
New programming languages and
paradigms

Seminar: Neueste Trends im Hochleistungsrechnen

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

Autor: Lukas Stabe
Betreuer: Michael Kuhn

Hamburg, den 21.03.2016

Contents
1 Introduction 2

2 Definitions 2
2.1 Programming Language . 2
2.2 Paradigm . 3
2.3 Relation between language and paradigm 3

3 Advantages and Problems 4
3.1 Advantages . 4
3.2 Problems . 5

4 Examples 5
4.1 Scipy . 5
4.2 Rust . 6
4.3 Swift/T . 7
4.4 OpenMP 4 . 8

5 Conclusion 9

1

1 Introduction

This report will cover the advantages that might be gained by introducing new
programming languages and paradigms into the world of High Performance
Computing.

To explain the advantages in an easily graspable way, we will follow the following
structure:

First, we will define some of the terms used. Then we will enumerate the most
important advantages of adopting new languages and paradigms in gerenal, and
will discuss some of the problems they face. Next, we will examine some concrete
examples of new languages and paradigms that are currently on the horizon of
the HPC world, some already widely used, some not widely used but with a big
potential for future adoption. Finally, we will end with some conclusive remarks.

2 Definitions

2.1 Programming Language

“A programming language is a formal constructed language designed
to communicate instructions to a machine, particularly a computer.”

— Wikipedia: Programming language

A programming language can be described as a definition of how the programmer
instructs the machine on how to do something, for example solve a task.

How these instructions take form is completely up to the language. It can on
the one extreme be in the classical imperative style where instructions written
translate directly to the operations the machine uses to perform those instructions.
On the other extreme, it can be an abstract way of describing the problem, with
the task of figuring out a way to solve it left entirely to the machine, as is the
case with e.g. logic programming.

So, in simpler words, a programming language defines how the programmer tells
the computer to do something.

It should be noted that languages are often closely related to their standard
library. As an example for this kind of tight coupling, types from the standard
library are often granted access to special constructs that “normal” code can
not use.

For this reason, the boundaries between standard library and language are often
unclear, and in most cases when talking about languages, the standard libraries
are implicitly included.

2

2.2 Paradigm

“A programming paradigm is a fundamental style of computer pro-
gramming, serving as a way of building the structure and elements
of computer programs.”

— Wikipedia: Programming paradigm

A programming paradigm can be understood as a description of how a program-
mer should approach any specific problem.

Paradigms describe common patterns that are deemed advantageous and some-
times explicitly discourages “anti-patterns”, referring to programming patterns
that are seen as bad practice and leading to bad code.

To clarify this, let’s explain these terms using object oriented programming
(OOP) as an example of a paradigm. OOP describes the pattern of structuring
an application’s code in classes that are composed of their member variables
and member functions. Instances of classes communicate by calling methods on
each other. OOP discourages the anti-patterns of using global state and global
functions instead of instance members and member functions except where it
can not be avoided.

2.3 Relation between language and paradigm

“Capabilities and styles of various programming languages are defined
by their supported programming paradigms; some programming lan-
guages are designed to follow only one paradigm, while others support
multiple paradigms.”

— Wikipedia: Programming paradigm

It is important to recognize that in most cases, languages and paradigms are
not tightly coupled. Most languages support a mix of paradigms and in allmost
all cases, any paradigm can be used in any language, although it may not be
convenient and easy to do so.

Some examples of languages that support mixes of paradigms are C++, support-
ing object-oriented, procedural, imperative and functional programming; C is
of procedural nature, but can be used in an object-oriented way with minimal
hassle.

Again, standard libraries deserve a special mention, because they may be written
with a specific paradigm in mind and thus might constrain where the patterns
and anti-patterns of a paradigm can be respected when interfacing with the
standard library.

3

3 Advantages and Problems

A question that might be asked when the topic of new languages in HPC comes
up might be “Why?”. So let us answer the question of why the high performance
community should eventually move on from C or Fortran.

Of course, new languages and paradigms also come with their own problems, so
we are going to have a look at those as well.

Note that these lists of advantages and disatvantages are incomplete by nature.
For all the things listed here, we will provide concrete examples when talking
about a few specific languages.

3.1 Advantages

The advantages new languages and paradigms bring with them mostly fall into
the category of programmer-friendliness:

They can simplify development by not having difficult-to-master concepts like,
for example, pointers in C. They can also simplify things like interprocess
communication by providing new layers of abstraction and by automatically
doing things the programmer had to manually before.

