
1/48

Introduction CPU Memory Examples Conclusion

Core Energy Efficiency
Seminar “Energy-Efficient Programming”

Dr. Manuel Dolz, Michael Kuhn, Dr. Julian Kunkel,
Konstantinos Chasapis, Prof. Dr. Thomas Ludwig

Marcus Soll

Universität Hamburg
Fakultät für Mathematik,

Informatik und Naturwissenschaften
Department Informatik

2014-11-19

Marcus Soll Universität Hamburg

Core Energy Efficiency



2/48

Introduction CPU Memory Examples Conclusion

Motivation

I Goal: Computers with one ExaFLOPs
I 1018 float operations per second

I Important for more accurate simulations and massive data
analysis

I Biotechnology
I Nanotechnology
I Materials science

I Biggest problem: Energy consumption
I Power consumption needs to be around 20 MW maximum

Marcus Soll Universität Hamburg

Core Energy Efficiency



Motivation

I Goal: Computers with one ExaFLOPs
I 1018 float operations per second

I Important for more accurate simulations and massive data
analysis

I Biotechnology
I Nanotechnology
I Materials science

I Biggest problem: Energy consumption
I Power consumption needs to be around 20 MW maximum2

0
1
5
-0
1
-2
8

Core Energy Efficiency
Introduction

Motivation

The goal of “high performance computing” is to achieve computers with

one ExaFLOP capacity. This is necessary for advanced simulations and

analysis of massive data amounts, for example in the fields of

biotechnology, nanotechnology or materials science. The biggest

challenge is to reduce the energy to a reasonable amount (max. 20 MW).



3/48

Introduction CPU Memory Examples Conclusion

Figure: Energy needed for one ExaFLOP based on Green 500. Source:
[LPK+13]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: Energy needed for one ExaFLOP based on Green 500. Source:
[LPK+13]

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Introduction

Small figure of the theoretical energy consumption needed for 1

ExaFLOP. Although the energy consumption was decreased a lot in the

past few years the 20 MW goal is still far away.



4/48

Introduction CPU Memory Examples Conclusion

I Formula for power consumption: P = C · f · V 2

I But each frequency need a specific minimal voltage
I Reducing voltage also reduces frequency
I Requirement of advanced power management

I This talk will discuss basic principles concerning energy
efficiency

I Basic principles of other methods

I Focus: CPU, Memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



I Formula for power consumption: P = C · f · V 2

I But each frequency need a specific minimal voltage
I Reducing voltage also reduces frequency
I Requirement of advanced power management

I This talk will discuss basic principles concerning energy
efficiency

I Basic principles of other methods

I Focus: CPU, Memory

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Introduction

The power consumption calculates from the capacitance, the frequency

and the square of the voltage. The problem is that the frequency depends

on a minimal voltage, so reducing the voltage also reduces the frequency

(and therefore the speed of the component). To use this reduction

efficient, we need advanced power reduction methods. Therefore this talk

presents the most basic methods for reducing energy consumption. This

are the basic principles of other methods presented in other talks.



5/48

Introduction CPU Memory Examples Conclusion

Figure: Distribution of energy consumption. Source: [Min09]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: Distribution of energy consumption. Source: [Min09]2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Introduction

This figure illustrates the power consumption. The highest consumption

on a computer is by the CPU and the memory. Therefore we focus on

the CPU and the memory in this talk.



6/48

Introduction CPU Memory Examples Conclusion

Introduction

CPU
General
ACPI
Implementations

Memory
General
Movement of data
Energy reduction

Examples
ACPI
Memory

Conclusion

Marcus Soll Universität Hamburg

Core Energy Efficiency



7/48

Introduction CPU Memory Examples Conclusion

CPU

Marcus Soll Universität Hamburg

Core Energy Efficiency



8/48

Introduction CPU Memory Examples Conclusion

General

General information

I The CPU (processor) is the main component of a computer

I It fetches instructions and executes them

I Contains a limited amount of “registers” and gets all other
data from the memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



General information

I The CPU (processor) is the main component of a computer

I It fetches instructions and executes them

I Contains a limited amount of “registers” and gets all other
data from the memory

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

General
General information

The CPU is the most important part of a computer. Its purpose is to

fetch some instructions (usually from the memory) and executes them.

