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* What is an Operating System
e History of Operating Systems
* Computer Hardware

* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management

*disclaimer: some of the topics presented here are incomplete.



What is an OS

e Hard to define
e Abstracts a set of hardware
resources

— High level interface instead of
machine code

» e.g. file storage on top of block devices
* Resource management

— Multiplexing (sharing) resources
* e.g. assign CPU time to applications
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1st Generation

 Vacuum Tubes (1945-55)

— ~20,000 vacuum tubes were used

— Programming was done in absolute
machine code

— Assembly language was unknown

— Each program used the machine
exclusively

— Most famous ENIAC

* Announced in 1946
* Solve large class numerical problems [
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2nd Generation

* Transistors and batch systems

(1955-65)

— Designers / Builders / Operators /
Programmers / Maintainers

— Programmers first wrote the program
on paper, then punched it on cards

— Card readers to read the program
source

— Output stored on tapes and also printed
— 1st use of compilers (FORTRAN)
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3rd Generation

e |Cs and Multiprogramming (1965-1980)

— IBM 360 Mainframe
* Multiprogramming
 Several programs in memory at once with separate memory,
overlap I/O with computation

— Timesharing
* Each user has an online terminal
CTSS (Compatible Time Sharing System)
MULTICS (MULTiplex Information and Computing System)
UNIX, a stripped-down version of MULTICS
BSC (Berkeley Software Distribution)



4th Generation

* Personal Computers (1980-today)
— SYSTEM V, 1st commercial UNIX operating System

(1983)
— LSI (Large Scale Integration)

— |IBM PC (early 1980s)
* Intel 80286 CPU
* DOS (Disk Operating System)
* MS-DOS (Microsoft DOS)

— LISA

* First computer with GUI
* Protected memory, preemptive multitasking




5th Generation

Smartphones (1990-today)
Symbian OS

RIM’s Blackberry OS
Windows Mobile
Android

iOS




Modern Operating Systems
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* Computer Hardware

* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management



Computer Hardware
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Processor (CPU)
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Main Memory

« Random access memory (RAM)
— Large but slow

— Volatile, loses data in power loss
 Static (SRAM)

Registers

CPU Cache

RAM

Disk

* Fast but expensive
e Used as CPU cache

— Dynamic (DRAM)
 Store bits in capacitors

* Require refresh to retain state
e Larger than SRAM but slower

— Non-Volatile, keep state without p
* Not yet mature technology




Mechanical device
High capacity
— 200x size of RAM

Slow
— 1000x slower than RAM

Magnetic recording

Moving parts
— Rotating platters

— Head
Seek time




1/O Devices

e Usually two parts
— The actual device

— Controller
e Chip(s) that physically controls the device
» “Talks” to the operating system (OS)

 Device driver
— Software that connects OS with the controller

More FLASH
General 110 on back



/O Devices (cont.)

 Forms of communication
— Busy waiting
* OS waits until device response
— Interrupts
* Device inform the OS that “something” happened
— Polling
* The OS regularly checks the device
— DMA (Direct Memory Access)

e Special hardware
e Data movement from memory to controller without
going through the CPU



Busses

* Connect computer components

— Parallel (multiple wires)
e Carry data words in parallel

— Serial (lanes)
e Carry data in serial form in each lane

e Different speeds
e Different functionality
 Examples

— PCle (Peripheral Component Control bus L =2
Interconnect express) e w2
Data bus | %

— SATA (Serial ATA)



* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management



Types of OSs

* Multi-user
— Multiple users access the computer simultaneously
e Single-tasking
— Only one running program
Multi-tasking
— Allows more than one program to run in parallel
* Two types:
— Pre-emptive, the OS interrupts the running program and assigns
the CPU to the next
— Co-operative, each process give time to the others
Real-time
— Aims at executing real-time applications



Types of OSs (cont.)

