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Kinds of memory

I Physical addresses
I addresses used between the processor and the system’s memory

I (Kernel) logical addresses
I normal address space of the kernel
I almost 1-1 mapping to physical memory
I on most architectures logical associated physical addresses

differ only by an offset

I (Kernel) virtual addresses
I also mapping from kernel space address to physical address
I not necessarily 1-to-1 mapping
I able to allocate physical memory that has no logical address



Virtual Memory - Physical Memory

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Pages

I physical memory is divided in parts of the same size called
page

I basic unit of memory management

I size is architecture-dependent, but typically 4096 byte
$ getconf PAGE_SIZE

I in the kernel, every page is represented as a struct page,
this structure ist defined in <linux/mm_types.h>



Pages and mapping

https://upload.wikimedia.org/wikipedia/commons/3/32/Virtual address space and physical address space relationship.svg



Zones (1)

I because of hardware limitations, the kernel cannot treat all
pages as identical

I some hardware can perform direct memory access to only
certain memory adress

I some architectures can address larger amounts of physical
memory than they can virtually address, so this memory is not
permanently mapped into the kernel address space

I → physical memory is divided into (more ore less) three zones



Zones (2)

I DMA
I low 16MB of memory
I exists for historical reasons, sometime there was hardware that

could only do DMA in this area

I 32DMA
I only in 64-bit linux
I ∼low 4GBytes of memory
I today, there is hardware that can do DMA to 4GBytes



Zones (3)

I Normal
I different on 32-bit and 64-bit machines
I 32-bit: Memory from 16MB to 896MB
I 64-bit: Memory above ∼4GB

I HighMem
I only on 32-bit Linux
I all Memory above ∼896 MB
I is not permanently or automatically mapped into the kernel’s

address space

I cat /proc/pagetypeinfo
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Kernel Memory Allocation Overview

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Buddy system

I the kernel uses a buddy allocator strategy so only allocations
of power of two number of pages are possible:
1 page, 2 pages, 4 pages, 8 pages, 16 pages, etc.

I if a small area is needed and only a larger area is available, the
larger area is split into two halves (buddies), possibly
repeatedly.

I when an area is freed, it is checked whether its buddy is free
as well, so they can get merged

I number of free areas can be seen here /proc/buddyinfo



Getting a page

I unsigned long __get_free_page(int flags)
I returns virtual adress of a free page

I unsigned long get_zeroed_page(int flags)
I returns virtual adress of a free page, initialized to zero

I unsigned long __get_free_pages(int flags,
unsigned int order)

I returns the starting virtual adress of an are of contiguous free
pages, with order = log2(number of pages)



Flag categories

I The flags are broken up into three categories:
I action modifiers

I specify how the kernel is supposed to allocate memory

I zone modifiers
I specify where the kernel is supposed to allocate memory

I types
I type flags specify a combination of action and zone modifiers

as needed by a certain type of memory allocation
I these are mostly used



frequently used flags

I GFP KERNEL
I standard kernel memory allocation
I the allocation may block in order to find enough free memory
I fine for most needs, except in interrupt handler context
I this flag should be your default choice

I GFP ATOMIC
I the allocation is high priority and is not allowed to sleep
I never blocks, allows to aaccess emergency pools
I can fail if no free memory is readily available

I GFP DMA
I allocates memory in an area of the DMA Zone
I device drivers that need DMA-able memory use this flag

I for all flags see include/linux/gfp.h



free pages

I void free_page(unsigned long addr)
I frees one page

I void free_pages(unsigned long addr,
unsigned int order)

I frees multiple pages
I order has to be the same as in allocation, passing the wrong

order can result in corruption.



