
1

NEW PROGRAMMING
LANGUAGES AND

PARADIGMS IN HPC
SEMINAR „NEUESTE TRENDS IM HOCHLEISTUNGSRECHNEN“

 / 2015-12-07Lukas Stabe

mailto:2stabe@informatik.uni-hamburg.de

2

STRUCTURE
1. Introduction
2. De�nitions
3. Advantages of new languages/paradigms
4. Problems
5. Examples

SciPy
Rust
Swift/T
OpenMP 4

6. Conclusion

3

DEFINITIONS: LANGUAGE
„A programming language is a formal constructed language
designed to communicate instructions to a machine,
particularly a computer.“
– Wikipedia
A programming language de�nes how you tell the
computer to do something
Languages are closely related to their standard library

Boundaries are often unclear

4

DEFINITIONS: PARADIGM
„A programming paradigm is a fundamental style of computer
programming, serving as a way of building the structure and
elements of computer programs.“
– Wikipedia
Describes a way to approach problems
De�nes common patterns
Often explicitly forbids some anti-patterns

5

DEFINITIONS: RELATION
„Capabilities and styles of various programming languages are
de�ned by their supported programming paradigms; some
programming languages are designed to follow only one
paradigm, while others support multiple paradigms.“
– Wikipedia
Most languages support a mix of paradigms
Standard library may be written with a concrete paradigm
in mind

6

ADVANTAGES OF NEW LANGUAGES/PARADIGMS
Simplify development
Fewer kinds of errors possible
Produces easier-to-maintain code

Easier to write (in a good/idiomatic manner) for
inexperienced programmers
This is a result of the community surrounding the
language
Unit-testing
Documentation

Better utilize available resources

7

PROBLEMS
A large existing codebase of C/Fortran code
Smaller ecosystem of libraries/tools (esp. related to HPC)
Huge expertise of experienced programmers
C/Fortran compilers have been worked on for decades, so
they can optimize code extremely well

8

EXAMPLE: SCIPY
Python library
Wraps compiled Fortran and C code
Write program �ow and high-level structure in Python
Keep hotspots in compiled code
Near-native performance

http://scipy.org/

9

EXAMPLE: RUST
Compiled low-level language
Strong type and generics system with type inference
Guarantees memory safety
Thread-safety
MPI bindings in development

https://www.rust-lang.org/
https://github.com/bsteinb/rsmpi

10

EXAMPLE: RUST
fn main() {
 // A simple integer calculator:
 // ̀ +̀ or ̀ -̀ means add or subtract by 1
 // ̀ *̀ or ̀ /̀ means multiply or divide by 2
 let program = "+ + * - /";
 let mut accumulator = 0;

 for token in program.chars() {
 match token {
 '+' => accumulator += 1,
 '-' => accumulator -= 1,
 '*' => accumulator *= 2,
 '/' => accumulator /= 2,
 _ => { /* ignore everything else */ }
 }
 }
}

https://www.rust-lang.org/

11

EXAMPLE: RUST
extern crate mpi;
use mpi::traits::*;
fn main() {
 let universe = mpi::initialize().unwrap();
 let world = universe.world();
 let size = world.size();
 let rank = world.rank();

 if size != 2 {
 panic!("Size of MPI_COMM_WORLD must be 2, but is {}!", size);
 }
 match rank {
 0 => {
 let msg = vec![4.0f64, 8.0, 15.0];
 world.process_at_rank(rank + 1).send(&msg[..]);
 }
 1 => {
 let (msg, status) = world.receive_vec::<f64>();
 println!("Process {} got message {:?}.\nStatus is: {:?}",
 rank, msg, status);
 }
 _ => unreachable!()
 }
}

https://www.rust-lang.org/

12

EXAMPLE: SWIFT/T
Swift script translates into MPI program
Calls leaf tasks written in C, C++, Fortran, Python, R, Tcl,
Julia, Qt Script, or executable programs
Coordinates data �ow between leaf tasks
Executes leaf tasks concurrently where possible

http://swift-lang.org/Swift-T/

13

EXAMPLE: SWIFT/T

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {
 foreach y in [0:Y-1] {
 if (check(x, y)) {
 A[x][y] = g(f(x), f(y));
 } else {
 A[x][y] = 0;
 }
 }
 B[x] = sum(A[x]);
}

http://swift-lang.org/Swift-T/

14

EXAMPLE: OPENMP 4
Compiler directives on top of C, C++ and Fortran
Interesting new features in version 4

SIMD directive
Uses vector units like AVX/SSE and NEON to do
multiple numeric operations in parallel on one core
Works combined with omp parallel

TARGET directive
Runs code on accelerators
transfers in- and output data back and forth

http://openmp.org/

15

EXAMPLE: OPENMP 4
void vadd_openmp(float *a, float *b, float *c, int len)
{
 #pragma omp target map(to:a[0:len],b[0:len],len) map(from:c[0:len])
 {
 int i;
 #pragma omp parallel for
 for (i = 0; i < len; i++)
 c[i] = a[i] + b[i];

 }
}

http://openmp.org/

16

CONCLUSION
New languages and paradigms can provide big bene�ts

Easier development
Easier-to-maintain code
Utilize new types of hardware

They need to overcome some signi�cant challenges
Large existing codebase/ecosystem
Raw speed

Nothing can replace C/C++/Fortran right now
Rust looks promising

17

SOURCES
Quote on slide 3:
Quote on slide 4, 5:
Sample code on slide 10:
Sample code on slide 11:
Image and sample code on slide 13:
Sample code on slide 15:

Wikipedia: Programming language
Wikipedia: Programming paradigm

rust-lang.org
GitHub: bsteinb/rsmpi

swift-lang.org/Swift-T
TI Wiki: OpenMP Accelerator

Model 0.3.3

https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Programming_paradigm
https://www.rust-lang.org/
https://github.com/bsteinb/rsmpi
http://swift-lang.org/Swift-T/
http://processors.wiki.ti.com/index.php/OpenMP_Accelerator_Model_0.3.3

