
Writing your first 
Linux kernel module 

Praktikum Kernel Programming
University of Hamburg
Scientific Computing

Winter semester 2014/2015



Outline
● Before you start
● Hello world module
● Compile, load and unload
● User space VS. kernel space programing  
● Summary



Before you start
● Define your module’s goal
● Define your module behaviour  
● Know your hardware specifications

○ If you are building a device driver you should have 
the manual

● Documentation
○ /usr/src/linux/Documentation
○ make { htmldocs | psdocs | pdfdocks | rtfdocks }
○ /usr/src/linux/Documentation/DocBook



Role of the device driver
● Software layer between application and device 

“black boxes”
○ Offer abstraction

■ Make hardware available to users
○ Hide complexity

■ User does not need to know their implementation 
● Provide mechanism not policy

○ Mechanism
■ Providing the flexibility and the ability the device 

supports
○ Policy

■ Controlling how these capabilities are being used



Role of the device driver
● Policy-free characteristics

○ Synchronous and asynchronous operations
○ Exploit the full capabilities of the hardware
○ Often a client library is provided as well

■ Provides capabilities that do not need to be 
implemented inside the module



Outline
● Before you start
● Hello world module
● Compile, load and unload
● User space VS. kernel space programing  
● Summary



Hello world module

/* the shutdown function */
static void __exit hello_exit(void) {
  printk("Goodbye,!\n");
}

/* declares which function will be 
invoked when the module is 
removed */
module_exit(hello_exit);

/* header files */
#include <linux/module.h>
#include <linux/init.h>
/* the initialization function */
static int __init hello_init(void) {
  printk( "Hello world !\n");
  return 0; /* success */
}

/* declares which function will be 
invoked when the module is loaded 
*/
module_init(hello_init);



Initialization function
● Each module must use one
● Declared as static
● __init <name> 

○ Use only at initialization
● __initdata

○ Mark initialization data
● Does not accept parameters
● Returns error code
● Kernel drops init function and data 

○ Makes the memory available to the system

static int __init hello_init(void) {
  printk( "Hello world !\n");
  return 0; /* success */
}

module_init(hello_init);



Shutdown function
● Only if you need to unload the module
● Declared as static
● __exit <name> 

○ only at shutdown
● module_exit(<name>)
● If not defined

○ Modules can not be unloaded 
● The build in modules do not require shutdown 

static void __exit hello_exit(void) {
  printk("Goodbye,!\n");
}

module_exit(hello_exit);



printk
● Similar to printf but:

○ Prints to the kernel log file
○ Does not support all the formatting parameters

● Very expensive operation
○ Lots of printk’s can significantly slow down the 

system
● Accepts loglevels

○ A hint to the kernel to decide if it should print the 
string to the log file 

○ Default KERN_WARNING



printk - loglevels
● KERN_EMER

○ An emergency condition
● KERN_ALERT, 

○ requires immediate attention
● KERN_CRIT
● KERN_ERR
● KERN_WARNING
● KERN_NOTICE
● KERN_INFO
● KERN_DEBUG



Module parameters
● Pass parameters to the module through

○ insmod
○ modprobe

● modprobe reads parameters thought
○ /etc/modprobe

● Read parameter value while module is loaded
○ cat sys/module/<mod_na>/parameters/<param_na>



Module parameters
● Parameter declaration 

○ module_param(name, type, permission)
■ Permissions modes are as file access modes
■ Parameters types:

● bool, inbool (inverted bool)
● charp, string
● int, long, short
● uint, ulong, ushort

● Also accepts arrays parameters
○ module_param_array(name,  type, nump, perm)



Error handling
● Failure may occur during initialization phase

○ memory allocation
○ device is busy

● continue or drop?
○ If we drop

■ undo any registration activities performed before
■ in case we fail to unregister the kernel goes into 

unstable mode
● Recovery is usually handle with the goto 

statement



Error handling
● Error number definitions at <linux/errno.h>

○ Return negative values -error code;
#define EPERM          1    /* Operation not permitted */
#define ENOENT         2        /* No such file or directory */
#define EIO            5        /* I/O error */
#define ENOEXEC      8         /* Exec format error */
#define EAGAIN        11  /* Try again */
#define ENOMEM        12  /* Out of memory */
#define EACCES          13  /* Permission denied */
#define ENOSYS        38  /* Function not implemented */
#define ENOTEMPTY  39  /* Directory not empty */



Outline
● Before you start
● Hello world module
● Compile, load and unload
● User space VS. kernel space programing  
● Summary



Compile
● kbuild

○ the system that is used to compile kernel modules
○ /Documentation/kbuild/

● You must have a pre-build kernel with 
configuration and header files

● Many distributions have packages for the 
required files and tools
○ kernel-devel package for CentOS



Compile command
● make -C $KDIR M=$PWD [target]

○ $KDIR
■ the directory where the kernel source is located.
■ make will change the directory for the compile 

and will return after the compile
○ M=$PWD

■ Informs kbuild that an external module is being 
build. 