Usage

I the low-level page functions are useful when you need
page-sized chunks of physically contiguous pages especially if
you need exactly a single page or two

I it is also possible to use:
struct page * alloc_pages(int flags,

unsigned int order)

I returns a pointer to the first pages page struct, on error it
returns NULL



slab allocator

I allows to creates caches, which contains a set of objects of
the same size

I it uses the page allocator
I principle aims

I caching of commonly used objects
→ system does not waste time allocating, initialising and
destroying objects

I allocation of small blocks of memory
→ help eliminate internal fragmentation that would be
otherwise caused by the buddy system



Different SLAB allocators

I there are three different implementations of a SLAB allocator
in the linux kernel.

I you can choose one at configuration of the kernel
I SLAB

I legacy

I SLUB
I default, simpler, better scaling, less fragmentation

I SLOB
I simpler, more space effizient but doesn’t scale well.



kmalloc allocator

I kmalloc() is the normal method of allocating memory in the
kernel

I for small sizes it relies on SLAB caches → /proc/slabinfo

I for larger sizes it relies on the page allocator

I kmalloc() guarantees that the pages are physically contiguous
(and virtually contiguous)

I same flags as for the page allocator
GFP_KERNEL, GFP_ATOMIC, GFP_DMA, etc



kmalloc sizes

I the maxium of space that can be allocated by kmalloc
depends on the architecture

I Maximum sizes on x86 and arm
I Per allocation: 4 MB

I Maximum sizes on 64-bit
I We will test this later.

I For completely portable code, do not allocate anything larger
than 128 KB



kmalloc api

I #include <linux/slab.h>

I void *kmalloc(size_t size, int flags);

I allocate size bytes and return pointer to the area (virtual
adress)

I size: number of bytes to allocate
I flags: same flags as the page allocator

I void kfree(const void *addr);

I frees a block of memory previously allocated with kmalloc()



kmalloc API 2

I void *kzalloc(size_t, int flags);

I Allocates zero-initialized memory

I void *kmalloc_array(size_t n, size_t size_t,

gfp_t flags);

I allocates memory for an array of n elements of size size

I void *kcalloc(size_t n, size_t, size, int flags);

I allocates memory from an array of n elements of size size and
the memory is set to zero,



kmalloc example

I similar to malloc()

I If not enough memory is available, kmalloc() can return NULL
so check after all calls to kmalloc() and handle the error
appropriately

I

struct cat *p;

p = kmalloc(sizeof(struct cat), GFP_KERNEL);

if (!p)

/* handle error ... */

//free the memory

kfree(buf);



devm kmalloc

I devm kmalloc is a resource-managed kmalloc

I automatically frees the allocated buffers when the
corresponding device is detached

I void *devm_kmalloc(struct device *dev,

size_t size, int flags);

I dev → Device to allocate memory for

I less errors/memory leaks



vmalloc()

I vmalloc() allocates memory that is only virtually contiguous,
but not physically contiguous

I pages obtained via vmalloc() must be mapped by their
individual pages (because they are not physically contiguous)

I is used only when absolutely necessary

I typically, to obtain large regions of memory



vmalloc api

I #include <linux/vmalloc.h>

I void *vmalloc(unsigned long size);

I returns a pointer to at least size bytes

I void vfree(const void *addr);

I frees an allocation obtained via vmalloc()



large buffers

I what if you want to allocate a lot of (physically contiguous)
memory?

I → allocate at boot time

I only drivers directly linked to the kernel can do that

I to install, rebuild kernel and reboot

I freed memory ist possibly not reuseable!



bootmem

I bootmem for allocating memory at boot time

I #include <linux/bootmem.h>

I void *alloc_bootmem_pages(unsigned long size);

void *alloc_bootmem_low_pages(unsigned long size);

I allocated memory may be high memory unless _low is used
I unsigned long size size of memory
I page-aligned memory areas

I

void free_bootmem(unsigned long addr, unsigned long size);

I but not all pages are returned to the system



Picking an allocation

I kmalloc()
I general purpose memory allocator for the kernel
I contiguous physical pages
I should be used as the primary allocator
I can allocate DMA memory

I vmalloc()
I only virtual contiguous
I slower than kmalloc()
I allocations of fairly large areas are possible



Summary

Thank you :)

Any questions?
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