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Motivation

I Goal: Computers with one ExaFLOPs
I 1018 float operations per second

I Important for more accurate simulations and massive data
analysis
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I Nanotechnology
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I Power consumption needs to be around 20 MW maximum
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Motivation

The goal of “high performance computing” is to achieve computers with

one ExaFLOP capacity. This is necessary for advanced simulations and

analysis of massive data amounts, for example in the fields of

biotechnology, nanotechnology or materials science. The biggest

challenge is to reduce the energy to a reasonable amount (max. 20 MW).
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Figure: Energy needed for one ExaFLOP based on Green 500. Source:
[LPK+13]
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Small figure of the theoretical energy consumption needed for 1

ExaFLOP. Although the energy consumption was decreased a lot in the

past few years the 20 MW goal is still far away.
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I Formula for power consumption: P = C · f · V 2

I But each frequency need a specific minimal voltage
I Reducing voltage also reduces frequency
I Requirement of advanced power management

I This talk will discuss basic principles concerning energy
efficiency

I Basic principles of other methods

I Focus: CPU, Memory
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The power consumption calculates from the capacitance, the frequency

and the square of the voltage. The problem is that the frequency depends

on a minimal voltage, so reducing the voltage also reduces the frequency

(and therefore the speed of the component). To use this reduction

efficient, we need advanced power reduction methods. Therefore this talk

presents the most basic methods for reducing energy consumption. This

are the basic principles of other methods presented in other talks.
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Figure: Distribution of energy consumption. Source: [Min09]
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This figure illustrates the power consumption. The highest consumption

on a computer is by the CPU and the memory. Therefore we focus on

the CPU and the memory in this talk.
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General

General information

I The CPU (processor) is the main component of a computer

I It fetches instructions and executes them

I Contains a limited amount of “registers” and gets all other
data from the memory
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General
General information

The CPU is the most important part of a computer. Its purpose is to

fetch some instructions (usually from the memory) and executes them.

For this execution the processor has a limited amount of instructions it

can execute (like add, subtract, multiply, read from memory or write to

memory). To execute commands quickly a (small) set of data is saved

into “registers” which can be reached immediately, everything else has to

be saved into memory.
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General

History

I 1965: Moores Law: Computer performance double every 18
month

I Around 2000: Slower growth on single chip - shift to multi
core

I Today: Physical limits of multi core systems - shift to many
core
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General
History

In 1965 an observation associated with Gordon Moore was made on

single core processors: The performance of CPUs will double every 18

month. Around the year 2000 the growth of performance on single core

CPUs was shrinking - therefore the manufacturer decided to build multi

core chips, containing multiply cores on one chip to still match this

observation. As for today, the growth of performance of multi core

processors is shrinking - so we are in another shift to many core systems,

containing multiply chips on one platine.
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ACPI

ACPI

I Specification defines an interface for power management

I First released December 1996

I Each device can be controlled through power states

I OS is in control of power management

I Bytecode language (AML)
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The ACPI specification defines an interface, through that the operating

system can access the power status of computer components. The

components can be controlled by assigning different “power states”, each

state defining different power consumption and latency. Contrary to prior

solutions (like APM) the operating system is in control of the power

status. This is important as the operating system can do more accurate

decisions than the BIOS. ACPI is defined over a bytecode language which

has to be interpreted (AML = ACPI Machine Language).
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ACPI

Figure: Basic ACPI structure. Source: [LSM99]
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ACPI

This picture gives a good overview about the basic ACPI structure. You

can see the division into three parts: Operating system, ACPI interface,

Hardware
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ACPI

Figure: ACPI power states. Source: [CCC+13]
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Figure: ACPI power states. Source: [CCC+13]2
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This image represents the basic ACPI interface specification. You can see

the different subsystems as well es their hierarchy. This slide is here to

give a small overview before going into detail.
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ACPI

G-States / S-States

I The “global states” (“sleeping states”) define the overall
system state

I G0 (Working)
I G1/S1-S4 (Sleeping)
I G2/S5 (Soft off)
I G3 (Mechanical off)

I Only in G0 user application are executed

I G0 offers further customisation

I G2 and G3 require restart of OS
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The g-states (global states) control the overall system state. They are

divided into four different states. The state G0 represents the normal

working mode. The state G1 represents the sleeping mode. The system is

still running, but no user threads (application) are executed. G1 is divided

into several “sleeping states”. The state G2 is called “Soft off” (or S4).