For this execution the processor has a limited amount of instructions it

can execute (like add, subtract, multiply, read from memory or write to

memory). To execute commands quickly a (small) set of data is saved

into “registers” which can be reached immediately, everything else has to

be saved into memory.



9/48

Introduction CPU Memory Examples Conclusion

General

History

I 1965: Moores Law: Computer performance double every 18
month

I Around 2000: Slower growth on single chip - shift to multi
core

I Today: Physical limits of multi core systems - shift to many
core

Marcus Soll Universität Hamburg

Core Energy Efficiency



History

I 1965: Moores Law: Computer performance double every 18
month

I Around 2000: Slower growth on single chip - shift to multi
core

I Today: Physical limits of multi core systems - shift to many
core

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

General
History

In 1965 an observation associated with Gordon Moore was made on

single core processors: The performance of CPUs will double every 18

month. Around the year 2000 the growth of performance on single core

CPUs was shrinking - therefore the manufacturer decided to build multi

core chips, containing multiply cores on one chip to still match this

observation. As for today, the growth of performance of multi core

processors is shrinking - so we are in another shift to many core systems,

containing multiply chips on one platine.



10/48

Introduction CPU Memory Examples Conclusion

ACPI

ACPI

I Specification defines an interface for power management

I First released December 1996

I Each device can be controlled through power states

I OS is in control of power management

I Bytecode language (AML)

Marcus Soll Universität Hamburg

Core Energy Efficiency



ACPI

I Specification defines an interface for power management

I First released December 1996

I Each device can be controlled through power states

I OS is in control of power management

I Bytecode language (AML)

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
ACPI

The ACPI specification defines an interface, through that the operating

system can access the power status of computer components. The

components can be controlled by assigning different “power states”, each

state defining different power consumption and latency. Contrary to prior

solutions (like APM) the operating system is in control of the power

status. This is important as the operating system can do more accurate

decisions than the BIOS. ACPI is defined over a bytecode language which

has to be interpreted (AML = ACPI Machine Language).



11/48

Introduction CPU Memory Examples Conclusion

ACPI

Figure: Basic ACPI structure. Source: [LSM99]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: Basic ACPI structure. Source: [LSM99]2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI

This picture gives a good overview about the basic ACPI structure. You

can see the division into three parts: Operating system, ACPI interface,

Hardware



12/48

Introduction CPU Memory Examples Conclusion

ACPI

Figure: ACPI power states. Source: [CCC+13]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: ACPI power states. Source: [CCC+13]2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI

This image represents the basic ACPI interface specification. You can see

the different subsystems as well es their hierarchy. This slide is here to

give a small overview before going into detail.



13/48

Introduction CPU Memory Examples Conclusion

ACPI

G-States / S-States

I The “global states” (“sleeping states”) define the overall
system state

I G0 (Working)
I G1/S1-S4 (Sleeping)
I G2/S5 (Soft off)
I G3 (Mechanical off)

I Only in G0 user application are executed

I G0 offers further customisation

I G2 and G3 require restart of OS

Marcus Soll Universität Hamburg

Core Energy Efficiency



G-States / S-States

I The “global states” (“sleeping states”) define the overall
system state

I G0 (Working)
I G1/S1-S4 (Sleeping)
I G2/S5 (Soft off)
I G3 (Mechanical off)

I Only in G0 user application are executed

I G0 offers further customisation

I G2 and G3 require restart of OS2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
G-States / S-States

The g-states (global states) control the overall system state. They are

divided into four different states. The state G0 represents the normal

working mode. The state G1 represents the sleeping mode. The system is

still running, but no user threads (application) are executed. G1 is divided

into several “sleeping states”. The state G2 is called “Soft off” (or S4).

The operating system has to reboot from this state. Almost no power is

consumed. The in the state G3 no power is consumed (excluding battery

for real-time clock). It is usually entered via a mechanical switch.



