
Character Device Drivers
Praktikum „Kernel Programming“

Johannes Coym

December 2, 2015



Outline

 What are character device drivers

 Example of the connection between application and character device

 Major and minor numbers

 File operations

 ioctl (Input/Output control)

 Blocking I/O

 Access control

2



What are character device drivers

3



What are character device drivers

 Character devices can be accessed as a stream of bytes

 Character device drivers implement open, close, read and write most 

of the time and grant access to the data stream for the user space

 Examples for character devices:

 Serial Ports (/dev/ttyS0)

 Console (/dev/console)

 Mouse (/dev/input/mouse0)

 (all devices that are neither storage nor network devices)

4



What are character device drivers

 Connection between application

and the device in 4 steps:

 Application

 Character device file

 Character device driver

 Character device

5



Example of the connection between 
application and character device

 The music player writes the

music to play into the CDF

 The character device driver

takes the music from the CDF 

and sends it as a byte stream to

the character device

6



Major and minor numbers

 Access to device driver from user space through device file

 Kernel needs to know to which driver and which device the device 

file belongs

Device files mapped by the kernel to a major and a minor number

Major number refers top the driver, each driver has its own

Minor number refers to the device which is managed by the driver

7



Major and minor numbers

 Limit of 255 major and 255 minor numbers

 Each combination of major and minor number is unique and mapped 

to a device file

 Some functions need to know the major number

 In the Kernel the type dev_t contains major and minor number of a 

device

8



Major and minor numbers

 To get the major or minor number from a dev_t:

 MAJOR(dev_t dev); 

 MINOR(dev_t dev);

 To get a dev_t from the major and the minor number:

 MKDEV(int major, int minor);

9



Major and minor numbers

 Two types of major and minor number region allocation:

 int register_chrdev_region(dev_t first, unsigned int count, char 

*name);

 Static allocation where it’s not sure if you’ll get the requested region

 If the minor numbers exceed the 255 it will automatically assign the next major too, if it’s free

 int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, 

unsigned int count, char *name);

 Dynamic allocation of the device numbers by the kernel

 You will definitely get a free major number assigned

 To free the assigned major and minor numbers in the exit function:

 void unregister_chrdev_region(dev_t first, unsigned int count);

10



Major and minor numbers

 Allocating only a major number with it’s full 256 minor numbers:

 int register_chrdev (unsigned int major, const char * 

name, const struct file_operations * fops);

 Will try to allocate the given major

 Setting major to 0 will change the functions behavior to dynamically allocate a major 

number

 Free the assigned major number:

 void unregister_chrdev(unsigned int major, const char * 

name);

11



File Operations

12



File Operations

 Structure defined in linux/fs.h

 Contains pointers to the common file operations by the drivers

 Usage:

struct file_operations fops = {

.read = device_read,

.write = device_write,

.open = device_open,

.release = device_release

};

13



File Operations – open/release

 int (*open) (struct inode *, struct file *);

 int (*release) (struct inode *, struct file *);

 Return value: 0 for success, negative numbers for failure

 Struct inode * is a struct defined in linux/fs.h and includes 

information about the device

 Struct file * is a struct defined in linux/fs.h and references to the 

device file

14



File Operations – read/write

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t (*write) (struct file *, const char __user *, size_t, 

loff_t *);

 Return value: the size read or written

 Struct file * is a struct defined in linux/fs.h and references to the device file

 Char __user * is the buffer we receive from user space

 Size_t is the size of the requested transfer

 Loff_t is the long offset type indicating the position in the file the user is 

accessing

15



File Operations - llseek

 loff_t (*llseek) (struct file *, loff_t, int);

 Return value: New position in the file

 Struct file * is a struct defined in linux/fs.h and references to the

device file

 Loff_t is the value defining how much the position will be changed

 Int defines where it should start (0 from beginning, 1 at current

position, 2 at end)

16



ioctl (Input/Output control)

 Used for device control of the driver

 Can include software commands like receiving error logs

 Can also include hardware commands like opening a CD drive

 Some command-oriented character devices like terminals use 

commands instead of ioctl

 It’s also possible to use only ioctl instead of read and write, you just have to 

implement the read and write operations as ioctl commands

17



ioctl (Input/Output control)

