Introduction to

Operating System Concepts

Praktikum Kernel Programming
University of Hamburg
Scientific Computing
Winter semester 2015/2016

Konstantinos Chasapis
Konstantinos.chasapis@informatik.uni-hamburg.de

* What is an Operating System
e History of Operating Systems
* Computer Hardware

* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management

*disclaimer: some of the topics presented here are incomplete.

What is an OS

e Hard to define
e Abstracts a set of hardware
resources

— High level interface instead of
machine code

» e.g. file storage on top of block devices
* Resource management

— Multiplexing (sharing) resources
* e.g. assign CPU time to applications

Applications

i}

Libraries

{

Operating
System

{1

Hardware

1st Generation

 Vacuum Tubes (1945-55)

— ~20,000 vacuum tubes were used

— Programming was done in absolute
machine code

— Assembly language was unknown

— Each program used the machine
exclusively

— Most famous ENIAC

* Announced in 1946
* Solve large class numerical problems [

28/10/15 OS Concepts

2nd Generation

* Transistors and batch systems

(1955-65)

— Designers / Builders / Operators /
Programmers / Maintainers

— Programmers first wrote the program
on paper, then punched it on cards

— Card readers to read the program
source

— Output stored on tapes and also printed
— 1st use of compilers (FORTRAN)

28/10/15 OS Concepts

3rd Generation

e |Cs and Multiprogramming (1965-1980)

— IBM 360 Mainframe
* Multiprogramming
 Several programs in memory at once with separate memory,
overlap I/O with computation

— Timesharing
* Each user has an online terminal
CTSS (Compatible Time Sharing System)
MULTICS (MULTiplex Information and Computing System)
UNIX, a stripped-down version of MULTICS
BSC (Berkeley Software Distribution)

4th Generation

* Personal Computers (1980-today)
— SYSTEM V, 1st commercial UNIX operating System

(1983)
— LSI (Large Scale Integration)

— |IBM PC (early 1980s)
* Intel 80286 CPU
* DOS (Disk Operating System)
* MS-DOS (Microsoft DOS)

— LISA

* First computer with GUI
* Protected memory, preemptive multitasking

5th Generation

Smartphones (1990-today)
Symbian OS

RIM’s Blackberry OS
Windows Mobile
Android

iOS

Modern Operating Systems

: %0
Linux /-
r./ ‘ &
ORACLE" 7Y, Oh T
SOLARIS "w Mobile

Google Chrome OS red hat

28/10/15 OS Concepts 8

* Computer Hardware

* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management

Computer Hardware

Processor
Main memory
1/O devices
Disk

Busses

Processors (CPU)

x" v A 3 '"‘ \ l

4._4.;7
\§\$¢ Heat Sink

/ Hard Drive
L

RAM Moduels

Processor (CPU)

Specific instruction
set

Basic cycle

fetch

decode

execute

Multiple cores
Multiple levels of
cache memory

Module block Module block Module block Module block
L1 I-cache [[1F]B.P L1 I-cache |[LF]B.P) L1 I-cache [[LF]B.P L1 I-cache [[LF]B.P
64kB‘2way[PIP. 64kB,2way [~ 75"] 64kB.2way | 5/p- 64kB,2way[PIP.

Instruction decoder

Instruction decoder

Instruction decoder

Instruction decoder

Dispatch
Integer Integer,
Cluster: Cluster:
1 2
FPU
L61 De. | J|jL1 Dc.

i kBAW”ﬁW.C.Cache 16kB4

| Dispatch Dispatch | Dispatch
Integer Integer Integer Integer Integen Integer.
Cluster: Cluster Cluster: Cluster: Cluster Cluster:
1 2 1 2 1 2
FPU FPU FPU
L1 Dc. L1 De. || f {[L1 De. J{——J|[L1 Dc.|| §|[L1 De [
[16kB4w| - cache) |01 6kB4w)| N |{16KB4w | [We Cache] [16XB4W ,16k34w,| TW.C Cachs) |116kB4v| 6kB4

Core L2 Data Cache
IF 2048 kB (shared,Max)

Core L2 Data Cache
IF 2048 kB (shared,Max)

L2 Data Cache
IF 2048 kB (shared,Max)

Core
IF

L2 Data Cache
2048 kB (shared,Max)

Shared L3 cache
2MB for each Modules

L3 cache ctr.

