
Memory Subsystem in the Linux Kernel

Merlin Koglin

Universitaet Hamburg

December 8, 2015

Overview

Memory Management
Physical and virtual memory
Zones

Kernel Memory Allocation
Page Allocator
Slab
kmalloc
vmalloc
large buffers
Picking an allocation

End

Kinds of memory

I Physical addresses
I addresses used between the processor and the system’s memory

I (Kernel) logical addresses
I normal address space of the kernel
I almost 1-1 mapping to physical memory
I on most architectures logical associated physical addresses

differ only by an offset

I (Kernel) virtual addresses
I also mapping from kernel space address to physical address
I not necessarily 1-to-1 mapping
I able to allocate physical memory that has no logical address

Virtual Memory - Physical Memory

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Pages

I physical memory is divided in parts of the same size called
page

I basic unit of memory management

I size is architecture-dependent, but typically 4096 byte
$ getconf PAGE_SIZE

I in the kernel, every page is represented as a struct page,
this structure ist defined in <linux/mm_types.h>

Pages and mapping

https://upload.wikimedia.org/wikipedia/commons/3/32/Virtual address space and physical address space relationship.svg

Zones (1)

I because of hardware limitations, the kernel cannot treat all
pages as identical

I some hardware can perform direct memory access to only
certain memory adress

I some architectures can address larger amounts of physical
memory than they can virtually address, so this memory is not
permanently mapped into the kernel address space

I → physical memory is divided into (more ore less) three zones

Zones (2)

I DMA
I low 16MB of memory
I exists for historical reasons, sometime there was hardware that

could only do DMA in this area

I 32DMA
I only in 64-bit linux
I ∼low 4GBytes of memory
I today, there is hardware that can do DMA to 4GBytes

Zones (3)

I Normal
I different on 32-bit and 64-bit machines
I 32-bit: Memory from 16MB to 896MB
I 64-bit: Memory above ∼4GB

I HighMem
I only on 32-bit Linux
I all Memory above ∼896 MB
I is not permanently or automatically mapped into the kernel’s

address space

I cat /proc/pagetypeinfo

Memory zones for 8 GB RAM

32 bit 64 bit

16 MB DMA

800 MB

~7 GB

NORMAL

HIGHMEM

16 MB DMA

~4 GB

~4 GB

DMA32

NORMAL

Pages in
HIGHMEM
must be
mapped into
NORMAL

Kernel Memory Allocation Overview

http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Buddy system

I the kernel uses a buddy allocator strategy so only allocations
of power of two number of pages are possible:
1 page, 2 pages, 4 pages, 8 pages, 16 pages, etc.

I if a small area is needed and only a larger area is available, the
larger area is split into two halves (buddies), possibly
repeatedly.

I when an area is freed, it is checked whether its buddy is free
as well, so they can get merged

I number of free areas can be seen here /proc/buddyinfo

Getting a page

I unsigned long __get_free_page(int flags)
I returns virtual adress of a free page

I unsigned long get_zeroed_page(int flags)
I returns virtual adress of a free page, initialized to zero

I unsigned long __get_free_pages(int flags,
unsigned int order)

I returns the starting virtual adress of an are of contiguous free
pages, with order = log2(number of pages)

Flag categories

I The flags are broken up into three categories:
I action modifiers

I specify how the kernel is supposed to allocate memory

I zone modifiers
I specify where the kernel is supposed to allocate memory

I types
I type flags specify a combination of action and zone modifiers

as needed by a certain type of memory allocation
I these are mostly used

frequently used flags

I GFP KERNEL
I standard kernel memory allocation
I the allocation may block in order to find enough free memory
I fine for most needs, except in interrupt handler context
I this flag should be your default choice

I GFP ATOMIC
I the allocation is high priority and is not allowed to sleep
I never blocks, allows to aaccess emergency pools
I can fail if no free memory is readily available

I GFP DMA
I allocates memory in an area of the DMA Zone
I device drivers that need DMA-able memory use this flag

I for all flags see include/linux/gfp.h

free pages

I void free_page(unsigned long addr)
I frees one page

I void free_pages(unsigned long addr,
unsigned int order)

I frees multiple pages
I order has to be the same as in allocation, passing the wrong

order can result in corruption.

Usage

I the low-level page functions are useful when you need
page-sized chunks of physically contiguous pages especially if
you need exactly a single page or two

I it is also possible to use:
struct page * alloc_pages(int flags,

unsigned int order)

I returns a pointer to the first pages page struct, on error it
returns NULL

slab allocator

I allows to creates caches, which contains a set of objects of
the same size

I it uses the page allocator
I principle aims

I caching of commonly used objects
→ system does not waste time allocating, initialising and
destroying objects

I allocation of small blocks of memory
→ help eliminate internal fragmentation that would be
otherwise caused by the buddy system

Different SLAB allocators

I there are three different implementations of a SLAB allocator
in the linux kernel.

