

COST EFFICIENCY VS ENERGY EFFICIENCY

Anna Lepak

Universität Hamburg

Seminar: Energy-Efficient Programming

Wintersemester 2014/2015

TOPIC

- Cost Efficiency vs Energy Efficiency
 - How much money do we have to pay to acquire an HPC platform and to maintain it
 - in consideration of energy efficiency

OUTLINE

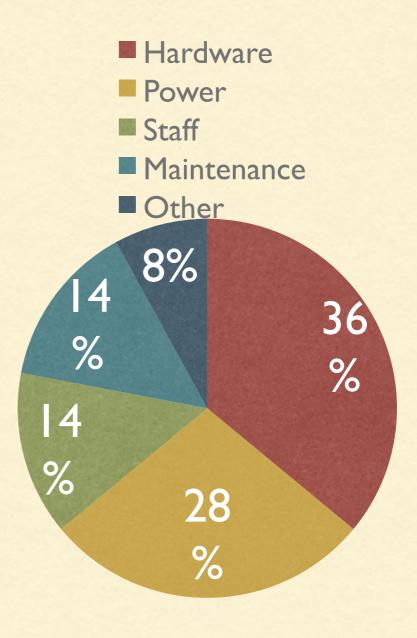
- I. Introduction
- 2. HPC Platform
 - I. What is it
 - 2. Why do we need such platforms?
- 3. Total Cost of Ownership
 - I. TCO
 - 2. Lowering the cost
 - 3. Power Management
 - 4. Cooling
 - 5. Example: Google's Data Center
 - 6. Brainware
- 4. Conclusion

HPC PLATFORM

- High Performance Computing
- also called supercomputing
- "the solution of very difficult computing intensive problems in a reasonable time with the help of the fastest computers available" [1]
- petaflops
- mostly used in scientific areas

HPC PLATFORM

- simulations
- benefits society and industry
 - -> mistakes found during simulation are less costly and tragic


- building and maintaining an datacenter is expensive
- -> engineers need to focus on cost efficiency

- Total Cost of Ownership (TCO):
 - the money that is spend during a lifetime of a HPC platform

- Investment costs (to acquire an HPC Platform)
 - hardware (servers, storage, cooling systems, cabling, network, ...)
 - software
 - datacenter construction
- Operational costs
 - Energy efficiency
 - Personnel ("brainware" pays off, more to it later)
 - Maintenance

- higher computing performance -> higher energy consumption
- energy costs have become a contributor to TCO
- Green500 list: reflects computing efficiency (not raw computing power)

- Investments worldwide:
 - 2011: \$ 27 billion
 - 2012: \$ 29 billion
 - 2017: \$ 40 billion

- Tianhe-2:
 - #I on Top500 and #49 on Green500
 - investment costs: \$ 390 million
 - 24 MW (with cooling) -> \$ 20 million/year
 - focused on hardware, but not on software

LOWERING THE COSTS

- better planning of the whole project
 - what kind of software do we need
 - is the supercomputer too powerful for the problem/ simulation it is designed for?
 - lowering the power consumption -> lowers costs

POWER MANAGEMENT

- Local and efficient energy sources
 - solar, wind or hydroelectric energy as a viable power generation
- Better cooling
 - other, new cooling systems
 - cooling servers at other temperatures then 20°C

POWER MANAGEMENT

- Power Usage Effectiveness (PUE):
 - measures how efficiently a data center uses energy
 - ratio of total amount of energy used by the data center to the energy delivered to computing equipment.
 - PUE of 1.0 is ideal

COOLING

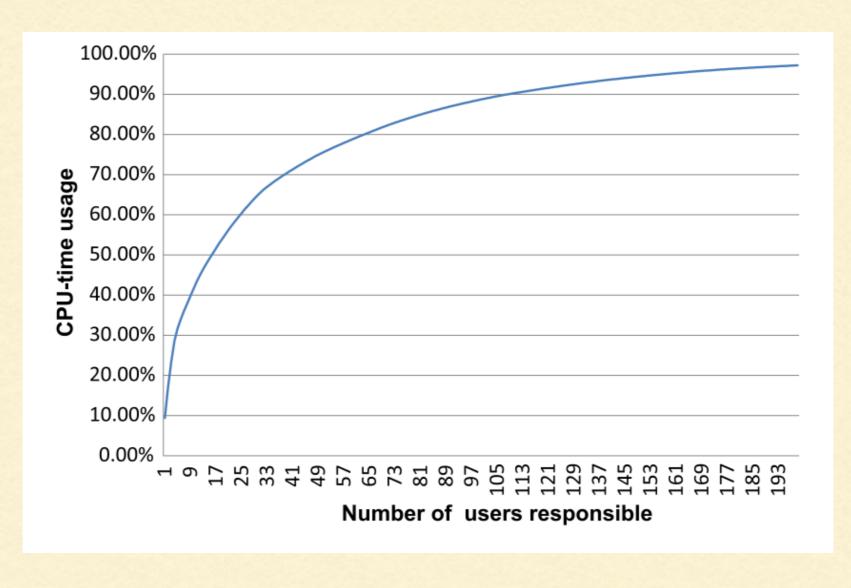
- cooling takes much energy
- Traditional Cooling: chillers
 - cold water or liquid coolant exchange heat with the hot air
 - the hot liquid has to be cooled down to be reused -> chillers
 - removes heath via a vaporcompression

