
Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-Aware Programming Techniques

Dominik Lohmann

Universität Hamburg
Fakultät für Informatik, Mathematik und Naturwissenschaften

Fachbereich Informatik

64-174 Seminar Energy-Efficient Programming

2014-12-03

1 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction
Motivation
Energy-Awareness
Performance

2 Computational Efficiency

3 Energy-to-Solution

4 Energy-Awareness in Practice

2 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Motivation

Q: How many of you had to charge their phone today?

3 / 27



Motivation

Q: How many of you had to charge their phone today?

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Introduction

Motivation
Motivation

1. Short introduction of myself and of the topic.
2. Reduce the problem to one everyone is having: Their phone battery.
3. The provoking question can be taken up to the HPC level, where

energy-efficiency is becoming a real problem.



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-Awareness

What is energy-aware programming?

• Focus on efficiency: Performance achieved
Maximum performance achievable

• Optimization criterion should be decided based on TCO

• Applications need to be aware of their environment, such as
power states

4 / 27



Energy-Awareness

What is energy-aware programming?

• Focus on efficiency: Performance achieved
Maximum performance achievable

• Optimization criterion should be decided based on TCO

• Applications need to be aware of their environment, such as
power states

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Introduction

Energy-Awareness
Energy-Awareness

1. Short definition of energy-awareness and energy-aware programming
2. Efficiency in programming is the performance achieved in relation to

the performance achievable in an optimal setup.
3. Energy-aware optimization is not only based on efficiency, but also

by the TCO.
4. In previous presentations, we learned about things like power states,

which applications need to be aware of. Another example for
enrionment awareness is a power saving mode on laptops, tablets
etc.

5. The important bit: We need to not only think about what we code,
but how we do it.



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Performance

What does it mean to improve performance?

• The software is going to run on a specific, real machine

• There is some theoretical limit on how quickly it can work

Improving energy-efficiency by improving performance is called
computational efficiency

”Every circuit not used on a processor is wasting power”
– Chandler Carruth

5 / 27



Performance

What does it mean to improve performance?

• The software is going to run on a specific, real machine

• There is some theoretical limit on how quickly it can work

Improving energy-efficiency by improving performance is called
computational efficiency

”Every circuit not used on a processor is wasting power”
– Chandler Carruth

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Introduction

Performance
Performance

1. Introduce the concept behind computational efficiency.
2. Remind people of introduction presentation where we were told that

energy-efficiency can be optimized by making the program run
faster, because more idling is good!

3. Info about the quote: Chandler Carruth is the head engineer of
LLVM at google, where energy-efficiency is a main topic in terms of
compiler optimization



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency
Algorithms
Data Efficiency: Hardware Characteristics
Loops
Multithreading
Performance Libraries/Extensions
Compiler Optimizations
Programming Language

3 Energy-to-Solution

4 Energy-Awareness in Practice
6 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Algorithms

• Complexity theory allows comparing algorithm speed

• Use algorithms that allow the CPU to idle

Improving algorithmic efficiency means solving the underlying
problem in another way

7 / 27



Algorithms

• Complexity theory allows comparing algorithm speed

• Use algorithms that allow the CPU to idle

Improving algorithmic efficiency means solving the underlying
problem in another way

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Algorithms
Algorithms

1. Fallback to our Algorithms & Data Structures lecture, we all once
had to visit a lecture like it.

2. Complexity theory can be used to describe the speed of an
algorithm.

3. In a previous talk, we learned why idling is good for the CPU
4. Explain how algorithmic improvement is NOT something that can

be found, if at all - algorithmic improvement may be huge, but you
should not rely on it



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Sub-String Searching

• Initially, consider a trivial O(n ∗m) algorithm

• Boyer-Moore algorithm is O(n + m) and can do the same
thing (using the end of the needle)

Algorithmic changes can make a huge difference, but are not
something that can necessarily be found by everyone

8 / 27



Example: Sub-String Searching

• Initially, consider a trivial O(n ∗m) algorithm

• Boyer-Moore algorithm is O(n + m) and can do the same
thing (using the end of the needle)

Algorithmic changes can make a huge difference, but are not
something that can necessarily be found by everyone

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Example: Sub-String Searching
Example: Sub-String Searching

1. Example for algorithmic improvement
2. Explain both variants, show improvement through Boyer-Moore

(including short explanation of how it works.)
3. Would everyone be able to fnd that optimization? Probably not.



