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Introduction

We all have a high performance computer in our bodies

The brain

Figure: Model of a brain [Nuf]
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The Human Brain

Consists of ~85 billion neurons
Neurons connected to ~10000 synapses

All neurons connected via 3-4 synapses
Neurons fire at up to ~1 kHz

Performance of up to about 1 PFlop/s
Energy consumption of a dim lightbulb
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What & Why

What is Neuromorphic Computing?
Hardware concept
Mimics nervous systems/brains

Why do we need Neuromorphic Computing?
Engineering lessons to be learned
Better suited for special tasks
Lots of applications
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Benefits

Efficiency for special tasks in terms of...
...speed
...energy
...space

Better than traditional computation
by orders of magnitude!
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High performance computer ’K’, Japan

Figure: Supercomputer ’K’ by RIKEN [Ins13]
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High performance computer ’K’, Japan

Peak Performance: ~11.3 PFlop/s
Power Consumption: ~12.7 MW
Memory: ~1.5 PB
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Brain simulation on ’K’

Researchers simulated 1 second of 1% of brain activity
It took ~40 minutes
Consumed ~30.5 Gigajoule or ~8,500 kWh
Used ~1 PB of memory

All this with a very simplified model of neurons
and synapses
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Speed efficiency

Assuming linear scaling
It would take 66h 40min to simulate 1 second brain activity
Even though performance of ’K’ ~10 times bigger than brain

A Human Brain is ~240,000 times faster than ’K’
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Energy efficiency

Again, assume linear scaling
Would use up 850 MWh to simulate 1 second brain activity
The brain would only consume 6 mWh

Human brains are ~140 million times
more energy efficient than ’K’
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Space efficiency

Assume every synapse represents one bit
Brain has about 400 trillion synapses
Results in a storage capacity of 50 Terabyte

It’s not that easy to calculate brain storage capacity
(estimates at 2.5 Petabyte)
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Realization

Neuromorphic computation hardware is realized...
Using digital or analog circuits
Which mimic nervous systems/brains
Very large scale integrated in microchips
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Components of neuromorphic chips

Analog or digital processor cores
Chip interface
Asynchronous package routing system
Fault tolerance relaying
Architecture specific parts
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Asynchronous processing & fault tolerance

Asynchronous processing
Event driven processing of packages
Lessens energy consumption by orders of magnitude
Weakens/eliminates Von-Neumann-Bottleneck

Fault tolerance:
Rerouting around broken neurons
Implemented on chip
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Current teams and projects

Human Brain Project (HBP)
SpiNNaker
Spikey

Systems of Neuromorphic Adaptive Plastic Scalable Electronics
(SyNAPSE)

TrueNorth
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Human Brain Project - SpiNNaker

Short for "Spiking Neural Network Architecture"
Entirely digital signal processing
Chip utilises 18 ARM9 processors
Die area of only 102 mm2
Functional SpiNNaker prototype chip in 2009
First fully functional chips delivered in 2011
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The SpiNNaker Chip

Figure:
SpiNNaker
Chip
[Adv12b]
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The SpiNNaker machine

1 million processor cores
1 billion neurons
1 trillion synapses
Consumes less than 50KW on average
Simulation takes place in realtime

Considerably better than ’K’ but still not quite
human-brain-level
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Human Brain Project - Spikey

Figure: Spikey chip (a) and system with chip under sealing (b) [T+15]
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Human Brain Project - Spikey

25 mm2 VLSI chip
Analog hardware neuron and synapse realization
Emulates 382 neurons with 256 synapses each
Firing frequency of neurons 104 to 105 times higher than brain
Even though analog, no memristors
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SyNAPSE - TrueNorth

Chip simulates 1 million neurons and 256 million synapses
Consists of 4096 cores
All digital approach
Consumes less than 70 mW while simulating neural networks
Already built systems of 16m neurons and 4b synapses
Goal of 4b neurons and 1t synapses system, consuming 4KW
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SyNAPSE - TrueNorth

Figure: TrueNorth Chip Core Array [Dha14]Armin Schaare Execution Model: Neuromorphic Computing 23 / 35
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The Memory Resistor

Figure: Symbol of a memristor [Jos14]

Two terminal fundamental circuit Element
The more intensely it is used, the lesser its resistance
Raising resistance again by reversing current
Remembers resistance when voltage turned off (non-volatile)
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Memristor half adder

Figure: Crossbar latch architecture for half-adder [Blm08]
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"The Machine" - Hewlett Packard

Revolutionary computer architecture with usage of memristors
’K’ uses 12,600 KW with 28.8 GUPS
’The Machine’ should only consume 160 KW for 160 GUPS
HP suggests ’The Machine’ for exascale computing
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The Memory Resistor

Figure: Symbol of a memristor [Jos14]

Two terminal fundamental circuit Element
The more intensely it is used, the lesser its resistance
Raising resistance again by reversing current
Remembers resistance when voltage turned off (non-volatile)

Essentially a model of a synapse
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The Neuristor

Figure: Neuristor concept [Mov14]

Armin Schaare Execution Model: Neuromorphic Computing 28 / 35



Introduction Benefits State of the Art Upcoming Technologies Conclusion Literature

Memristors in Neuromorphic Computing

One memristor is used for one synapse
Memristors are fundamental circuit elements, therefore

small (cubes of 3nm edge length)
energy efficient

Much faster than traditional approach of many transistors

A very promising concept for Neuromorphic
Computing
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Prospect of Memristors in NC

Current development of CrossNets in hybrid NC
Faster processing rate than human brain
Possibility of higher neuron density
Higher but still manageble energy consumption

University of California, Santa Barbara active research:
100 neuron memristive NC system
Able to do simple image recognition tasks
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Applications

Further extension of Moore’s Law
Understanding the human brain
Brain prosthetics for neurodegenerativ diseases
Face, Speech, Object recognition
Language interpretation
Robotic terrain manuevering
Virtually any tasks where humans are better than computers
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Conclusion

Neuromorphic computing is very young
Has much potential to be revolutionary
Breakthroughs expected in less than 15 years

"As engineers, we would be foolish to ignore the
lessons of a billion years of evolution"

— Carver Mead, 1993
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Questions?
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Memristor - The missing element

Figure: The four fundamental electronic variables and devices. [Par13]



Titanium Dioxide Memristor

Figure: Titanium Dioxide Memristor [Jim10]
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