Shared L3 cache
2MB for each Modules

L3 cache ctr.

Shared L3 cache
2MB for each Modules

L3 cache ctr.

Shared L3 cache
2MB for each Modules

L3 cache ctr.

—
Hyper Transport ctr. I

Hyper Transport ctr.

) [

-
Memory |F]

Hyper Transport PHY

HyperTransponPHY |} [oorPHY][DDRPHY |

Hyper Transport
(x16 / x8+x8)
\/ VVVv

| | | Synchronization | | | | I

I - ~_~ I _° ~_~ 3 _° =~ _~ 3 _=

| System|RequestQueue I
(Grossbarg

Clocki& Power controller

Hyper Transpo

(16 / x8+x8 rﬂl DDR3 Inlerface DDR3 Int rface @
Vvvvv

6.4 GT/s, 25.6 GB/s

6.4 GT/s, 25.6 GB/s

Dual channel DDR3-1866 /

Quad channel DDR3-1600 or Registered DDR3

https://commons.wikimedia.org/wiki/
File:AMD_Bulldozer_block_diagram_
%288 core CPU%29.PNG

Main Memory

« Random access memory (RAM)
— Large but slow

— Volatile, loses data in power loss
 Static (SRAM)

Registers

CPU Cache

RAM

Disk

* Fast but expensive
e Used as CPU cache

— Dynamic (DRAM)
 Store bits in capacitors

* Require refresh to retain state
e Larger than SRAM but slower

— Non-Volatile, keep state without p
* Not yet mature technology

Mechanical device
High capacity
— 200x size of RAM

Slow
— 1000x slower than RAM

Magnetic recording

Moving parts
— Rotating platters

— Head
Seek time

1/O Devices

e Usually two parts
— The actual device

— Controller
e Chip(s) that physically controls the device
» “Talks” to the operating system (OS)

 Device driver
— Software that connects OS with the controller

More FLASH
General 110 on back

/O Devices (cont.)

 Forms of communication
— Busy waiting
* OS waits until device response
— Interrupts
* Device inform the OS that “something” happened
— Polling
* The OS regularly checks the device
— DMA (Direct Memory Access)

e Special hardware
e Data movement from memory to controller without
going through the CPU

Busses

* Connect computer components

— Parallel (multiple wires)
e Carry data words in parallel

— Serial (lanes)
e Carry data in serial form in each lane

e Different speeds
e Different functionality
 Examples

— PCle (Peripheral Component Control bus L =2
Interconnect express) e w2
Data bus | %

— SATA (Serial ATA)

* Types of Operating Systems
* Process Mahagement

* Memory Management

* Storage Management

Types of OSs

* Multi-user
— Multiple users access the computer simultaneously
e Single-tasking
— Only one running program
Multi-tasking
— Allows more than one program to run in parallel
* Two types:
— Pre-emptive, the OS interrupts the running program and assigns
the CPU to the next
— Co-operative, each process give time to the others
Real-time
— Aims at executing real-time applications

Types of OSs (cont.)

* Distributed
— Manages a group of independent computers and
makes them appear to be a single computer

* Templated

— A single virtual machine image as a guest
operating system, then saving it as a tool for
multiple running virtual machines

e Embedded

— Designed to be used in embedded computer
systems

Monolithic kernel

e Single image that runs in a single address space
— A set of primitive operations are implemented in

the operating system level
* Process management
* Memory management
* Device Drivers

— Trivial (IPC) Inter Process Communication
— Easy to design
— Difficult to maintain and extend

— Examples:
* MULTICS, SunQS, Linux, BSD

Micro-kernel

 The minimum amount of software that provides the

mechanisms needed to implement an OS

— Also known as p-kernel

— Provides
* Built-in IPC
* Low level address space management
* Thread management

— Easy to extend
— Performance penalties (requires IPC calls)