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Data Efficiency: Hardware Characteristics

One cycle on a 1 GHz CPU 1 ns

L1 Cache reference 0.5 ns

Branch mispredict 5 ns

L2 Cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Send 1kB over 1Gbps network 10,000 ns

Read 4kB randomly from SSD 150,000 ns

Read 1MB sequentially from memory 250,000 ns

Read 1MB sequentially from SSD 1,000,000 ns

9 / 27



Data Efficiency: Hardware Characteristics

One cycle on a 1 GHz CPU 1 ns

L1 Cache reference 0.5 ns

Branch mispredict 5 ns

L2 Cache reference 7 ns

Mutex lock/unlock 25 ns

Main memory reference 100 ns

Send 1kB over 1Gbps network 10,000 ns

Read 4kB randomly from SSD 150,000 ns

Read 1MB sequentially from memory 250,000 ns

Read 1MB sequentially from SSD 1,000,000 ns2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Data Efficiency: Hardware Characteristics
Data Efficiency: Hardware Characteristics

1. To show the importance of Cache-Hits, show that L2 Cache ref =
14x L1 Cache ref

2. Talk about the importance of data structures
3. Another throwback to the Algorithms & Data Structures lecture,

here the importance of choosing the right data structure.



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Linked Lists

• Nodes are separately allocated

• Traversal operations chase pointers to totally new memory

• In most cases, every step is a cache miss

• Only use Linked Lists when you rarely traverse the list, but
frequently update it

Linked Lists are rarely what you want to use

10 / 27



Example: Linked Lists

• Nodes are separately allocated

• Traversal operations chase pointers to totally new memory

• In most cases, every step is a cache miss

• Only use Linked Lists when you rarely traverse the list, but
frequently update it

Linked Lists are rarely what you want to use

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Example: Linked Lists
Example: Linked Lists

1. Example for the possibly worst data structure ever created (or: the
one with the worst name)

2. In C++ (on my machine), updating std::vector w/ 100k elements is
still faster than updating a linked list of the same size, traversal is
more than 200x faster

3. What can we learn from that?
4. - We need to choose the name for our data structures wisely
5. - We need to know what data structure to use in what situation
6. - There is no universally good data structure



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Loops

• Minimize the use of tight loops

• Convert polling loops to be event-driven

• Have the lowest polling frequency usable, if polling must be
used

• Eliminate busy wait (spin-locks) when possible

11 / 27



Loops

• Minimize the use of tight loops

• Convert polling loops to be event-driven

• Have the lowest polling frequency usable, if polling must be
used

• Eliminate busy wait (spin-locks) when possible

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Loops
Loops

1. Explain spinlocks and condition variables (most importantly, their
difference in terms of busy wait/idling)

2. Explain what a polling frequency is (has been explained in a
previous talk before)

3. Explain CPU pipelines and the effect of branch mispredicts
4. Tight loops probably not as big of an impact as some years ago,

because branch predictors are incredibly smart today



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Multithreading

• Modern CPUs are able to run things in parallel, allowing faster
computation with parallelelized algorithms

• Often requires a (partial) rewrite of legacy applications

• Balancing load across threads allows the CPU to be throttled
while maintaining the performance

• Threading done right provides a massive performance boost
while having almost no energy impact

• OpenMP, pthreads, TBB and PPL are examples of often used
implementations

12 / 27



Multithreading

• Modern CPUs are able to run things in parallel, allowing faster
computation with parallelelized algorithms