The operating system has to reboot from this state. Almost no power is

consumed. The in the state G3 no power is consumed (excluding battery

for real-time clock). It is usually entered via a mechanical switch.
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ACPI

C-States

I The “processor power states” (c-states) can be used to
control the CPU while the system is in G0-state

I The states differ in latency and power consumption
I C0
I C1
I C2 · · · Cn

I In C0 the processor executes instructions

I In C1 the processor does not execute instructions. Switching
to C0 has almost no latency

I All other states are optional and can be defined by the
manufacturer
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C-States

The C-states (control states) can be used while the system is in the G0

state to regulate the power consumption of the CPU. The states differ in

power consumption and the time it takes to switch back to C0. In the C0

state the processor executes instructions. In the C1 state the processor

does not execute instructions. However it is specified that from this state

the processor has to switch to C0 with almost no latency. The C2 and C3

state are specified but optional. All other states can be defined by the

manufacturer of the CPU and are not specified.
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ACPI

Figure: C-states of the “Intel Penryn Family” architecture. Source:
[Lin07]
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Figure: C-states of the “Intel Penryn Family” architecture. Source:
[Lin07]
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This graphic shows the different c-states in an “Intel Penryn Family”

processor. “Deep Power Down” technology state is also called C6
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ACPI

P-States

I “Performance states” (p-states) enable further control over
CPU (and devices) when in active state (C0/D0)

I Up to 16 states (P0 · · · P15)

I Controls the power and frequency of the processor

I Implementation is optional
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The p-states offer a way to regulate the CPU (and also other devices, see

D-States below) even further while they are in an active state. The

implementation of p-states is completely optional and a manufacturer

may implement up to 16 states (called P0 to P15).
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ACPI

Figure: P-states of an “Intel Pentium M”. Source: [Cor04]
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Figure: P-states of an “Intel Pentium M”. Source: [Cor04]
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This graph shows the different p-states of an Intel Pentium M processor

together with the power consumed in each state.
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ACPI

Throttling

I Throttling provides an alternative interface to performance
control

I A throttling-value may be specified

I This value determines how much performance (in percent) the
CPU should run on

I Throttling is ineffective compared to p-states
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Throttling is an alternative interface to controlling the CPU performance.

Only one (p-state, throttling) can be used at a given time. You can

specify the percent of performance a processor should perform.

Throttling is done by inserting special no-operation instructions to the

CPU execution queue. Because throttling is more expensive than

p-states, we should prefer to use p-states instead of throttling.
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ACPI

D-States

I Used to control devices like CD-reader, printer, modems,
drives...

I Four states
I D0 (full-on)
I D1
I D2
I D3 (off)

I Latency and power saving highly dependent on device
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The D-states are states based around controling different other devices.

This devices include cd-reader, printer, modems, drives and more. Four

states are defined - their meaning (and their latency and power saving)

highly depends on the device. For example, a printer might have a high

latency (seconds) and high power saving where a drive can not afford

those high latency times.
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ACPI

Figure: ACPI power states. Source: [CCC+13]
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ACPI

This image represents the basic ACPI interface specification. You can see

the different subsystems as well es their hierarchy. This slide is inserted

here to give a summary about the states.
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Implementations

Implementation - Linux

I Core ACPI system implementation called “ACPICA”
I Does not implement policies

I “ACPI drivers” implement policies
I C-states are controlled by “idle loop”
I P-states are controlled by different “governors”
I Throttling is used on thermal emergencies
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Implementations
Implementation - Linux

The ACPI implementation in Linux is based around a ACPI core

(ACPICA) which manages the ACPI. The policys are implemented by

different drivers: c-states are controlled via the kernel idle loop, p-states

are controlled by different govenors like “ondemand” “power saving”

“userspace” “performance”, throttling is only used in emergency

situations as it is ineffective compared to p-states
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Implementations

Implementation - Windows

I First implementation in Windows 2000 (1996)

I All driver have to register to the ACPI driver

I The ACPI driver calls registered methods on ACPI changes

I The user can influence the power management by “policies”

I Applications can disable certain parts of the power
management
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Implementations
Implementation - Windows

The implementation in Windows is based around a ACPI driver. All

device drivers have to register call-back methods to this driver. The

behaviour of the ACPI driver can be controlled by the user (policys) or

certain parts (like screen, sleeping) by applications
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General