Some classes of (possibly hard to debug) errors may be completely impossble
to make, since a strong type system might detect programmer errors before the
code is ever executed; errors where unchecked (possibly concurrent) access to
memory leads to unplanned behaviour might be impossible in a language that
provides memory-safety guarantees.

Additionaly, new languages and paradigms are also likely to produce easier-to-
maintain code. They may be easier to write in an idiomatic manner (especially for
inexperienced programmers, which is common in HPC where scientist from other
fields might learn programming to solve a specific task). This is largely a result of
the communities surrounding the language or paradigms at hand. Communities
of newer languages/paradigms often put a strong focus on unit-testing and
documentation, and that plays a big role in producing “good” code.

Easy to maintain code is especially important in the field of HPC, since it is a
common occurence that a scientist will write code to solve her problem, after
which the code will then be improved and maintained by the staff operating the
cluster.

One advantage that does not fall into this category of programmer-friendliness
is better utilization of the resources available to the program. These resouces
might be the CPU, which can be used in a more effective way due to more
optimizations the compiler can make. A programm might also make use of vector
units built into the CPU automatically. Another kind of resource that might be
put to use are GPUs and accelerator hardware.

4

3.2 Problems

This section will list problems and challenges new languages and paradigms face,
and suggest possible solutions to those problems.

The first challenge is that in HPC, there is a large existing codebase of C and
Fortran code. This code – in part purpose-built application code and in part
reusable libraries that are useful in a broad spectrum of HPC applications – is
something a new language might not have. Thus, switching to a new language
might mean rewriting all that code, which can be a significant amount of work.

A possible solution to this first challenge would be to provide a way for a new
language to provide an interface to C and Fortran routines (a foreign function
interface, or FFI) and for new paradigms to interact gracefully with code not
fitting its patterns.

A second problem is a lack of tools for new languages. The HPC community has
produced a large amount of specialized tools for the existing systems, and new
languages might not be able to take advantage of those.

This challenge is hard to solve. In some cases, existing tools may be adapted
to also work with a new language, but often entirely new tools will need to be
written.

The last – and probably most important – challenge in this list is the expertise of
experienced programmers in the existing languages and paradigms. People have
been programming C and Fortran for over fourty years, and thus have become
experts in them the likes of which can’t possibly exist for a young, new language
or paradigm. This challenge is especially important in HPC, since programs
need to perform as best as they can, so the huge shared knowledge of how to
make C/Fortran programs run fast is very valuable.

To this most important challenge, there is no easy solution. Time will produce
experts in any language, but while they are young, languages and paradigms
need to make up for the lost expertise by excelling in other areas.

4 Examples

4.1 Scipy

SciPy is a collection of libraries and tools for scientific computing in Python.
While Python is by no means a new language – and has been popular in the
scientific community for some time – its interpreted nature and resulting mediocre
performance have hindered its adoption in the HPC community.

SciPy enables programmers to write faster Python applications by providing
most of its functionality in so-called “extension modules”. Extension modules
consist of C/C++/Fortran code written to be used from within Python. All
code inside the module runs at full native speed, not hindered by the Python
interpreter.

5

So with SciPy, programmers can write their program flow and high-level struc-
tures in Python, and as long as the hotspots are contained within the SciPy
libraries, the program runs at near-native speeds. The libraries are written to
enable this, so they contain functionality to apply mathematical operations to
large sets of numbers etc.

4.2 Rust

Rust aims to be a low-level, compiled language that is suitable for performance-
sensitive tasks and as a systems language. It provides a strong type and generics
system including type inference, which allows programmers to write less verbose,
more concise and expressive code than in C, and at the same time have a smarter
compiler that catches many kinds of errors at compile time.

The language also guarantees memory safety by disallowing memory-unsafe
operations (such as dereferencing null pointers) that are not contained in a
lexical scope explicitly declared “unsafe”.

