
Character Device Drivers
Praktikum „Kernel Programming“

Johannes Coym

December 2, 2015



Outline

 What are character device drivers

 Example of the connection between application and character device

 Major and minor numbers

 File operations

 ioctl (Input/Output control)

 Blocking I/O

 Access control

2



What are character device drivers

3



What are character device drivers

 Character devices can be accessed as a stream of bytes

 Character device drivers implement open, close, read and write most 

of the time and grant access to the data stream for the user space

 Examples for character devices:

 Serial Ports (/dev/ttyS0)

 Console (/dev/console)

 Mouse (/dev/input/mouse0)

 (all devices that are neither storage nor network devices)

4



What are character device drivers

 Connection between application

and the device in 4 steps:

 Application

 Character device file

 Character device driver

 Character device

5



Example of the connection between 
application and character device

 The music player writes the

music to play into the CDF

 The character device driver

takes the music from the CDF 

and sends it as a byte stream to

the character device

6



Major and minor numbers

 Access to device driver from user space through device file

 Kernel needs to know to which driver and which device the device 

file belongs

Device files mapped by the kernel to a major and a minor number

Major number refers top the driver, each driver has its own

Minor number refers to the device which is managed by the driver

7



Major and minor numbers

 Limit of 255 major and 255 minor numbers

 Each combination of major and minor number is unique and mapped 

to a device file

 Some functions need to know the major number

 In the Kernel the type dev_t contains major and minor number of a 

device

8



Major and minor numbers

 To get the major or minor number from a dev_t:

 MAJOR(dev_t dev); 

 MINOR(dev_t dev);

 To get a dev_t from the major and the minor number:

 MKDEV(int major, int minor);

9



Major and minor numbers

 Two types of major and minor number region allocation:

 int register_chrdev_region(dev_t first, unsigned int count, char 

*name);

 Static allocation where it’s not sure if you’ll get the requested region

 If the minor numbers exceed the 255 it will automatically assign the next major too, if it’s free

 int alloc_chrdev_region(dev_t *dev, unsigned int firstminor, 

unsigned int count, char *name);

 Dynamic allocation of the device numbers by the kernel

 You will definitely get a free major number assigned

 To free the assigned major and minor numbers in the exit function:

 void unregister_chrdev_region(dev_t first, unsigned int count);

10



Major and minor numbers

 Allocating only a major number with it’s full 256 minor numbers:

 int register_chrdev (unsigned int major, const char * 

name, const struct file_operations * fops);

 Will try to allocate the given major

 Setting major to 0 will change the functions behavior to dynamically allocate a major 

number

 Free the assigned major number:

 void unregister_chrdev(unsigned int major, const char * 

name);

11



File Operations

12



File Operations

 Structure defined in linux/fs.h

 Contains pointers to the common file operations by the drivers

 Usage:

struct file_operations fops = {

.read = device_read,

.write = device_write,

.open = device_open,

.release = device_release

};

13



File Operations – open/release

 int (*open) (struct inode *, struct file *);

 int (*release) (struct inode *, struct file *);

 Return value: 0 for success, negative numbers for failure

 Struct inode * is a struct defined in linux/fs.h and includes 

information about the device

 Struct file * is a struct defined in linux/fs.h and references to the 

device file

14



File Operations – read/write

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

 ssize_t (*write) (struct file *, const char __user *, size_t, 

loff_t *);

 Return value: the size read or written

 Struct file * is a struct defined in linux/fs.h and references to the device file

 Char __user * is the buffer we receive from user space

 Size_t is the size of the requested transfer

 Loff_t is the long offset type indicating the position in the file the user is 

accessing

15



File Operations - llseek

 loff_t (*llseek) (struct file *, loff_t, int);

 Return value: New position in the file

 Struct file * is a struct defined in linux/fs.h and references to the

device file

 Loff_t is the value defining how much the position will be changed

 Int defines where it should start (0 from beginning, 1 at current

position, 2 at end)

16



ioctl (Input/Output control)

 Used for device control of the driver

 Can include software commands like receiving error logs

 Can also include hardware commands like opening a CD drive

 Some command-oriented character devices like terminals use 

commands instead of ioctl

 It’s also possible to use only ioctl instead of read and write, you just have to 

implement the read and write operations as ioctl commands

17



ioctl (Input/Output control)