* Distributed
— Manages a group of independent computers and
makes them appear to be a single computer

* Templated

— A single virtual machine image as a guest
operating system, then saving it as a tool for
multiple running virtual machines

e Embedded

— Designed to be used in embedded computer
systems



Monolithic kernel

e Single image that runs in a single address space
— A set of primitive operations are implemented in

the operating system level
* Process management
* Memory management
* Device Drivers

— Trivial (IPC) Inter Process Communication
— Easy to design
— Difficult to maintain and extend

— Examples:
* MULTICS, SunQS, Linux, BSD



Micro-kernel

 The minimum amount of software that provides the

mechanisms needed to implement an OS

— Also known as p-kernel

— Provides
* Built-in IPC
* Low level address space management
* Thread management

— Easy to extend
— Performance penalties (requires IPC calls)

— Examples
* Symbian, Mac OS, WinNT



Monolithic vs. p-kernel

Everything that runs in kernel mode defines the OS

Monolithic Kernel Microkernel
based Operating System based Operating System
LR System Call
L
Y
VFS
IPC, File System
Application ~ UNIX Device  File
Scheduler, Virtual Memory T IPC Server Driver Ser;er
moade L ]
Device Drivers, Dispatcher, ... Basic IPC, Virtual Memory, Scheduling

Hardware Hardware

Source: http://en.wikipedia.org/wiki/Microkernel#mediaviewer/File:OS-structure.svg



* Process Mahagement
* Memory Management
* Storage Management



Processes

An abstraction of a running program
Every process “thinks” that it runs alone
— Assume dedicated resources (address space, CPU)

Has a single control flow (program counter)
— Which operation is currently executed
Programmer’s role

— Defines what the process will do

Operating system role
— Process management



Process Management

* Process creation
— System (initialization, system call)
— User (executes a new program)
* Process termination
— Normal exit
— Error (voluntary), Fatal error (involuntary)
— Killed by another process

* Process Scheduling
— Assign CPU to the processes

— Determine which process will execute next
— Switch between different processes (context switch)



Process Hierarchies

* One process invokes the creation of another
— Parent process, initiated the creation
— Child process, the created process
e Can also create processes
* Daemon process
— Runs in the background
— Not controlled by the user

— Creation
* Create a new process (child)
 Kill your parent
e Continue with the execution



Process States

* Running
— Currently using the CPU
* Ready

— Ready to execute

 Blocked
— Unable to run

— Waits until “something” external to happen




Process Scheduling

* Hold processes in queues
— job queue, all processes
— running processes, able to run
— device queue, waiting for I/O completion

—_—

»| ready queue » CPU
I/O queue I/O request
time slice 18
expired
child fork a
executes child
interrupt wait for an L
ocecurs interrupt




Process Scheduling

e Scheduler
— Process that migrates processes between queues

* Policy Considerations
— Prioritization, which will execute first
— Fairness, every process gets a fair amount of CPU
— Starvation, does not get CPU time
— Maximize CPU utilization



Context Switch

* Switch the CPU to another process/thread

— Save program “context”

* Registers
 Stack
* Memory

— Implies overhead



Threads

 Why not having more than one control flow

inside a process?
— Same problem solved by more than one

 Threads are “mini” or lightweight processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
‘:;\ {;9 (;”; /\“
thread —> (; . e  «— thread
D D >
< C C C

single-threaded process multithreaded process



Thread vs. Process

e Per thread

— Stack
— Registers
— Private control flow (Program counter)

* Per process
— Address space
— Global variables
— File descriptors
— Child processes
— Signals, signal handling
— Accounting information



Threads concurrency

* Many threads running in parallel

* Cooperate to solve a single problem
— Split the problem in sub-problems

* Require coordination/synchronization
— Control CPU usage
— Control access to shared resources



Array Multiplication

 Assume that we have to multiply two arrays
* Single threaded solution

— Start from the beginning of the matrix and calculate
every cell one at a time

 Multithreaded solution
— Split the array in sub-arrays
— Assign each sub-array to a different thread
— Run threads in parallel
— Wait until all threads finish the calculations
— Output matrix is ready



Synchronous/Asynchronous execution

e Synchronous execution

— Operation returns when the execution finishes

— Example

* | will continue cooking when the water has boiled

* Asynchronous execution

— Operation returns immediately after execution

initialization
— Check later or notify when the execution finishes

— Example
| put the water to boil and continue with the rest of the
recipe
e After 5 minutes | check if the water has boiled