14/48

Introduction CPU Memory Examples Conclusion

ACPI

C-States

I The “processor power states” (c-states) can be used to
control the CPU while the system is in G0-state

I The states differ in latency and power consumption
I C0
I C1
I C2 · · · Cn

I In C0 the processor executes instructions

I In C1 the processor does not execute instructions. Switching
to C0 has almost no latency

I All other states are optional and can be defined by the
manufacturer

Marcus Soll Universität Hamburg

Core Energy Efficiency



C-States

I The “processor power states” (c-states) can be used to
control the CPU while the system is in G0-state

I The states differ in latency and power consumption
I C0
I C1
I C2 · · · Cn

I In C0 the processor executes instructions

I In C1 the processor does not execute instructions. Switching
to C0 has almost no latency

I All other states are optional and can be defined by the
manufacturer

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
C-States

The C-states (control states) can be used while the system is in the G0

state to regulate the power consumption of the CPU. The states differ in

power consumption and the time it takes to switch back to C0. In the C0

state the processor executes instructions. In the C1 state the processor

does not execute instructions. However it is specified that from this state

the processor has to switch to C0 with almost no latency. The C2 and C3

state are specified but optional. All other states can be defined by the

manufacturer of the CPU and are not specified.



15/48

Introduction CPU Memory Examples Conclusion

ACPI

Figure: C-states of the “Intel Penryn Family” architecture. Source:
[Lin07]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: C-states of the “Intel Penryn Family” architecture. Source:
[Lin07]

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI

This graphic shows the different c-states in an “Intel Penryn Family”

processor. “Deep Power Down” technology state is also called C6



16/48

Introduction CPU Memory Examples Conclusion

ACPI

P-States

I “Performance states” (p-states) enable further control over
CPU (and devices) when in active state (C0/D0)

I Up to 16 states (P0 · · · P15)

I Controls the power and frequency of the processor

I Implementation is optional

Marcus Soll Universität Hamburg

Core Energy Efficiency



P-States

I “Performance states” (p-states) enable further control over
CPU (and devices) when in active state (C0/D0)

I Up to 16 states (P0 · · · P15)

I Controls the power and frequency of the processor

I Implementation is optional

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
P-States

The p-states offer a way to regulate the CPU (and also other devices, see

D-States below) even further while they are in an active state. The

implementation of p-states is completely optional and a manufacturer

may implement up to 16 states (called P0 to P15).



17/48

Introduction CPU Memory Examples Conclusion

ACPI

Figure: P-states of an “Intel Pentium M”. Source: [Cor04]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: P-states of an “Intel Pentium M”. Source: [Cor04]

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI

This graph shows the different p-states of an Intel Pentium M processor

together with the power consumed in each state.



18/48

Introduction CPU Memory Examples Conclusion

ACPI

Throttling

I Throttling provides an alternative interface to performance
control

I A throttling-value may be specified

I This value determines how much performance (in percent) the
CPU should run on

I Throttling is ineffective compared to p-states

Marcus Soll Universität Hamburg

Core Energy Efficiency



Throttling

I Throttling provides an alternative interface to performance
control

I A throttling-value may be specified

I This value determines how much performance (in percent) the
CPU should run on

I Throttling is ineffective compared to p-states

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
Throttling

Throttling is an alternative interface to controlling the CPU performance.

Only one (p-state, throttling) can be used at a given time. You can

specify the percent of performance a processor should perform.

Throttling is done by inserting special no-operation instructions to the

CPU execution queue. Because throttling is more expensive than

p-states, we should prefer to use p-states instead of throttling.



19/48

Introduction CPU Memory Examples Conclusion

ACPI

D-States

I Used to control devices like CD-reader, printer, modems,
drives...

I Four states
I D0 (full-on)
I D1
I D2
I D3 (off)

I Latency and power saving highly dependent on device

Marcus Soll Universität Hamburg

Core Energy Efficiency



D-States

I Used to control devices like CD-reader, printer, modems,
drives...

I Four states
I D0 (full-on)
I D1
I D2
I D3 (off)

I Latency and power saving highly dependent on device

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI
D-States

The D-states are states based around controling different other devices.

This devices include cd-reader, printer, modems, drives and more. Four

states are defined - their meaning (and their latency and power saving)

highly depends on the device. For example, a printer might have a high

latency (seconds) and high power saving where a drive can not afford

those high latency times.



20/48

Introduction CPU Memory Examples Conclusion

ACPI

Figure: ACPI power states. Source: [CCC+13]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: ACPI power states. Source: [CCC+13]2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

ACPI

This image represents the basic ACPI interface specification. You can see

the different subsystems as well es their hierarchy. This slide is inserted

here to give a summary about the states.