• Often requires a (partial) rewrite of legacy applications

• Balancing load across threads allows the CPU to be throttled
while maintaining the performance

• Threading done right provides a massive performance boost
while having almost no energy impact

• OpenMP, pthreads, TBB and PPL are examples of often used
implementations2

0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Multithreading
Multithreading

1. Explain what multihtreading is, and also explain some of the models
behind OMP, TBB and PPL

2. OMP is good for legacy code, while TBB and PPL feature a rich
parallel algorithm library

3. Compare sequential vs parallel energy-efficiency =¿ Multithreading
becoming a must nowadays



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Performance Libraries/Extensions

• Using (architecture specific) instruction sets such as SSE2 and
Intel AVX can often result in increased performance

• Reducing the amount of CPU instructions per calculation
directly relates to the applications energy-efficiency

• Certain applications can be optimized using hardware
acceleration

• Focuses mostly on graphics

13 / 27



Performance Libraries/Extensions

• Using (architecture specific) instruction sets such as SSE2 and
Intel AVX can often result in increased performance

• Reducing the amount of CPU instructions per calculation
directly relates to the applications energy-efficiency

• Certain applications can be optimized using hardware
acceleration

• Focuses mostly on graphics

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Performance Libraries/Extensions

Performance Libraries/Extensions

1. Explain SSE2 based on example from PAPO14 (We did a
SwarmFlocking Project), where we were able to increase our
performance by more than 45% while at the same time not using
more instructions

2. This was done using vector mathematics for distance, velocity and
force calculations

3. Ratio instructions used / performance becomes interesting
4. Also note things like hardware accelerated video decoding



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Compiler Optimizations

• By default, compilers optimize for the average processor

• When possible, enable the use of architecture-specific
instruction sets using -mtune=X and/or -march=X (in gcc)

• Enable general compiler optimization using -Ox

• Read your compilers man-page for more details

Proebsting’s Law: Compiler advances double computing power
every 18 years.

14 / 27



Compiler Optimizations

• By default, compilers optimize for the average processor

• When possible, enable the use of architecture-specific
instruction sets using -mtune=X and/or -march=X (in gcc)

• Enable general compiler optimization using -Ox

• Read your compilers man-page for more details

Proebsting’s Law: Compiler advances double computing power
every 18 years.

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Compiler Optimizations
Compiler Optimizations

1. Explain the basic compile flags for optimization
2. Possibly show the man-page (depending on time left, probably not)

mtune and march can enable SSE2 and similar optimizations
3. The compiler man-pages have lots of detail about this



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Programming Language

Consider choosing a programming language, which

• is idle-friendly

• lets you program without any further abstraction layers

• has a minimal runtime

• supports multithreading

• is fast

Languages like Fortran, C and C++ are highly recommended

15 / 27



Programming Language

Consider choosing a programming language, which

• is idle-friendly

• lets you program without any further abstraction layers

• has a minimal runtime

• supports multithreading

• is fast

Languages like Fortran, C and C++ are highly recommended

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Computational Efficiency

Programming Language
Programming Language

1. Quick little summary of what we need for a programming language
2. Fortran if you like ugly code, otherwise C or preferably C++

(because of its algorithm library)



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency

3 Energy-to-Solution
Total Cost of Ownership
Energy-to-Solution
Adaptive Run-Time Systems

4 Energy-Awareness in Practice

16 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Total Cost of Ownership

• Defines the total operation costs of a computing environment
like an HPC cluster

• For most applications, increasing the computational efficiency
decreases the TCO

• However, some applications require solution-specific changes

17 / 27



Total Cost of Ownership

• Defines the total operation costs of a computing environment
like an HPC cluster

• For most applications, increasing the computational efficiency
decreases the TCO

