
University of Hamburg Praktikum
”
Kernel Programming“

Department of Informatics in WiSe 2014/2015
Group of Scientific Computing Assignment 2
K. Chasapis, Dr. J. Kunkel, Dr. M. Dolz, M. Wiedemann Deadline: 05.02.2015

1 Exercise: Debugging Techniques (25 pt.)

Debugging techniques in the Linux kernel differ from the user space. As we show in the lecture
time there are several methods that can be used. For this exercise you will have to implement
a kprobe module and also to make use of debugfs.

Your kprobe module should print the arguments of every read, write and lseek function calls of
the kernel module that you implemented at the exercise 5 of the 1st assignment.

For the second part of this exercise, you will have to extend the exercise 5 of the 1st assignment.
You are required is to export the same functionality offered by the IOCTLs using debugfs. In
more detail you should create a per device debugfs file that will allow you to read and modify
the size of the circular buffer.

2 Exercise: Threads Safety (20 pt.)

Many user space processes/threads can enter the Linux kernel simultaneously. Thus one has to
take special care when programming kernel modules with multi-threaded support. Choose the
proper synchronization method offered by the Linux kernel to solve the below tasks.

Extend the kprobe module that you have implemented in the previous exercise 1 in the following
manner. First, add thread safe counters for every read, write and lseek function call. Second,
allow counters reset functionality using an IOCTL command and a debugfs file.

3 Exercise: Memory Management (30 pt.)

The Linux kernel offers various memory allocation methods depending on the size and type
of the allocation unit. The most commonly used are: kmalloc, vmalloc, page allocator and slab
allocator.

In this exercise you will have to implement a memory allocation wrapper that will call the
appropriate allocation method depending on the requested size. The allocation function will
only return the pointer to the available memory. You should keep track on the method that you
used to allocate in order to call the appropriate function when you release the memory.

Allocation functions prototypes examples:

void * my kernel alloc(size t size);

void * my kernel free(void * ptr);

Apart from that, add a debugfs file that will report the memory that has been allocated using
this module (remember that the function calls can occur in parallel). Implement the above
functionality inside a kernel module and offer the functionality to other kernel modules using
the appropriate “EXPORT” macros.

Test the allocation wrapper by replacing the allocation calls of exercise 5 from the 1st assi-
gnment. Apart from the memory allocation module you should submit the modified version of
the exercise 5 from the 1st assignment.

1

4 Exercise: Dynamic Kernel Module Support (25 pt.)

The Linux kernel modules can be loaded into the kernel only if they have be build against the
same kernel version that it is running in the system. The Dynamic Kernel Module Support
(DKMS) framework offers an automated method to recompile the kernel modules that reside
outside of the kernel tree for every newly installed kernel. For this exercise, you have to add
DKMS support to the exercise 2 of this assignment.

Submission

You should submit the solution of above exercises in a single tar file named after your last name
and the assignment number (e.g chasapis 2.tar). You should include main functions and also
test programs. Submit the solution of your exercise by email to your corresponding supervisor.
More details of this assignment will be given during the lecture time. You are encouraged to
send questions to our mailing list.

2

	Exercise: Debugging Techniques (25 pt.)
	Exercise: Threads Safety (20 pt.)
	Exercise: Memory Management (30 pt.)
	Exercise: Dynamic Kernel Module Support (25 pt.)