21/48

Introduction CPU Memory Examples Conclusion

Implementations

Implementation - Linux

I Core ACPI system implementation called “ACPICA”
I Does not implement policies

I “ACPI drivers” implement policies
I C-states are controlled by “idle loop”
I P-states are controlled by different “governors”
I Throttling is used on thermal emergencies

Marcus Soll Universität Hamburg

Core Energy Efficiency



Implementation - Linux

I Core ACPI system implementation called “ACPICA”
I Does not implement policies

I “ACPI drivers” implement policies
I C-states are controlled by “idle loop”
I P-states are controlled by different “governors”
I Throttling is used on thermal emergencies

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

Implementations
Implementation - Linux

The ACPI implementation in Linux is based around a ACPI core

(ACPICA) which manages the ACPI. The policys are implemented by

different drivers: c-states are controlled via the kernel idle loop, p-states

are controlled by different govenors like “ondemand” “power saving”

“userspace” “performance”, throttling is only used in emergency

situations as it is ineffective compared to p-states



22/48

Introduction CPU Memory Examples Conclusion

Implementations

Implementation - Windows

I First implementation in Windows 2000 (1996)

I All driver have to register to the ACPI driver

I The ACPI driver calls registered methods on ACPI changes

I The user can influence the power management by “policies”

I Applications can disable certain parts of the power
management

Marcus Soll Universität Hamburg

Core Energy Efficiency



Implementation - Windows

I First implementation in Windows 2000 (1996)

I All driver have to register to the ACPI driver

I The ACPI driver calls registered methods on ACPI changes

I The user can influence the power management by “policies”

I Applications can disable certain parts of the power
management

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
CPU

Implementations
Implementation - Windows

The implementation in Windows is based around a ACPI driver. All

device drivers have to register call-back methods to this driver. The

behaviour of the ACPI driver can be controlled by the user (policys) or

certain parts (like screen, sleeping) by applications



23/48

Introduction CPU Memory Examples Conclusion

Memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



24/48

Introduction CPU Memory Examples Conclusion

General

General

I Second major component in modern PCs

I Cache results of operations
I Goal: Fast, large and cheap

I Can not be done with current technology
I Combination of multiple type of memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



General

I Second major component in modern PCs

I Cache results of operations
I Goal: Fast, large and cheap

I Can not be done with current technology
I Combination of multiple type of memory

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

General
General

The memory is the second major component of a modern PC. In the

memory the results of operation should be cached for later use. Therefore

some attributes would be nice to have: Memory should be fast to access,

keep lots of data and should be cheap to buy. Unfortunately with todays

technology we can not achieve all of this points at once, therefor we need

to combine different types of memory.



25/48

Introduction CPU Memory Examples Conclusion

General

Memory types

I Different memory types build into a hierarchy:
I CPU-register
I Cache (L1-cache, L2-cache...)
I RAM
I Persistent cache (Hard disk drives, magnetic tape...)

I Different costs and access time

Marcus Soll Universität Hamburg

Core Energy Efficiency



Memory types

I Different memory types build into a hierarchy:
I CPU-register
I Cache (L1-cache, L2-cache...)
I RAM
I Persistent cache (Hard disk drives, magnetic tape...)

I Different costs and access time

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

General
Memory types

In modern operating system the memory is usually divided into different

types (registers, cache, drives...). This different memory types build up a

hierarchy where the fastest and most expensive memory is on the top.



26/48

Introduction CPU Memory Examples Conclusion

General

Non-uniform memory access

I Provides a single address space off all memory for all CPUs

I All memory can be accessed via unified instructions

I Access to local memory is faster than remote memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



Non-uniform memory access

I Provides a single address space off all memory for all CPUs

I All memory can be accessed via unified instructions

I Access to local memory is faster than remote memory

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

General
Non-uniform memory access

NUMA is an interface to the system memory where all processors share

the same address space. This leads to a model where each memory can

be accessed via the same instructions. However, the most important

point is that local memory is accessed much faster than remote memory.

We will keep this point in our mind when we look at the cost of moving

data.