Through its system of read-only references, Rust also provides thread-safety as a
language feature.

fn main() {
// A simple integer calculator:
// ‘+‘ or ‘-‘ means add or subtract by 1
// ‘*‘ or ‘/‘ means multiply or divide by 2
let program = "+ + * - /";
let mut accumulator = 0;

for token in program.chars() {
match token {

’+’ => accumulator += 1,
’-’ => accumulator -= 1,
’*’ => accumulator *= 2,
’/’ => accumulator /= 2,
_ => { /* ignore everything else */ }

}
}

}

Rust supports a variety of paradigms, functional, imperative and object-oriented
among them. For HPC applications, there are multiple community-built MPI
bindings currently in development.

6

extern crate mpi;

use mpi::traits::*;

fn main() {
let universe = mpi::initialize().unwrap();
let world = universe.world();
let size = world.size();
let rank = world.rank();

if size != 2 {
panic!("Size of MPI_COMM_WORLD must be 2, but is {}!", size);

}

match rank {
0 => {

let msg = vec![4.0f64, 8.0, 15.0];
world.process_at_rank(rank + 1).send(&msg[..]);

}
1 => {

let (msg, status) = world.receive_vec::<f64>();
println!("Process {} got message {:?}.\nStatus is: {:?}",

rank, msg, status);
}
_ => unreachable!()

}
}

While Rust is not inherently easier to learn than C or C++, its smart compiler
prevents whole classes of errors from being made, which is a big advantage.
There are no conclusive performance benchmarks yet, but initial results suggest
Rust might be at least as fast as C in some cases.

4.3 Swift/T

Swift/T is a language that allows programmers to write MPI applications without
explicitly managing nodes, data-flow, aggregations, etc. A Swift/T script –
written in a C-like syntax – does not do work by itself, but rather executes so-
called “leaf-nodes” which can take many forms, including C functions, executable
binaries, shell scripts, Python functions and many more. These leaf-nodes
are used like functions in the Swift/T script, and the language transparently
coordinates the data flow between those leaf-nodes.

7

int X = 100, Y = 100;
int A[][];
int B[];
foreach x in [0:X-1] {

foreach y in [0:Y-1] {
if (check(x, y)) {

A[x][y] = g(f(x), f(y));
} else {

A[x][y] = 0;
}

}
B[x] = sum(A[x]);

}

Due to the way Swift/T works – by building a graph of the input and output
data of all the leaf-nodes – it can easily run single nodes concurrently when
possible. In the examples above, all iterations of both loops run concurrently,
and in addition, both the calls to f() run concurrently as well.

4.4 OpenMP 4

OpenMP is not a new citizen in the HPC ecosystem. It is a set of compiler
directives working on top of C, C++ and Fortran that helps with parallelizing
programs easily. It is a popular tool to implement multicore-parallelism.

The new version, called OpenMP 4, has added (among other changes) a few
interesting new directives that allow better utilization of hardware.

The new SIMD directive allows programmers to transparently use vector units
like AVC/SSE and NEON to do numeric operations on multiple sets of numbers
in parallel on one core. It also works combined with the PARALLEL directive
to split the data to process by core first, and then utilize vector units to process
multiple data points on each core.

The TARGET directive simplifies the use of accelerators. Accelerators are
hardware that is built for the specific purpose of processing large amounts of
numeric data in parallel. Without OpenMP 4, using these meant either using
proprietary software made by the hardware vendor or rely on difficult to use
software like OpenCL. OpenMP 4 TARGET directives automatically run the
code contained within them on the accelerator hardware and automatically
transfer input and output data to and from the device.

8

void vadd_openmp(float *a, float *b, float *c, int len)
{

#pragma omp target map(to:a[0:len],b[0:len],len) map(from:c[0:len])
{

int i;
#pragma omp parallel for
for (i = 0; i < len; i++)

c[i] = a[i] + b[i];

}
}

5 Conclusion

In conclusion, new languages and paradigms can provide big benefits in almost
any aspect important to HPC. They can simplify development, produce easier-to-
maintain code and help programmers to easily utilize new and existing resources.

On the other hand, these new languages need to overcome some significant
challenges. A large existing codebase and ecosystem need to be replaced or
adapted and the established languages lead in performance, which is a gap that
needs to be closed.

So while there seems to be nothing that can seem to replace C, C++ or Fortran
right now, it is only a matter of time until a new language gets its turn to be
“the” language in HPC.

9

	Introduction
	Definitions
	Programming Language
	Paradigm
	Relation between language and paradigm

	Advantages and Problems
	Advantages
	Problems

	Examples
	Scipy
	Rust
	Swift/T
	OpenMP 4

	Conclusion