COOLING

- better way: cooling towers
 - warm water from data center flows down a tower
 - cools down mainly through evaporation
 - cheaper than chillers (free cooling)
 - in colder climates (but not too cold)

EXAMPLE: GOOGLE'S DATA CENTER

- first investment 2011: \$200 million next investment 2012: \$150 million
- use 50% less energy than average data centers
- cool their servers at 27°C
- cooling with cooling towers (or seawater)
- PUE of 1,12 across all data centers


Google data center in Hamina, Finland

- "Brainware"
 - HPC performance experts
 - analyze HPC efficiency (of hardware)
 - cost less than the hardware they rendered unnecessary
 - Important aspect of energy efficiency

- Assumptions:
 - 7,5 € Mio for Infrastructure
 - Hardware 2 Mio €
 - 4 years maintenance, then new hardware
 - Power consumption: 850 KW
 - ISV software provided by users

	COST/YEAR	PERCENTAGE
BUILDING	300.000 €	5,46 %
INVESTMENT	2.000.000 €	36,14 %
hardware Maintenance	800.000 €	14,46 %
POWER	1.563.660 €	28,26 %
LINUX	0 €	0,00 %
BATCH SYSTEM	100.000 €	1,81 %
isv software	0 €	0,00 %
HPC SOFTWARE	50.000 €	0,90 %
STAFF (12 FTE)	720.000 €	13,01 %
TOTAL SUM	5.533.660 €	100 %

- It takes 2 months to tune one project
- An expert can handle 5 projects per year
- HPC experts can improve the performance of projects by 5,10 or 20 %
- HPC performence expert can take care of 10 projects at a timeti
- First take care of the "hot spots" (top projects in order of CPU usage)

"Brainware for Green HPC"; Christian Bischof, Dieter an Mey, Christian Iwainsky

- Example:
 - . 1,5 FTE
 - take care of 15 projects
 - 50 % of CPU usage
 - 10% performance improvement
 - =>0,1*0,5*5,5 Mio € 1,5 * 60000 € = 185000 € Savings

- Example:
 - 3 FTE
 - 30 projects
 - 60 % CPU usage
 - 0,2 * 0,6 * 5,5 Mio € 3 * 60000 € = 480000 € Savings

Brainware pays off

CONCLUSION

- higher computation power -> higher energy consumption -> higher costs
- good planning needed
- different methods to lower the TCO
 - but: making an HPC more energy efficient, makes ist also more cost-efficient

REFERENCES

- [1] "Advances In Computers: Green and Sustainable Computing Part II"; Ali Hurson; 2013
- [2] "The Datacenter as a Computer"
- Brainware for Green HPC"; Christian Bischof, Dieter an Mey, Christian Iwainsky; Springer Verlag; 2011
- [4] "Cost Model for Planning, Development and Operation of an Data Center": http://www.hpl.hp.com/techreports/2005/HPL-2005-107R1.pdf
- [6] "Google data center in Hamina": http://www.google.com/about/datacenters/inside/locations/hamina/
- [7] "Google data centers; Efficiency: How we do it" http://www.google.com/about/datacenters/efficiency/internal/#water-and-cooling

REFERENCES

- http://www.green500.org/news/green500-list-june-2014
- "Chinas Supercomputing Strategy called out" http://www.hpcwire.com/2014/07/17/dd/
- "World's fastest computer Tianhe-2, might get very little use"
 http://www.scmp.com/news/china/article/1264529/worlds-fastest-computer-tianhe-2-might-get-very-little-use
- "Determining Total Cost of Ownership for Data Center and Network Room Infrastructure" http://www.linuxlabs.com/PDF/Data%20Center%20Cost%20of%20Ownership.pdf
- "Tianhe-2" http://en.wikipedia.org/wiki/Tianhe-2
- HPC Industry Dynamics http://www.intersect360.com/industry/reports.php?id=95