27/48

Introduction CPU Memory Examples Conclusion

Movement of data

Movement of data

I Experimental analysis of data movement costs
I Average energy cost of moving data is 25%
I Peak energy cost around 40%

Marcus Soll Universität Hamburg

Core Energy Efficiency



Movement of data

I Experimental analysis of data movement costs
I Average energy cost of moving data is 25%
I Peak energy cost around 40%

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

Movement of data
Movement of data

Some experiments show an average energy consumption of 25% for

moving data (with peaks up to 40%)



28/48

Introduction CPU Memory Examples Conclusion

Movement of data

Figure: Energy spend accessing memory (AMD Interlagos 6227). Source:
[PWnt]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Figure: Energy spend accessing memory (AMD Interlagos 6227). Source:
[PWnt]

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

Movement of data

This table shows experimental results on how much energy access to the

different memory component take. There is also a comparison to an

“ADD” instruction. E.g. one access to the DRAM equals 99 ADD

operations.



29/48

Introduction CPU Memory Examples Conclusion

Energy reduction

Energy reduction - Reduce data movement

I Reduce amount of data movement
I Algorithmic changes

I Keep data redundant on multiple cores
I Calculation of data instead storing

Marcus Soll Universität Hamburg

Core Energy Efficiency



Energy reduction - Reduce data movement

I Reduce amount of data movement
I Algorithmic changes

I Keep data redundant on multiple cores
I Calculation of data instead storing

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

Energy reduction
Energy reduction - Reduce data movement

One way of reducing the energy consumption is to reduce the data

movement itself. This requires changes to todays algorithms as well as

caution in designing new algorithms. One example is to calculate parts

redundant instead of moving the data between different cores.



30/48

Introduction CPU Memory Examples Conclusion

Energy reduction

Energy reduction- DVFS

I Dynamically scale down frequency and voltage of DRAM
I Experimental data suggest average 2.43% power reduction

(max. 5.15%) [DFG+11]
I Experimental data suggest minimal slowdown of average

0.17% (max. 1.69%) [DFG+11]
I Problem: Data transfers take longer ⇒ more energy

consumption
I Problem: No current implementation

I Better results when scaling CPU and DRAM together

Marcus Soll Universität Hamburg

Core Energy Efficiency



Energy reduction- DVFS

I Dynamically scale down frequency and voltage of DRAM
I Experimental data suggest average 2.43% power reduction

(max. 5.15%) [DFG+11]
I Experimental data suggest minimal slowdown of average

0.17% (max. 1.69%) [DFG+11]
I Problem: Data transfers take longer ⇒ more energy

consumption
I Problem: No current implementation

I Better results when scaling CPU and DRAM together

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Memory

Energy reduction
Energy reduction- DVFS

An other way of reducing power consumption is to scale down DRAM

frequency and voltage (As the frequency depends on a minimal voltage

level). Although giving good results, there are some problems with this

approach: There are currently no implementation of this in the DRAM

(you have to reboot to change frequency), the data transfer takes longer

(this might even increase the power consumption). To address this, you

can scale memory and CPU together.



31/48

Introduction CPU Memory Examples Conclusion

Examples

Marcus Soll Universität Hamburg

Core Energy Efficiency



32/48

Introduction CPU Memory Examples Conclusion

ACPI

Examples - ACPI in Linux

I You can control ACPI in Linux using cpufrequtils
I cpufreq-info shows information about current power

management settings
I cpufreq-set allows changing current power management

behaviour
I cpufreq-aperf measures current power management stats

Marcus Soll Universität Hamburg

Core Energy Efficiency



Examples - ACPI in Linux

I You can control ACPI in Linux using cpufrequtils
I cpufreq-info shows information about current power

management settings
I cpufreq-set allows changing current power management

behaviour
I cpufreq-aperf measures current power management stats

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

ACPI
Examples - ACPI in Linux

The tools combined in “cpufrequtils” allow control over ACPI functions.

There are three different tools.



