Building, Running and Monitoring

the Linux kernel

Praktikum Kernel Programming
University of Hamburg
Scientific Computing
Winter semester 2015/2016

Konstantinos Chasapis
Konstantinos.chasapis@informatik.uni-hamburg.de




* The Linux kernel source tree

* Configure, compile, install the Linux kernel
* Linux kernel boot and initialization

* Monitoring



Where can | find it

e Download from http://www.kernel.org

* Tree navigation

— Web browser view Ixr
e http://Ixr.sourceforge.com
e http://Ixr.free-electrons.com
— Symbolic database from all files, cscope
e http://cscope.sourceforge.net




Kernel source tree

e arch

— contains all of the architecture specific kernel code. It
has further subdirectories, one per supported
architecture, for example i386 and alpha.

* block
— contains the implementation of the block 1/0 layer
e crypto

— implements cipher operations and the cryptography
API



Kernel source tree

e Documentation
— kernel source documentation
e drivers

— all of the system's device drivers live in this directory.
They are further sub-divided into classes of device
driver, for example block

* firmware
— device firmware that is needed to use certain drivers



Kernel source tree

e fs
— file system code. This is further sub-divided into
directories, one per supported file system
* include

— contains most of the include files needed to build the
kernel code. It too has further subdirectories including
one for every architecture supported

* init
— contains the initialization code for the kernel and it is a

very good place to start looking at how the kernel
works



Kernel source tree

* ipc
— contains the kernels Inter-Process Communication (IPC)
mechanism such as message queues, semaphores,
shared memory.
* kernel
— core subsystems, for example the scheduler. The
architecture specific kernel code is in arch/*/kernel.
e lib
— this directory contains the kernel's library code. The

architecture specific library code can be found in arch/
E 3



Kernel source tree

* mm
— contains all of the memory management code. The
architecture specific memory management code lives
down in arch/*/mm/
* modules
— directory used to hold built modules
* net
— the kernel's networking code, (ethernet, ipv4)
 samples
— demonstrative code



Kernel source tree

* scripts
— contains the scripts (for example awk and tk scripts)
that are used when the kernel is configured
* security
— Linux security module, including SELinux
* sound
— Advance Linux Sound Architecture (ALSA), sound card
drivers.



Kernel source tree

* usr
— user-space interaction (initramfs)
* tools
— kernel and user development tools, mostly used for
performance counting
* virt
— the virtualization infrastructure



* Configure, compile, install the Linux kernel
* Linux kernel boot and initialization
* Monitoring



Configuration

Typical kernel has >> 1000 configuration options
Default configuration part of the board support package
(BSP)
Configuration file .config
Configuration options are typically Booleans or Tristate
— Yes
— No
— Module

Examples

— CONFIG_SMP, enables or disables SMP supports
— CONFIG_LOCK_STAT, enables or disables lock statistics



Tweak configuration

using make, targets

* config
— interactive for each option
* menuconfig

— ncurses text menu
* xconfig

— graphical menus using Qt
» gconfig

— graphical menus using Gtk+
* defconfig

— default configuration based on the architecture



Tweak configuration

using make, targets

oldconfig

— validate and update the configuration
randconfig

— random answer to all options
allmodconfig

— selecting modules when possible
allyesconfig

— all options are accepted with yes
allnoconfig

— all options are answered with no



Naming the new Kernel

Edit the top level Makefile
* VERSION =3
* PATCHLEVEL=6
 SUBLEVEL =35
 EXTRAVERSION = -rc2
* NAME = my kernel



* Required packages
— development tools, make, gcc, gzip, etc.
— Several distributions offer packages

* Cross compile

— export ARCH=...
— export CROSS COMPILE=...



Compile make targets

default

— builds kernel + modules

bzlmage

— builds kernel

— generates: arch/arm/boot/bzlmage

modules

— builds loadable modules

— generates: lib/modules/<kernel.versio-name>



Compile make targets

-j<n> e.g. -j2

— spawn multiple build jobs

clean

— generated files

mrproper

— generated files+config+backup files
distclean

— all the above+patch files



Install

make install

— copy kernel image to the proper directory /
boot

make module_install

— install build modules in the correct home
under /lib/modules

Update the boot loader
— LILO or grub configuration file
— add the new entry for the newly build kernel



Kernel command line

 Kernel behaviour set by boot “command line”
* see Documentation/kernel-parameters.txt
 Examples
— root: set device to load root file system from,
e e.g.root=/dev/sdal
— quiet: output fewer console messages
— debug: output all console messages
— maxcpus: control the active CPU
 Can besetin Bootloader, e.g. GRUB



The root file system

Mounted by the kernel during boot
— Provides additional kernel modules that are needed

specified the root kernel command line parameter
Loaded from:

— memory (ram disk / initramfs)

— storage device

— network

The “module” that provides access must be embedded
in the kernel or it cannot mount..