• However, some applications require solution-specific changes

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-to-Solution

Total Cost of Ownership
Total Cost of Ownership

1. Total Cost of Ownership yet again
2. What if increasing the Computatioal Efficiency also increases our

TCO? (happens rarely, if ever)
3. Thus we need solution-specific changes



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Energy-to-Solution

• Applications need to be aware of their environment
• For HPC: Adapting CPU clock speed based on application
• For Mobile: Respecting power states and energy saving modes

to allow switching into low-power modes

• Computational efficiency is not always the optimal solution

• Multiple approaches exist to this
• Throttling of CPU frequency and threads
• Adaptive run-time based

18 / 27



Energy-to-Solution

• Applications need to be aware of their environment
• For HPC: Adapting CPU clock speed based on application
• For Mobile: Respecting power states and energy saving modes

to allow switching into low-power modes

• Computational efficiency is not always the optimal solution

• Multiple approaches exist to this
• Throttling of CPU frequency and threads
• Adaptive run-time based

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-to-Solution

Energy-to-Solution
Energy-to-Solution

1. Follow-up on the last slide: Dealing with solution-specific setups
2. Environment-Awareness becomes important
3. Respecting the power states of some devices also becoming

important, especially in low-battery situations



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Adaptive Run-Time Systems

• Measure performance slowdown against CPU energy savings
• Evaluate β-effectiveness on (current) savings
• Adapt CPUs on an HPC cluster based on current
β-effectiveness

Figure: The actual performance slowdown and CPU energy savings of
CPU2000 benchmarks using the presented run-time system

19 / 27



Adaptive Run-Time Systems

• Measure performance slowdown against CPU energy savings
• Evaluate β-effectiveness on (current) savings
• Adapt CPUs on an HPC cluster based on current
β-effectiveness

Figure: The actual performance slowdown and CPU energy savings of
CPU2000 benchmarks using the presented run-time system

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-to-Solution

Adaptive Run-Time Systems
Adaptive Run-Time Systems

1. Expand on the adaptive run-time system from the last slide
2. Compare slow-down vs. savings
3. BUT: Especially in HPC, Time == Money
4. Probably not worth it, because of TCO also includes the intial cost

of the HPC
5. Also, people often rent ”time” on an HPC system, so then only

performance is important
6. Talk about some of the numbers shown in the graph



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Outline

1 Introduction

2 Computational Efficiency

3 Energy-to-Solution

4 Energy-Awareness in Practice
Testing for Energy-Efficiency
Recommendations
Conclusion

20 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Testing for Energy-Efficiency

• Profile system power during application runtime
• Understand the impact of Idle and Running states
• Examine timer interrupts
• Examine disk and file access

• Measure using tools like Extrae

• Check for cache misses and hits using e.g. perf

• Focus on optimizing code that is executed a lot
• This can be checked using e.g. gprof

21 / 27



Testing for Energy-Efficiency

• Profile system power during application runtime
• Understand the impact of Idle and Running states
• Examine timer interrupts
• Examine disk and file access

• Measure using tools like Extrae

• Check for cache misses and hits using e.g. perf

• Focus on optimizing code that is executed a lot
• This can be checked using e.g. gprof

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-Awareness in Practice

Testing for Energy-Efficiency
Testing for Energy-Efficiency

1. Testing is important: Measure, Change, Measure. And Measure
again.

2. Short summary of what Idle/Running states, timer interrupts and
disk/file access mean for energy-efficiency

3. What should we change based on our results? (bundle file access
together etc.)



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: Extrae and pmlib

Figure: Power consumption and C-states

22 / 27



Example: Extrae and pmlib

Figure: Power consumption and C-states

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-Awareness in Practice

Example: Extrae and pmlib
Example: Extrae and pmlib

1. Show graph (which I believe also was in the introduction
presentation)

2. Explain whats visible in the graph and how we can utilize it



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Example: perf

perf stat -B -e cache-references,cache-misses

-e cycles,instructions,branches sleep 5

Performance counter stats for ’sleep 5’:

10573 cache-references

1949 cache-misses # 18.34 % of all cache refs

1077328 cycles # 0.000 GHz

715248 instructions # 0.66 isns per cycle

151188 branches

5.002714139 seconds time elapsed

23 / 27



Example: perf

perf stat -B -e cache-references,cache-misses

-e cycles,instructions,branches sleep 5

Performance counter stats for ’sleep 5’:

10573 cache-references

1949 cache-misses # 18.34 % of all cache refs

1077328 cycles # 0.000 GHz

715248 instructions # 0.66 isns per cycle

151188 branches

5.002714139 seconds time elapsed2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-Awareness in Practice

Example: perf
Example: perf

1. Perf output for sleeping 5 seconds
2. Especially show the cache-misses/cache-refs rate and its importance
3. Yet again: Example PAPO14-SwarmFlocking - we had a cache-miss

rate of about 70%, optimized some data structures and got more
performance for just a little bit hassle with the code

4. perf is easy-to-use and there really is no excuse not to use it



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Recommendations

Practical recommendations regarding some things said in the
previous slides:

• Algorithms: Do not reinvent the wheel
• You are less likely to get it right by yourself
• Many programming languages already come with an abstract

algorithms library

• Testing: Never trust your instincts, measure instead

24 / 27



Recommendations

Practical recommendations regarding some things said in the
previous slides:

• Algorithms: Do not reinvent the wheel
• You are less likely to get it right by yourself
• Many programming languages already come with an abstract

algorithms library

• Testing: Never trust your instincts, measure instead

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-Awareness in Practice

Recommendations
Recommendations

1. Some recommendations regarding previous slides that did not make
it onto them, but I feel are necessary to mention

2. Why I favor C++ over C: The algorithms library
3. ”Measure. Measure again.”



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Conclusion

By adopting an energy-aware approach to programming, huge
energy-savings can be achieved while often also optimizing the
performance at the same time.

Programmers need to be aware that even simple to implement
things such as the cache-efficient use of data structures or compiler
optimizations can often have a huge impact on their applications
energy consumption.

25 / 27



Conclusion

By adopting an energy-aware approach to programming, huge
energy-savings can be achieved while often also optimizing the
performance at the same time.

Programmers need to be aware that even simple to implement
things such as the cache-efficient use of data structures or compiler
optimizations can often have a huge impact on their applications
energy consumption.

2
0
1
5
-0
2
-1
6

Energy-Aware Programming Techniques
Energy-Awareness in Practice

Conclusion
Conclusion

1. Quick little conclusion for our everyday-programming



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Literature I

Arndt Bode.
Energy to solution: a new mission for parallel computing.

Chandler Carruth.
Efficiency with Algorithms, Performance with Data Structures.

Wu-Chun Feng.
The Green Computing Book: Tackling Energy Efficiency at
Large Scale.

Petter Larsson.
Energy-Efficient Software Guidelines.

T. A. Proebsting.
T.A. Proebsting’s Law: Compiler Advances Double Computing
Power Every 18 Years.

26 / 27



Introduction Computational Efficiency Energy-to-Solution Energy-Awareness in Practice

Literature II

Rüdiger Kapitza Timo Hönig, Christopher Eibel and Wolfgang
Schröder-Preikschat.
Energy-Aware Programming Utilizing the SEEP Framework
and Symbolic Execution.

27 / 27


	Introduction
	Motivation
	Energy-Awareness
	Performance

	Computational Efficiency
	Algorithms
	Data Efficiency: Hardware Characteristics
	Loops
	Multithreading
	Performance Libraries/Extensions
	Compiler Optimizations
	Programming Language

	Energy-to-Solution
	Total Cost of Ownership
	Energy-to-Solution
	Adaptive Run-Time Systems

	Energy-Awareness in Practice
	Testing for Energy-Efficiency
	Recommendations
	Conclusion