33/48

Introduction CPU Memory Examples Conclusion

ACPI

~ $ cpufreq-info

cpufrequtils 008: cpufreq-info (C) Dominik Brodowski 2004-2009

Bitte melden Sie Fehler an cpufreq@vger.kernel.org.

analysiere CPU 0:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 0

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 0

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 933 MHz.

analysiere CPU 1:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 1

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 1

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 2.53 GHz.

analysiere CPU 2:

Marcus Soll Universität Hamburg

Core Energy Efficiency



~ $ cpufreq-info

cpufrequtils 008: cpufreq-info (C) Dominik Brodowski 2004-2009

Bitte melden Sie Fehler an cpufreq@vger.kernel.org.

analysiere CPU 0:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 0

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 0

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 933 MHz.

analysiere CPU 1:

Treiber: acpi-cpufreq

Folgende CPUs laufen mit der gleichen Hardware-Taktfrequenz: 1

Die Taktfrequenz folgender CPUs werden per Software koordiniert: 1

Maximale Dauer eines Taktfrequenzwechsels: 10.0 us.

Hardwarebedingte Grenzen der Taktfrequenz: 933 MHz - 2.53 GHz

mögliche Taktfrequenzen: 2.53 GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz, 1.47 GHz, 1.33 GHz, 1.20 GHz, 1.07 GHz, 933 MHz

mögliche Regler: conservative, performance

momentane Taktik: die Frequenz soll innerhalb 933 MHz und 2.53 GHz.

liegen. Der Regler "conservative" kann frei entscheiden,

welche Taktfrequenz innerhalb dieser Grenze verwendet wird.

momentane Taktfrequenz ist 2.53 GHz.

analysiere CPU 2:

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

ACPI

Example of letting cpufreq-info output. Shows basic information for all

CPUs.



34/48

Introduction CPU Memory Examples Conclusion

ACPI

~ $ cpufreq-info -fmc 0

933 MHz

~ $ cpufreq-info --governor

conservative performance

~ $ sudo cpufreq-set -g performance

Passwort:

~ $ cpufreq-info -fmc 0

2.53 GHz

~ $ sudo cpufreq-set -g conservative

~ $ cpufreq-info -fmc 0

933 MHz

Marcus Soll Universität Hamburg

Core Energy Efficiency



~ $ cpufreq-info -fmc 0

933 MHz

~ $ cpufreq-info --governor

conservative performance

~ $ sudo cpufreq-set -g performance

Passwort:

~ $ cpufreq-info -fmc 0

2.53 GHz

~ $ sudo cpufreq-set -g conservative

~ $ cpufreq-info -fmc 0

933 MHz

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

ACPI

Change the govenor and watch the change in frequency



35/48

Introduction CPU Memory Examples Conclusion

ACPI

~ $ sudo cpufreq-aperf

CPU Average freq(KHz) Time in C0 Time in Cx C0 percentage

000 1063860 00 sec 048 ms 00 sec 951 ms 04

001 1089190 00 sec 061 ms 00 sec 938 ms 06

002 1317160 00 sec 021 ms 00 sec 978 ms 02

003 1266500 00 sec 002 ms 00 sec 997 ms 00

000 1089190 00 sec 016 ms 00 sec 983 ms 01

001 1114520 00 sec 008 ms 00 sec 991 ms 00

002 1418480 00 sec 023 ms 00 sec 976 ms 02

003 1393150 00 sec 002 ms 00 sec 997 ms 00

000 0987870 00 sec 022 ms 00 sec 977 ms 02

001 1215840 00 sec 007 ms 00 sec 992 ms 00

002 1114520 00 sec 011 ms 00 sec 988 ms 01

003 1215840 00 sec 028 ms 00 sec 971 ms 02

Marcus Soll Universität Hamburg

Core Energy Efficiency



~ $ sudo cpufreq-aperf

CPU Average freq(KHz) Time in C0 Time in Cx C0 percentage

000 1063860 00 sec 048 ms 00 sec 951 ms 04

001 1089190 00 sec 061 ms 00 sec 938 ms 06

002 1317160 00 sec 021 ms 00 sec 978 ms 02

003 1266500 00 sec 002 ms 00 sec 997 ms 00

000 1089190 00 sec 016 ms 00 sec 983 ms 01

001 1114520 00 sec 008 ms 00 sec 991 ms 00

002 1418480 00 sec 023 ms 00 sec 976 ms 02

003 1393150 00 sec 002 ms 00 sec 997 ms 00

000 0987870 00 sec 022 ms 00 sec 977 ms 02

001 1215840 00 sec 007 ms 00 sec 992 ms 00

002 1114520 00 sec 011 ms 00 sec 988 ms 01

003 1215840 00 sec 028 ms 00 sec 971 ms 02

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

ACPI

Shows information about acpi-stats



36/48

Introduction CPU Memory Examples Conclusion

Memory

Examples - Memory management in Linux

I Algorithm “Dynamic Memory Switching”