Web server example

* Web server tasks
— Accepts requests for a web page
— Fetches the data from the storage system
— Replies by sending the data

* Single thread solution
— Each request is executed serially
— Only a single request is being processed at a time
— Every request has to wait for the previous to
complete all tasks
— 1/0 is slow, lots of time waiting
— Can not utilize multiple cores



Web server example

* Multi-threaded
— Create a thread for each request
— Multiple requests can be served in parallel

— Thread execution
* Accept request
* |/O request, fetch data from disk
* This request call can be asynchronous

* Reply request, send data
— Multi-core utilization
— Overlap I/O with computation



Synchronization issues

* Critical region

— Part of the program that accesses shared resources
* Global variables
e Shared memory
 File descriptors

— It is safe to be executed by only one process/thread at
a time
* Race condition
— The successful execution depends on the sequence or
timing of the other threads/processes



Synchronization issues

e Assume two tasks run
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Mutual Exclusion

* Prevent parallel executions of the “critical
region”

e Basic methods for mutual exclusion

— Sleep and wakeup
* One task explicitly puts the other one to sleep when it
enters the critical region
* Wakes it up when it exits the critical region

— Semaphores
* Special integer variables to count sleeps and wakeups

— Mutex
e Simplified semaphore only two states lock,unlock



Producer/Consumer

#define N 100

int count=0;
procedure producer() { procedure consumer() {
while (true) { while (true) {
item = produceltem(); iIf (count == 0)
if (count == N) sleep();
sleep(); item = remove();
insert(item); itemCount = Count - 1;
count = count + 1; if (count == N - 1)
if (count == 1) wakeup(producer);
wakeup(consumer); consumeltem(item);
by by



* One process waits for the other

 Compete for resources
— P1 needs resources from P2
— P2 needs resources from P1

* Always allocate with the same order

* Hard to debug

P1

TN




* Memory Management
* Storage Management



Access Physical Memory

* Use absolute physical addresses

* No memory abstraction

 Run multiple processes
— OS saves the entire memory
— OS loads the next process’s
memory
— Runs the next process

User
Program

OS1n
ROM

Drivers
in ROM

OSin
RAM

User

Program

User
Program

OSin
RAM




Memory Abstraction

Allow multiple processes to exist in memory
Protection

— Ask for permission to access an address in memory
Relocation

— Allocate physical memory dynamically

— Relocate the process to a different region

Sharing

— Control which data will be shared between processes
Distinguish physical to logical memory

— Manage the memory hierarchy



Address Space

* Set of address that a process can use
— Memory abstraction
— Map each process’s address space into different
parts of physical memory

e Use of two registers
— Base, start address of the program
— Limit, length of the program
— Only OS modifies these registers
* Process memory access
— Logical address + Base register



Swapping

* |f main memory is not enough
— Use disk to temporarily store process data

* Moving from memory to disk and vice versa is
called “swapping”

* Slow process
— Involves disk I/0



Virtual Memory

 Map logical addresses to physical addresses

 Each process has a
* Address space divid

orivate address space
ed to pages

* Pages mappedtop

nysical memory

* OS keeps a page table
— Translation from virtual to physical pages



» Storage Management



Storage Management

* Applications need permanent data storage
— Persistency

 Hardware provides block level accesses
— Use fixed-size blocks

— Every block has its own address
— Transfers in multiples of blocks

— Seagate provides object based access (key/value)
* OS provides methods to store and retrieve

data from disks



File System

* Move data from memory to disk and vice versa

* Export files abstraction
— Name data collections with names -> file name
— Map logical continuous units to arbitrary disk blocks
— Access them in byte level
e Export file system tree (hierarchy)
— Group files collection in directories



File System

* Disk space management
— Keeps track of used space
— Free space that is not used by the users

* Hold system state
— System might be in inconsistent state during an

unexpected failure
* Update system variables

— Journal used to keep previously consistent state
— Recover from system crash



File System - Data protection

* Each user controls files/directories permission

* Linux permission three groups
— owner, the file/directory owner
— group, the group that the user belongs
— all users, the rest of the users

* Three basic permission types

— read, can read the file
— write, can modify the file
— execute, can execute a file (denotes executables)
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