

serial coding then increasing the intensity by making a better utilization of bandwidth before jumping 

from memory-bound to core-bound then implementing a good algorithm.

 

Source: http://moodle.rrze.uni-erlangen.de/pluginfile.php/10814/mod_resource/content/2/05_Roofline_Model.pdf, page 20 

Figure 7.1: Recommendation to optimize system performance 
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Personally, I am convinced that, using roofline modeling plays a vital role in a big and a long-term 

projects where a lot of time, money and power are going to be invested and a small optimization will 

show a significant cost reduction as well as time and money saving.  

References 

[1] National Center for Supercomputing Applications (NCSA), University of Illinois, USA, 
"Performance Modeling for Systematic Performance Tuning", ACM 978-1-4503-0771-0/11/11, 
pp. 1 - 5. 

[2] S. Jarvis, S.Wright, Simon Hammond, High Performance Computing Systems: Performance 
Modeling, Benchmarking and Simulation, Springer, ISBN: 978-3-319-10213-9, pp. 19 - 26. 

[3] Heike McCraw, Innovative Computing Laboratory, Departmanet of Electrical Engineering and 
Computer Science, "Performance Modeling", University of Tennessee, 2013, pp. 7 - 9. 

[4] Samuel Williams, David Patterson, ParLab Summer Retreat, "The Roofline Model: A 
pedagogical tool for program analysis and optimization", Berkeley Par Lab 

[5] Samuel Williams, Andrew Waterman, David Patterson, "Simple performance modeling: The 
Roofline Model" Communications of the ACM, Vol. 52 No. 4, 10.1145/1498765.1498785, pp. 
65 - 76. 

[6] W. Schönauer (2000), "Scientific Supercomputing: Architecture and Use of Shared and 
Distributed Memory Parallel Computers" 

[7] S. Williams (2008), "Auto-tuning Performance on Multicore Computers", UCB Technical 
Report No. UCB/EECS-2008-164. PhD thesis 

[8] Datasheet Addendum, 2nd Generation Intel® Core™ Processor Family Mobile with ECC, May 
2012 

[9] Intel free Press, "Ron Friedman: The Man Behind Sandy Bridge", December 28, 2010. 
Retrieved November 11, 2011, URL: http://www.intelfreepress.com/news/the-man-behind-
sandy-bridge/ 

[10] Samuel Williams, Lawrence Berkeley National Laboratory, "The Roofline Model", , Berkeley 
Par Lab 

[11] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. 
Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, 
Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds.). Springer Berlin / Heidelberg, 
2010; 615–624, doi:10.1007/978-3-642-14390-8 64. 

[12] G. Hager, J. Treibig, J. Habich, and G. Wellein, Erlangen Regional Computing Center (RRZE), 
"Exploring performance and power properties of modern multicore chips via simple machine 
models", Erlangen, Germany, pp. 1 - 21. 

[13] Rotem E, Naveh A, Ananthakrishnan A, Rajwan D, Weissmann E. Power-management 
architecture of the Intel microarchitecture code-named Sandy Bridge. IEEE Micro 2012; 
32:20–27, doi:10.1109/MM.2012.12. 

[14] HP LoadRunner User Manual, v11.00, URL: 
http://community.hpe.com/hpeb/attachments/hpeb/sws-
LoadRunner_SF/11042/1/hp_man_LoadRunner11.00_AnalysisUser_pdf.pdf 

[15] Performance Modeling: The Roofline Model, "Loop-based performance modeling: Execution 
vs. data transfer", Friedrich-Alexander Universität, Erlangen-Nürnberg, pp 2-16 

[16] Schönauer W. Scientific Supercomputing: Architecture and Use of Shared and Distributed 



P a g e  | 24 

 

Memory Parallel Computers. Self-edition, 2000. URL http://www.rz.uni-
karlsruhe.de/~rx03/book. 

 

[17] Treibig J, Hager G. Introducing a performance model for bandwidth-limited loop kernels. 
Parallel Processing and Applied Mathematics, Lecture Notes in Computer Science, vol. 6067, 
Wyrzykowski R, Dongarra J, Karczewski K, Wasniewski J (eds.). Springer Berlin / Heidelberg, 
2010; 615–624, doi: 10.1007/978-3-642-14390-8 64. 

[18] Suleman MA, Qureshi MK, Patt YN. Feedback-driven threading: power-efficient and high 
performance execution of multi-threaded workloads on CMPs. SIGARCH Comput. Archit. 
News Mar 2008; 36(1):277– 286, doi:10.1145/1353534.1346317. 

[19] Hoisie A, Lubeck O, Wasserman HJ. Performance and scalability analysis of teraflop-scale 
parallel architectures using multidimensional wavefront applications. Int. J. High Perform. 
Comp. Appl. 2000; 14:330–346, doi:10.1177/109434200001400405. 

[20] Nudd GR, Kerbyson DJ, Papaefstathiou E, Perry SC, Harper JS, Wilcox DV. Pace — A toolset for 
the performance prediction of parallel and distributed systems. Int. J. High Perform. Comp. 
Appl. 2000; 14(3):228–251, doi:10.1177/109434200001400306. 

[21] Kerbyson DJ, Jones PW. A performance model of the Parallel Ocean Program. Int. J. High 
Perform. Comp. Appl. 2005; 19:261–276, doi:10.1177/1094342005056114. 

[22] G. Hager, J. Treibig, J. Habich, and G. Wellein, "Exploring performance and power properties 
of modern multicore chips via simple machine models", Erlangen Regional Computing Center 
(RRZE) Martensstr. 1, 91058 Erlangen, Germany 

 