I Developed by Prof. Rajat Moona, Sharad Chole, Sanchay
Harneja

I Implemented for Linux 2.6.15

I Goal: Switch off unused memory

Marcus Soll Universität Hamburg

Core Energy Efficiency



Examples - Memory management in Linux

I Algorithm “Dynamic Memory Switching”

I Developed by Prof. Rajat Moona, Sharad Chole, Sanchay
Harneja

I Implemented for Linux 2.6.15

I Goal: Switch off unused memory

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

Memory
Examples - Memory management in Linux

We will look at an implementation for energy reduction for memory. This

algorithm is called “Dynamic Memory Switching” and was developed by

Prof. Rajat Moona, Sharad Chole and Sanchay Harneja. It is

implemented for Linux 2.6.15. The primary goal is to switch off unused

memory.



37/48

Introduction CPU Memory Examples Conclusion

Memory

Dynamic Memory Switching

I New kernel daemon
I Migrates memory pages and frees parts of memory (banks)
I Sets banks to low-power state

Figure: Energy of different memory power states. Source: [MCH07]

Marcus Soll Universität Hamburg

Core Energy Efficiency



Dynamic Memory Switching

I New kernel daemon
I Migrates memory pages and frees parts of memory (banks)
I Sets banks to low-power state

Figure: Energy of different memory power states. Source: [MCH07]2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Examples

Memory
Dynamic Memory Switching

This is done by copying used memory together and freeing memory banks

(parts of the memory). This free, unused memory banks could than be

switched to a low energy mode when the memory is not needed. As we

can see in the figure, this can reduce quiet some energy, but increase the

response time if more memory is needed.



38/48

Introduction CPU Memory Examples Conclusion

Conclusion

I Core method of reducing energy consumption of CPU
I ACPI

I Energy consumption of memory
I Problems
I Possible solutions

Marcus Soll Universität Hamburg

Core Energy Efficiency



Conclusion

I Core method of reducing energy consumption of CPU
I ACPI

I Energy consumption of memory
I Problems
I Possible solutions

2
0
1
5
-0
1
-2
8

Core Energy Efficiency
Conclusion

Conclusion

We have looked in this talk over the core methods of reducing energy

consumption on CPUs - ACPI. We have also looked on the energy

consumption of memory - the problems and the possible solutions.



39/48

Introduction CPU Memory Examples Conclusion

[BKL+05] Len Brown, Anil Keshavamurthy, David Shaohua Li,
Robert Moore, Venkatesh Pallipadi, and Luming Yu.
ACPI in Linux.
In Ottawa Linux Symposium, 2005.

[Bor07] Shekhar Borkar.
Thousand core chips: a technology perspective.
In Proceedings of the 44th annual Design Automation
Conference, pages 746–749, 2007.

[CCC+13] Hewlett-Packard Corporation, Intel Corporation,
Microsoft Corporation, Phoenix Technologies Ltd., and
Toshiba Corporation.
AdvancedConfiguration and Power Interface
Specification, November 2013.

Marcus Soll Universität Hamburg

Core Energy Efficiency



40/48

Introduction CPU Memory Examples Conclusion

[Cor04] Intel Corporation.
Enhanced Intel® SpeedStep® Technology for the
Intel® Pentium® M Processor, March 2004.

[Cor05] Intel Corporation.
Excerpts from A Conversation with Gordon Moore:
Moore’s Law.
2005.

[Cor07a] Microsoft Corporation.
ACPI Driver Interface in Windows Vista, April 2007.

[Cor07b] Microsoft Corporation.
Processor Power Management in Windows Vista and
Windows Server 2008, November 2007.

Marcus Soll Universität Hamburg

Core Energy Efficiency



41/48

Introduction CPU Memory Examples Conclusion

[Cor09] Microsoft Corporation.
Power Availability Requests, June 2009.

[DFG+11] Howard David, Chris Fallin, Eugene Gorbatov, Ulf R.
Hanebutte, and Onur Mutlu.
Memory power management via dynamic
voltage/frequency scaling.
In Proceedings of the 8th ACM international
conference on Autonomic computing, pages 31–40,
June 2011.