General

I Second major component in modern PCs

I Cache results of operations
I Goal: Fast, large and cheap

I Can not be done with current technology
I Combination of multiple type of memory
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General
General

The memory is the second major component of a modern PC. In the

memory the results of operation should be cached for later use. Therefore

some attributes would be nice to have: Memory should be fast to access,

keep lots of data and should be cheap to buy. Unfortunately with todays

technology we can not achieve all of this points at once, therefor we need

to combine different types of memory.
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General

Memory types

I Different memory types build into a hierarchy:
I CPU-register
I Cache (L1-cache, L2-cache...)
I RAM
I Persistent cache (Hard disk drives, magnetic tape...)

I Different costs and access time
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General
Memory types

In modern operating system the memory is usually divided into different

types (registers, cache, drives...). This different memory types build up a

hierarchy where the fastest and most expensive memory is on the top.
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General

Non-uniform memory access

I Provides a single address space off all memory for all CPUs

I All memory can be accessed via unified instructions

I Access to local memory is faster than remote memory
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General
Non-uniform memory access

NUMA is an interface to the system memory where all processors share

the same address space. This leads to a model where each memory can

be accessed via the same instructions. However, the most important

point is that local memory is accessed much faster than remote memory.

We will keep this point in our mind when we look at the cost of moving

data.
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Movement of data

Movement of data

I Experimental analysis of data movement costs
I Average energy cost of moving data is 25%
I Peak energy cost around 40%
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Movement of data

Some experiments show an average energy consumption of 25% for

moving data (with peaks up to 40%)
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Movement of data

Figure: Energy spend accessing memory (AMD Interlagos 6227). Source:
[PWnt]
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Figure: Energy spend accessing memory (AMD Interlagos 6227). Source:
[PWnt]
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Movement of data

This table shows experimental results on how much energy access to the

different memory component take. There is also a comparison to an

“ADD” instruction. E.g. one access to the DRAM equals 99 ADD

operations.
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Energy reduction

Energy reduction - Reduce data movement

I Reduce amount of data movement
I Algorithmic changes

I Keep data redundant on multiple cores
I Calculation of data instead storing
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Energy reduction
Energy reduction - Reduce data movement

One way of reducing the energy consumption is to reduce the data

movement itself. This requires changes to todays algorithms as well as

caution in designing new algorithms. One example is to calculate parts

redundant instead of moving the data between different cores.
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Energy reduction

Energy reduction- DVFS

I Dynamically scale down frequency and voltage of DRAM
I Experimental data suggest average 2.43% power reduction

(max. 5.15%) [DFG+11]
I Experimental data suggest minimal slowdown of average

0.17% (max. 1.69%) [DFG+11]
I Problem: Data transfers take longer ⇒ more energy

consumption
I Problem: No current implementation

I Better results when scaling CPU and DRAM together
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Energy reduction
Energy reduction- DVFS

An other way of reducing power consumption is to scale down DRAM

frequency and voltage (As the frequency depends on a minimal voltage

level). Although giving good results, there are some problems with this

approach: There are currently no implementation of this in the DRAM

(you have to reboot to change frequency), the data transfer takes longer

(this might even increase the power consumption). To address this, you

can scale memory and CPU together.
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ACPI

Examples - ACPI in Linux

I You can control ACPI in Linux using cpufrequtils
I cpufreq-info shows information about current power

management settings
I cpufreq-set allows changing current power management

behaviour
I cpufreq-aperf measures current power management stats
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Examples - ACPI in Linux

The tools combined in “cpufrequtils” allow control over ACPI functions.

There are three different tools.
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ACPI

~ $ cpufreq-info

cpufrequtils 008: cpufreq-info (C) Dominik Brodowski 2004-2009

Bitte melden Sie Fehler an cpufreq@vger.kernel.org.

analysiere CPU 0:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 0

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 0

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 933 MHz.

analysiere CPU 1:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 1

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 1

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 2.53 GHz.

analysiere CPU 2:
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analysiere CPU 2:
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ACPI

Example of letting cpufreq-info output. Shows basic information for all

CPUs.
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ACPI

~ $ cpufreq-info -fmc 0

933 MHz

~ $ cpufreq-info --governor

conservative performance

~ $ sudo cpufreq-set -g performance

Passwort:

~ $ cpufreq-info -fmc 0

2.53 GHz

~ $ sudo cpufreq-set -g conservative

~ $ cpufreq-info -fmc 0

933 MHz
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~ $ cpufreq-info -fmc 0

933 MHz

~ $ cpufreq-info --governor

conservative performance

~ $ sudo cpufreq-set -g performance

Passwort:

~ $ cpufreq-info -fmc 0

2.53 GHz

~ $ sudo cpufreq-set -g conservative

~ $ cpufreq-info -fmc 0

933 MHz
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ACPI

Change the govenor and watch the change in frequency
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ACPI

~ $ sudo cpufreq-aperf

CPU Average freq(KHz) Time in C0 Time in Cx C0 percentage

000 1063860 00 sec 048 ms 00 sec 951 ms 04

001 1089190 00 sec 061 ms 00 sec 938 ms 06

002 1317160 00 sec 021 ms 00 sec 978 ms 02

003 1266500 00 sec 002 ms 00 sec 997 ms 00

000 1089190 00 sec 016 ms 00 sec 983 ms 01

001 1114520 00 sec 008 ms 00 sec 991 ms 00

002 1418480 00 sec 023 ms 00 sec 976 ms 02

003 1393150 00 sec 002 ms 00 sec 997 ms 00

000 0987870 00 sec 022 ms 00 sec 977 ms 02

001 1215840 00 sec 007 ms 00 sec 992 ms 00

002 1114520 00 sec 011 ms 00 sec 988 ms 01

003 1215840 00 sec 028 ms 00 sec 971 ms 02
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~ $ sudo cpufreq-aperf

CPU Average freq(KHz) Time in C0 Time in Cx C0 percentage

000 1063860 00 sec 048 ms 00 sec 951 ms 04

001 1089190 00 sec 061 ms 00 sec 938 ms 06

002 1317160 00 sec 021 ms 00 sec 978 ms 02

003 1266500 00 sec 002 ms 00 sec 997 ms 00

000 1089190 00 sec 016 ms 00 sec 983 ms 01

001 1114520 00 sec 008 ms 00 sec 991 ms 00

002 1418480 00 sec 023 ms 00 sec 976 ms 02

003 1393150 00 sec 002 ms 00 sec 997 ms 00

000 0987870 00 sec 022 ms 00 sec 977 ms 02

001 1215840 00 sec 007 ms 00 sec 992 ms 00

002 1114520 00 sec 011 ms 00 sec 988 ms 01

003 1215840 00 sec 028 ms 00 sec 971 ms 02

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

ACPI

Shows information about acpi-stats
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Memory

Examples - Memory management in Linux

I Algorithm “Dynamic Memory Switching”

I Developed by Prof. Rajat Moona, Sharad Chole, Sanchay
Harneja

I Implemented for Linux 2.6.15

I Goal: Switch off unused memory
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Harneja

I Implemented for Linux 2.6.15
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Memory
Examples - Memory management in Linux

We will look at an implementation for energy reduction for memory. This

algorithm is called “Dynamic Memory Switching” and was developed by

Prof. Rajat Moona, Sharad Chole and Sanchay Harneja. It is

implemented for Linux 2.6.15. The primary goal is to switch off unused

memory.
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Memory

Dynamic Memory Switching

I New kernel daemon
I Migrates memory pages and frees parts of memory (banks)
I Sets banks to low-power state

Figure: Energy of different memory power states. Source: [MCH07]
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Dynamic Memory Switching

I New kernel daemon
I Migrates memory pages and frees parts of memory (banks)
I Sets banks to low-power state

Figure: Energy of different memory power states. Source: [MCH07]2
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Memory
Dynamic Memory Switching

This is done by copying used memory together and freeing memory banks

(parts of the memory). This free, unused memory banks could than be

switched to a low energy mode when the memory is not needed. As we

can see in the figure, this can reduce quiet some energy, but increase the

response time if more memory is needed.
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Conclusion

I Core method of reducing energy consumption of CPU
I ACPI

I Energy consumption of memory
I Problems
I Possible solutions
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Conclusion

I Core method of reducing energy consumption of CPU
I ACPI

I Energy consumption of memory
I Problems
I Possible solutions
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Conclusion

We have looked in this talk over the core methods of reducing energy

consumption on CPUs - ACPI. We have also looked on the energy

consumption of memory - the problems and the possible solutions.
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