— Examples
* Symbian, Mac OS, WinNT

Monolithic vs. p-kernel

Everything that runs in kernel mode defines the OS

Monolithic Kernel Microkernel
based Operating System based Operating System
LR System Call
L
Y
VFS
IPC, File System
Application ~ UNIX Device File
Scheduler, Virtual Memory T IPC Server Driver Ser;er
moade L]
Device Drivers, Dispatcher, ... Basic IPC, Virtual Memory, Scheduling

Hardware Hardware

Source: http://en.wikipedia.org/wiki/Microkernel#mediaviewer/File:OS-structure.svg

* Process Mahagement
* Memory Management
* Storage Management

Processes

An abstraction of a running program
Every process “thinks” that it runs alone
— Assume dedicated resources (address space, CPU)

Has a single control flow (program counter)
— Which operation is currently executed
Programmer’s role

— Defines what the process will do

Operating system role
— Process management

Process Management

* Process creation
— System (initialization, system call)
— User (executes a new program)
* Process termination
— Normal exit
— Error (voluntary), Fatal error (involuntary)
— Killed by another process

* Process Scheduling
— Assign CPU to the processes

— Determine which process will execute next
— Switch between different processes (context switch)

Process Hierarchies

* One process invokes the creation of another
— Parent process, initiated the creation
— Child process, the created process
e Can also create processes
* Daemon process
— Runs in the background
— Not controlled by the user

— Creation
* Create a new process (child)
 Kill your parent
e Continue with the execution

Process States

* Running
— Currently using the CPU
* Ready

— Ready to execute

 Blocked
— Unable to run

— Waits until “something” external to happen

Process Scheduling

* Hold processes in queues
— job queue, all processes
— running processes, able to run
— device queue, waiting for I/O completion

—_—

»| ready queue » CPU
I/O queue I/O request
time slice 18
expired
child fork a
executes child
interrupt wait for an L
ocecurs interrupt

Process Scheduling

e Scheduler
— Process that migrates processes between queues

* Policy Considerations
— Prioritization, which will execute first
— Fairness, every process gets a fair amount of CPU
— Starvation, does not get CPU time
— Maximize CPU utilization

Context Switch

* Switch the CPU to another process/thread

— Save program “context”

* Registers
 Stack
* Memory

— Implies overhead

Threads

 Why not having more than one control flow

inside a process?
— Same problem solved by more than one

 Threads are “mini” or lightweight processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack
‘:;\ {;9 (;”; /\“
thread —> (; . e «— thread
D D >
< C C C

single-threaded process multithreaded process

Thread vs. Process

e Per thread

— Stack
— Registers
— Private control flow (Program counter)

* Per process
— Address space
— Global variables
— File descriptors
— Child processes
— Signals, signal handling
— Accounting information

Threads concurrency

* Many threads running in parallel

* Cooperate to solve a single problem
— Split the problem in sub-problems

* Require coordination/synchronization
— Control CPU usage
— Control access to shared resources

Array Multiplication

 Assume that we have to multiply two arrays
* Single threaded solution

— Start from the beginning of the matrix and calculate
every cell one at a time

 Multithreaded solution
— Split the array in sub-arrays
— Assign each sub-array to a different thread
— Run threads in parallel
— Wait until all threads finish the calculations
— Output matrix is ready

Synchronous/Asynchronous execution

e Synchronous execution

— Operation returns when the execution finishes

— Example

* | will continue cooking when the water has boiled

* Asynchronous execution

— Operation returns immediately after execution

initialization
— Check later or notify when the execution finishes

— Example
| put the water to boil and continue with the rest of the
recipe
e After 5 minutes | check if the water has boiled

Web server example

* Web server tasks
— Accepts requests for a web page
— Fetches the data from the storage system
— Replies by sending the data

* Single thread solution
— Each request is executed serially
— Only a single request is being processed at a time
— Every request has to wait for the previous to
complete all tasks
— 1/0 is slow, lots of time waiting
— Can not utilize multiple cores

Web server example

* Multi-threaded
— Create a thread for each request
— Multiple requests can be served in parallel

— Thread execution
* Accept request
* |/O request, fetch data from disk
* This request call can be asynchronous