RIWEINIS

initial ram file system
— successor of initrd
cpio archive of the initial file system
— cpio
* file archive and file format
* copyinand out

gets loaded into memory during startup

contains device drivers and tools needed to
mount the real file system



 Linux kernel boot and initialization
* Monitoring



Boot process of the kernel

BIOS loads Master Boot Record (MBR) from the boot
device

Code that exist in the MBR reads the partition table of
the boot device and reads the bootloader (GRUB, LILO)

from the boot partition
The bootloader reads the compressed kernel image

— Passes the control to it using the command line
options

The kernel un-compresses itself



Boot process of the kernel

Proceeds to "real" mode where the first level
initializations are done
— In read mode, it can access only the first 1MB of
memory
Startup is performed in the "protected" mode and
begins initializing the CPU subsystem
— In "protected” mode you can use many advance
feature of the processor such as paging
It follows the memory and the process managements
subsystems
Peripheral buses, I/O buses are stated next



Init process

At last the kernel invokes the init program that is the
parent of all Linux processes
First program to be run /sbin/init
— Begins by reading /etc/inittab
Run levels (system states) for System V init
— Ois halt
— 1lissingle user
— 2-5 are multi-user
— 6 reboot
Starts initialisation scripts

— Fount at /ect/init.d



* Monitoring
— Metrics
— Tools



CPU metrics /proc/stat

Utilization

— overall utilization per processor

User time

— percentage spent on user processes
System time

— percentage spent on kernel operations
Waiting

— time spent waiting for I/O operations
Idle time

— system was idle waiting tasks



CPU metrics /proc/stat

* Nice time
— time spent on re-nicing processes
* Runnable processes
— processes ready to run
* Blocked
— processes blocked by |/O operations
* Context switch
— number of context switches
* Interrupts
— number of hard and soft interrupts



Memory metrics

* Free memory
— amount of free memory in the system
* Swap usage
— amount of swap used
e Buffer and cache
— memory allocated for I/0O
* Slabs
— kernel usage of memory
* Active VS. inactive memory

— Inactive memory is a candidate to be swapped



Network interface metrics

* Packets sent/received
* Bytes sent/received
* Collisions per second
— Sustained values indicate network infrastructure bottlenecks
* Packets dropped
— Can be caused by the firewall or limited buffers
* Overruns
— how many times runned out of buffers
* Errors
— count the packets that are marked faulty



Block device metrics

lowait
— the time CPU spends waiting for |/O to complete

Average queue length
— amount of outstanding I/O requests

— high value indicate I/O bottleneck
Average wait
— average time in ms that takes for an 1/O operation to
complete
Transfer per second
— how many I/O operations are performed



Block device metrics

* Blocks read/write per second
— number of blocks that were read or written (usually each
block is 1024 Bytes)
» Kilobytes read/write per second
— number of blocks that were read or written in KBytes



Generic admin tools

e dmesg
— Prints the message buffer of the kernel

e strace

— Monitor interaction between user and kernel
e oprofile

— System-wide statistical profiling tool



CPU Tools

e top
— Process activity
* ps, pstree
— Display the running processes
 Kkill
— Sends the SIGTERM signal to the process
* mpstat
— Displays activities for each available processor
* numastat
— NUMA-related statistics
* pmap
— Process memory usage



/0O Tools

° vmstat
— Report virtual memory statistics
* free
— Display the amount of free and used memory
* jostat
— Report block device statistics
* Isblk
— List block devices
* Isof

— List open files



Network Tools

ping
— check if a server responds
traceroute

— display the route path

nslookup
— get domain name or IP address

netstat

— displays network stats
tcpdump

— dump traffic on a network



/proc/stat

— cpu
/proc/diskstats
— disk
/proc/meminfo
— Memory stats