Marcus Soll Universität Hamburg

Core Energy Efficiency



42/48

Introduction CPU Memory Examples Conclusion

[DMB+12] Qingyuan Deng, David Meisner, Abhishek
Bhattacharjee, Thomas F. Wenisch, and Ricardo
Bianchini.
CoScale: Coordinating CPU and Memory System
DVFS in Server Systems.
In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
143–154. IEEE, December 2012.

[Gee05] David Geer.
Chip makers turn to multicore processors.
In Computer, volume 38, issue: 5, pages 11–13. IEEE,
May 2005.

Marcus Soll Universität Hamburg

Core Energy Efficiency



43/48

Introduction CPU Memory Examples Conclusion

[GGJ+13] Hormozd Gahvari, William Gropp, Kirk E. Jordan,
Martin Schulz, and Ulrike Meier Yang.
Systematic Reduction of Data MovementAlgebraic
Multigrid Solvers, 2013.

[Gro10] Andrew Grover.
Modern System Power Management.
Queue - Power Management, Volume 1(Issue 7):66,
January 2010.

Marcus Soll Universität Hamburg

Core Energy Efficiency



44/48

Introduction CPU Memory Examples Conclusion

[KGKH13] Gokcen Kestor, Roberto Gioiosa, Darren J. Kerbyson,
and Adolfy Hoisie.
Quantifying the Energy Cost of Data Movement in
Scientific Applications.
In 2013 IEEE International Symposium on Workload
Characterization (IISWC), pages 56–65. IEEE,
September 2013.

[L+14] Robert Lucas et al.
Top Ten Exascale Research Challanges.
U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, February
2014.

Marcus Soll Universität Hamburg

Core Energy Efficiency



45/48

Introduction CPU Memory Examples Conclusion

[Lin07] David Lin.
Intel Penryn & Nehalem Information.
http://www.phoronix.com/scan.php?page=article&item=672,
March 2007.
Accessed: 2014-11-02 12:42.

[LPK+13] James H. Laros, III, Kevin Pedretti, Suzanne M. Kelly,
Wei Shu, Kurt Ferreira, John Van Dyke, and
Courtenay Vaughan.
Energy-Efficient High Performance Computing.
Springer, 2013.

Marcus Soll Universität Hamburg

Core Energy Efficiency



46/48

Introduction CPU Memory Examples Conclusion

[LSM99] Yung-Hsiang Lu, Tajana Simunic, and Giovanni De
Micheli.
Software Controlled Power Management.
Technical report, Computer System Laboratory,
Stanford University, 1999.

[MCH07] Prof. Rajat Moona, Sharad Chole, and Sanchay
Harneja.
Memory Management using Dynamic Memory
Switching, May 2007.

Marcus Soll Universität Hamburg

Core Energy Efficiency



47/48

Introduction CPU Memory Examples Conclusion

[Min09] Timo Minartz.
Model and simulation of power consumption and power
saving potential of energy efficient cluster hardware.
Master’s thesis, Ruprecht-Karls-Universität Heidelberg,
August 2009.

[Min13] Timo Minartz.
Design and Evaluation of Tool Extensions for Power
Consumption Measurement in Parallel Systems.
PhD thesis, Universität Hamburg, March 2013.

Marcus Soll Universität Hamburg

Core Energy Efficiency



48/48

Introduction CPU Memory Examples Conclusion

[PWnt] Dhinakaran Pandiyan and Carole-Jean Wu.
Quantifying the Energy Cost of Data Movement for
Emerging Smart Phone Workloads on Mobile
Platforms.
In 2014 IEEE International Symposium on Workload
Characterization, pre-print.

[Sim09] Dario Simone.
Power Management in a Manycore Operating System.
Master’s thesis, ETH Zurich, August 2009.

[Tan09] Andrew S. Tanenbaum.
Modern Operating Systems.
Pearson Education, Inc., third edition, 2009.

Marcus Soll Universität Hamburg

Core Energy Efficiency


	Introduction
	CPU
	General
	ACPI
	Implementations

	Memory
	General
	Movement of data
	Energy reduction

	Examples
	ACPI
	Memory

	Conclusion