* Reply request, send data
— Multi-core utilization
— Overlap I/O with computation

Synchronization issues

* Critical region

— Part of the program that accesses shared resources
* Global variables
e Shared memory
 File descriptors

— It is safe to be executed by only one process/thread at
a time
* Race condition
— The successful execution depends on the sequence or
timing of the other threads/processes

Synchronization issues

e Assume two tasks run

» Correctbehavior * |ncorrectbehavior
in parallel . L i
ey -
 Task 1 reads a global
. read read
variable and updates |~ (G al |
el write fromtask 1 °d ——
the value : ot v e
work on the
 Task 2 uses the same R same deta
. edit write
variable as Task 1 e _ we |
| Update from
task 2 gets
overwritten by

task 1

Mutual Exclusion

* Prevent parallel executions of the “critical
region”

e Basic methods for mutual exclusion

— Sleep and wakeup
* One task explicitly puts the other one to sleep when it
enters the critical region
* Wakes it up when it exits the critical region

— Semaphores
* Special integer variables to count sleeps and wakeups

— Mutex
e Simplified semaphore only two states lock,unlock

Producer/Consumer

#define N 100

int count=0;
procedure producer() { procedure consumer() {
while (true) { while (true) {
item = produceltem(); iIf (count == 0)
if (count == N) sleep();
sleep(); item = remove();
insert(item); itemCount = Count - 1;
count = count + 1; if (count == N - 1)
if (count == 1) wakeup(producer);
wakeup(consumer); consumeltem(item);
by by

* One process waits for the other

 Compete for resources
— P1 needs resources from P2
— P2 needs resources from P1

* Always allocate with the same order

* Hard to debug

P1

TN

* Memory Management
* Storage Management

Access Physical Memory

* Use absolute physical addresses

* No memory abstraction

 Run multiple processes
— OS saves the entire memory
— OS loads the next process’s
memory
— Runs the next process

User
Program

OS1n
ROM

Drivers
in ROM

OSin
RAM

User

Program

User
Program

OSin
RAM

Memory Abstraction

Allow multiple processes to exist in memory
Protection

— Ask for permission to access an address in memory
Relocation

— Allocate physical memory dynamically

— Relocate the process to a different region

Sharing

— Control which data will be shared between processes
Distinguish physical to logical memory

— Manage the memory hierarchy

Address Space

* Set of address that a process can use
— Memory abstraction
— Map each process’s address space into different
parts of physical memory

e Use of two registers
— Base, start address of the program
— Limit, length of the program
— Only OS modifies these registers
* Process memory access
— Logical address + Base register

Swapping

* |f main memory is not enough
— Use disk to temporarily store process data

* Moving from memory to disk and vice versa is
called “swapping”

* Slow process
— Involves disk I/0

Virtual Memory

 Map logical addresses to physical addresses

 Each process has a
* Address space divid

orivate address space
ed to pages

* Pages mappedtop

nysical memory

* OS keeps a page table
— Translation from virtual to physical pages

» Storage Management

Storage Management

* Applications need permanent data storage
— Persistency

 Hardware provides block level accesses
— Use fixed-size blocks

— Every block has its own address
— Transfers in multiples of blocks

— Seagate provides object based access (key/value)
* OS provides methods to store and retrieve

data from disks

File System

* Move data from memory to disk and vice versa

* Export files abstraction
— Name data collections with names -> file name
— Map logical continuous units to arbitrary disk blocks
— Access them in byte level
e Export file system tree (hierarchy)
— Group files collection in directories

File System

* Disk space management
— Keeps track of used space
— Free space that is not used by the users

* Hold system state
— System might be in inconsistent state during an

unexpected failure
* Update system variables

— Journal used to keep previously consistent state
— Recover from system crash

File System - Data protection

* Each user controls files/directories permission

* Linux permission three groups
— owner, the file/directory owner
— group, the group that the user belongs
— all users, the rest of the users

* Three basic permission types

— read, can read the file
— write, can modify the file
— execute, can execute a file (denotes executables)

Questions?

Konstantinos Chasapis

Konstantinos.chasapis@informatik.uni-hamburg.de