 Prototype definition:

 int ioctl(int fd, unsigned long cmd, ...);

 … stands for an optional argument char *argp

 Each ioctl command is defined by one 8 bit Type number for the 

driver and an additional 8 bit Number for the actual command

 Should return –ENOTTY when an undefined ioctl command is called

18



ioctl (Input/Output control)

 Each module can define its own ioctl commands

 The ioctl commands should be defined in a header file in 

combination with the major number

 Most of the time static major number allocation, when working with ioctl

 The header file should be referenced by any programs using the ioctl

commands

19



ioctl (Input/Output control)

 Usually with a switch-case

 Selecting in switch case which command was sent to him

 Default should just return –ENOTTY

 On success of one command 0 or an answer to the user space 

program should be returned

 Arguments can be given as a pointer or value and can be received as 

a return value or pointer

20



Blocking I/O

 If the driver gets a request which can‘t handle right now he puts the 

process to sleep

 Reasons for the driver to be not able to handle the request:

 Receiving a read request when there is no data to read available

 Receiving a write request when the buffer is already full

21



Blocking I/O

 To send a process to sleep, we need a wait queue

 Static initialized wait queue; initialized at compile time:

DECLARE_WAIT_QUEUE_HEAD (my_queue);

 Dynamic initialized wait queue; intialized at runtime

wait_queue_head_t my_queue;

init_waitqueue_head (&my_queue);

22



Blocking I/O

 Several ways to send a process to sleep:

 sleep_on(wait_queue_head_t *queue);

 interruptible_sleep_on(wait_queue_head_t *queue);

 sleep_on_timeout(wait_queue_head_t *queue, long timeout);

 interruptible_sleep_on_timeout(wait_queue_head_t *queue, 

long timeout);

 void wait_event(wait_queue_head_t queue, int condition);

 int wait_event_interruptible(wait_queue_head_t queue, int

condition);

23



Blocking I/O

 All variants of sleep_on can be woken up using this commands:

 wake_up(wait_queue_head_t *queue);

 wake_up_interruptible(wait_queue_head_t *queue);

 wake_up_sync(wait_queue_head_t *queue);

 wake_up_interruptible_sync(wait_queue_head_t *queue);

 The wait_event variants don‘t need a wake_up call, but wake up 

automatically on the condition

24



Access Control

 Single-open lock:

 Device file can only be opened by one process at the same time

 Usually implemented with an Integer which is 0 when no process is using the 

driver and 1 when it‘s busy

 Single-user lock:

 Device file can be opened by all processes owned by one user

 Usually implemented using a field saving the owner of the first process 

opening the file

25



Access Control

 „Blocking-open“:

 Device file can be opened by any process at any time but if another process 

is using the device, the calling process will have to wait

 Usually implemented with a wait queue

 Cloning the device

 When open is called by a process, it gets it‘s own copy of the device file as a 

virtual device file

26



Literature

„Major and Minor Numbers“
http://www.makelinux.net/ldd3/chp-3-sect-2

Corbet, Rubini, Kroah-Hartmann(2005). „Linux Device Drivers“

https://static.lwn.net/images/pdf/LDD3/ch01.pdf

„Device Drivers, Part 4: Linux Character Drivers“

http://opensourceforu.efytimes.com/2011/02/linux-character-drivers/

„Character Device Files“

http://www.tldp.org/LDP/lkmpg/2.4/html/c577.htm

„Enhanced Char Driver Operations“

http://www.xml.com/ldd/chapter/book/ch05.html

„Writing a Linux Kernel Module — Part 2: A Character Device”

http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-
device/

27

http://www.makelinux.net/ldd3/chp-3-sect-2
https://static.lwn.net/images/pdf/LDD3/ch01.pdf
http://opensourceforu.efytimes.com/2011/02/linux-character-drivers/
http://www.tldp.org/LDP/lkmpg/2.4/html/c577.htm
http://www.xml.com/ldd/chapter/book/ch05.html
http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-device/