I you can choose one at configuration of the kernel
I SLAB

I legacy

I SLUB
I default, simpler, better scaling, less fragmentation

I SLOB
I simpler, more space effizient but doesn’t scale well.

kmalloc allocator

I kmalloc() is the normal method of allocating memory in the
kernel

I for small sizes it relies on SLAB caches → /proc/slabinfo

I for larger sizes it relies on the page allocator

I kmalloc() guarantees that the pages are physically contiguous
(and virtually contiguous)

I same flags as for the page allocator
GFP_KERNEL, GFP_ATOMIC, GFP_DMA, etc

kmalloc sizes

I the maxium of space that can be allocated by kmalloc
depends on the architecture

I Maximum sizes on x86 and arm
I Per allocation: 4 MB

I Maximum sizes on 64-bit
I We will test this later.

I For completely portable code, do not allocate anything larger
than 128 KB

kmalloc api

I #include <linux/slab.h>

I void *kmalloc(size_t size, int flags);

I allocate size bytes and return pointer to the area (virtual
adress)

I size: number of bytes to allocate
I flags: same flags as the page allocator

I void kfree(const void *addr);

I frees a block of memory previously allocated with kmalloc()

kmalloc API 2

I void *kzalloc(size_t, int flags);

I Allocates zero-initialized memory

I void *kmalloc_array(size_t n, size_t size_t,

gfp_t flags);

I allocates memory for an array of n elements of size size

I void *kcalloc(size_t n, size_t, size, int flags);

I allocates memory from an array of n elements of size size and
the memory is set to zero,

kmalloc example

I similar to malloc()

I If not enough memory is available, kmalloc() can return NULL
so check after all calls to kmalloc() and handle the error
appropriately

I

struct cat *p;

p = kmalloc(sizeof(struct cat), GFP_KERNEL);

if (!p)

/* handle error ... */

//free the memory

kfree(buf);

devm kmalloc

I devm kmalloc is a resource-managed kmalloc

I automatically frees the allocated buffers when the
corresponding device is detached

I void *devm_kmalloc(struct device *dev,

size_t size, int flags);

I dev → Device to allocate memory for

I less errors/memory leaks

vmalloc()

I vmalloc() allocates memory that is only virtually contiguous,
but not physically contiguous

I pages obtained via vmalloc() must be mapped by their
individual pages (because they are not physically contiguous)

I is used only when absolutely necessary

I typically, to obtain large regions of memory

vmalloc api

I #include <linux/vmalloc.h>

I void *vmalloc(unsigned long size);

I returns a pointer to at least size bytes

I void vfree(const void *addr);

I frees an allocation obtained via vmalloc()

large buffers

I what if you want to allocate a lot of (physically contiguous)
memory?

I → allocate at boot time

I only drivers directly linked to the kernel can do that

I to install, rebuild kernel and reboot

I freed memory ist possibly not reuseable!

bootmem

I bootmem for allocating memory at boot time

I #include <linux/bootmem.h>

I void *alloc_bootmem_pages(unsigned long size);

void *alloc_bootmem_low_pages(unsigned long size);

I allocated memory may be high memory unless _low is used
I unsigned long size size of memory
I page-aligned memory areas

I

void free_bootmem(unsigned long addr, unsigned long size);

I but not all pages are returned to the system

Picking an allocation

I kmalloc()
I general purpose memory allocator for the kernel
I contiguous physical pages
I should be used as the primary allocator
I can allocate DMA memory

I vmalloc()
I only virtual contiguous
I slower than kmalloc()
I allocations of fairly large areas are possible

Summary

Thank you :)

Any questions?

References

I makelinux.net - Chapter 15 - Constantine Shulyupin

I Linux Device Drivers, 3rd Edition - O’Reilly

I The Linux Kernel - Chapter 3 - David A Rusling

I Linux Kernel Development - Robert Love (pdf)

I Linux Kernel and Driver Development Training - free electrons
(pdf)

I Memory Subsystem and Data Types in the Linux Kernel -
Bjoern Broenmstrup and Alexander Koglin (pdf)

http://www.makelinux.net/ldd3/chp-15-sect-1
http://www.tldp.org/LDP/tlk/mm/memory.html
https://reiber.org/nxt/pub/Linux/LinuxKernelDevelopment/Linux.Kernel.Development.3rd.Edition.pdf
http://free-electrons.com/doc/training/linux-kernel/linux-kernel-slides.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2014_2015/kp-1415-memory-management.pdf
http://wr.informatik.uni-hamburg.de/_media/teaching/wintersemester_2014_2015/kp-1415-memory-management.pdf

	Memory Management
	Physical and virtual memory
	Zones

	Kernel Memory Allocation
	Page Allocator
	Slab
	kmalloc
	vmalloc
	large buffers
	Picking an allocation

	End