■ The value of M is the absolute path the directory 
that contains the source code of the module



make command targets 
● modules

○ The default target that can be ignored
● modules_install

○ Installs the external modules
○ The default location is 

/lib/modules/<kernel_release>/extra/
● clean

○ remove all generated files in the module directory 
only 

● help
○ list the available target for the external modules



kbuild file 
● Contains the name of the module(s) being 

built, along with the requisite source files
○ obj-m := <m_name>.o

■ kbuild will build <m_name>.o from <m_name>.c
○ Then it will link it and will result in the kernel module 

<m_name>.ko
○ An additional line is needed to add more files

■ <module_name>-y := <src1>.o <src2>.o ....
○ Include files and directories

■ standard files using #include <file>
■ ccflags-y := -Iinclude_path



Module.symvers file
● Module versioning is enabled by the 

CONFIG_MODVERSIONS tag
● It is used as a simple Application Binary 

Interface (ABI) consistency check
● It contains a list of all exported symbols from 

a kernel build
● /proc/kallsyms



insmod (insert module)
● load the module into the kernel

● triggers the execution of the 
module_init function

● Similar to the ld in user space
● Load the module code and data into the 

kernel memory
● Links any unresolved symbol in the 

module to the symbol table of the kernel
● Accepts command line arguments

● Parameters to the kernel module
● Add an entry at /proc/modules
● For more details check kernel/module.c

Kernel

Module
.init_module



rmmod (remove module)
● Removes/unloads the module from the 

kernel
● Must free memory and release recourse
● In case of failure the kernel still believes 

that the module is in use
● In case that rmmod fails the reboot 

process is required to clean the systems 
state

Kernel

Module
.exit_module



More tools
● lsmod (list modules)

○ List of the current loaded modules
● modprobe (similar to insmod)

○ Search for symbols that are not currently defined in the 
kernel 

○ In case that there are then search for in kernel modules 
to find modules that contain these symbols

○ It loads these modules into the kernel
● depmod

○ Creates a dependency file
○ Used by modprobe 

● modinfo
○ Shows information about a Linux Kernel module



Version dependency
● Modules have to be recompiled for each version

○ data structures and function prototypes can changes 
from version to version

○ during compilation the module is linked against a file 
named vermagic.o

○ This file contains target kernel version, compiler 
version etc.

● In case that the module is compile against different 
kernel version
○ insmod: Invalid module format



Version dependency (cont.)
● Macros to define kernel version during compilation 

found in /linux/version.h
○ UTS_RELEASE, the version of this kernel tree
○ LINUX_VERSION_CODE, binary representation of 

the kernel version
○ KERNEL_VERSION(major, minor, release),  build 

an inter version code



Kernel Symbol Table
● Kernel has already exported symbols
● Loaded modules can export new symbols

○ offer their functionality to other modules
● Stack modules on top of other modules

○ Reduce complexity of the modules
○ Add flexibility to choose modules depending on the 

specific hardware
● Macros to export new symbols

○ EXPORT_SYMBOL(name);
○ EXPORT_SYMBOL_GPL(make);

● Expand into specific variable declarations stored in 
the module executable file



dkms
● Dynamic Kernel Module Support

○ Framework that enables generating Linux kernel 
modules whose sources generally reside outside the 
kernel source tree

○ Used to automatically rebuilt modules when a new 
kernel is installed

○ It is included in many distributions 



Outline
● Before you start
● Hello world module
● Compile, load and unload
● User space VS. kernel space programing  
● Summary



User VS. Kernel programming
● kernel module programming 

○ similar to event driven programming 
● init function 

○ says: hey I am here, I will serve your requests from 
now and on

● exit function
○ says: I am going to leave you.. don't bother trying to 

find me anymore
● Unload

○ should release any resource that the module had 
acquired



User VS. Kernel programming
● kernel module runs in kernel space

○ Core of the operating system
○ Privileged operating system functions
○ Full access to all memory and machine hardware
○ Kernel address space

● User programs run in user space
○ It restricts user programs so they can't mess resources 

owned by other programs or by the OS kernel
○ Limited ability to do bad things like crashing the machine



User VS. Kernel programming
● System calls Switch between user and kernel
● Memory handling

○ malloc is C library call - NOT a system call
■ Use brk system call

○ Kernel allocates virtual memory area for the 
application

○ Lacks of memory protection
● Portability, 

○ Kernel modules work with specific version and 
distribution of the kernel and might be platform-
specific



User VS. Kernel programming
● Kernel does not have standard headers

○ Is not linked against the standard C library
○ However, many functions are implemented inside the 

Linux kernel
● Cannot execute easily floating point operations

○ Floating point operations are architecture dependent
○ Usually, implemented with traps, (trigger integer to 

floating point mode transition)
○ In the kernel space it requires saving and restoring the 

floating point operations manually
● Small fixed size stack

○ Configurable at compile time (4KB or 8KB)



Outline
● Before you start
● Hello world module
● Compile, load and unload
● User space VS. kernel space programing  
● Summary



Summary
● Role of the Device Driver

○ Mechanism VS. Policy 
● How to write a dummy kernel module

○ initialization, exit function
○ Makefile

● Tools to handle kernel modules 
○ insmod, rmmod, lsmod, modprobe

● Differences between User and Kernel programming



Music album as LKM
● Band releases album as Linux kernel module 

○ http://www.networkworld.
com/article/2226788/software/band-releases-
album-as-linux-kernel-module.html

http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html
http://www.networkworld.com/article/2226788/software/band-releases-album-as-linux-kernel-module.html