 Prototype definition:

 int ioctl(int fd, unsigned long cmd, ...);

 … stands for an optional argument char *argp

 Each ioctl command is defined by one 8 bit Type number for the 

driver and an additional 8 bit Number for the actual command

 Should return –ENOTTY when an undefined ioctl command is called

18



ioctl (Input/Output control)

 Each module can define its own ioctl commands

 The ioctl commands should be defined in a header file in 

combination with the major number

 Most of the time static major number allocation, when working with ioctl

 The header file should be referenced by any programs using the ioctl

commands

19



ioctl (Input/Output control)

 Usually with a switch-case

 Selecting in switch case which command was sent to him

 Default should just return –ENOTTY

 On success of one command 0 or an answer to the user space 

program should be returned

 Arguments can be given as a pointer or value and can be received as 

a return value or pointer

20



Blocking I/O

 If the driver gets a request which can‘t handle right now he puts the 

process to sleep

 Reasons for the driver to be not able to handle the request:

 Receiving a read request when there is no data to read available

 Receiving a write request when the buffer is already full

21



Blocking I/O

 To send a process to sleep, we need a wait queue

 Static initialized wait queue; initialized at compile time:

DECLARE_WAIT_QUEUE_HEAD (my_queue);

 Dynamic initialized wait queue; intialized at runtime

wait_queue_head_t my_queue;

init_waitqueue_head (&my_queue);

22



Blocking I/O

 Several ways to send a process to sleep:

 sleep_on(wait_queue_head_t *queue);

 interruptible_sleep_on(wait_queue_head_t *queue);

 sleep_on_timeout(wait_queue_head_t *queue, long timeout);

 interruptible_sleep_on_timeout(wait_queue_head_t *queue, 

long timeout);

 void wait_event(wait_queue_head_t queue, int condition);

 int wait_event_interruptible(wait_queue_head_t queue, int

condition);

23



Blocking I/O

 All variants of sleep_on can be woken up using this commands:

 wake_up(wait_queue_head_t *queue);

 wake_up_interruptible(wait_queue_head_t *queue);

 wake_up_sync(wait_queue_head_t *queue);

 wake_up_interruptible_sync(wait_queue_head_t *queue);

 The wait_event variants don‘t need a wake_up call, but wake up 

automatically on the condition

24



Access Control

 Single-open lock:

 Device file can only be opened by one process at the same time

 Usually implemented with an Integer which is 0 when no process is using the 

driver and 1 when it‘s busy

 Single-user lock:

 Device file can be opened by all processes owned by one user

 Usually implemented using a field saving the owner of the first process 

opening the file

25



Access Control

 „Blocking-open“:

 Device file can be opened by any process at any time but if another process 

is using the device, the calling process will have to wait

 Usually implemented with a wait queue

 Cloning the device

 When open is called by a process, it gets it‘s own copy of the device file as a 

virtual device file

26



Literature

„Major and Minor Numbers“
http://www.makelinux.net/ldd3/chp-3-sect-2

Corbet, Rubini, Kroah-Hartmann(2005). „Linux Device Drivers“

https://static.lwn.net/images/pdf/LDD3/ch01.pdf

„Device Drivers, Part 4: Linux Character Drivers“

http://opensourceforu.efytimes.com/2011/02/linux-character-drivers/

„Character Device Files“

http://www.tldp.org/LDP/lkmpg/2.4/html/c577.htm

„Enhanced Char Driver Operations“

http://www.xml.com/ldd/chapter/book/ch05.html

„Writing a Linux Kernel Module — Part 2: A Character Device”

http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-
device/

27

http://www.makelinux.net/ldd3/chp-3-sect-2
https://static.lwn.net/images/pdf/LDD3/ch01.pdf
http://opensourceforu.efytimes.com/2011/02/linux-character-drivers/
http://www.tldp.org/LDP/lkmpg/2.4/html/c577.htm
http://www.xml.com/ldd/chapter/book/ch05.html
http://derekmolloy.ie/writing-a-linux-kernel-module-part-2-a-character-device/

