COST EFFICIENCY VS ENERGY EFFICIENCY

Anna Lepak
Universität Hamburg
Seminar: Energy-Efficient Programming
Wintersemester 2014/2015
TOPIC

- Cost Efficiency vs Energy Efficiency
 - How much money do we have to pay to acquire an HPC platform and to maintain it
 - in consideration of energy efficiency
OUTLINE

1. Introduction
2. HPC Platform
 1. What is it
 2. Why do we need such platforms?
3. Total Cost of Ownership
 1. TCO
 2. Lowering the cost
 3. Power Management
 4. Cooling
 5. Example: Google's Data Center
 6. Brainware
4. Conclusion
HPC stands for „High Performance Computing“; also called „supercomputing“
- quote: „the solution of very difficult computing intensive problems in a reasonable time with the help of the fastest computers available“ [1]
- they can calculate really fast: calculation at the speed of a nanosecond
- Measured in FLOPS: “Floating Point Operations Per Second” ; measure for computer performance
- today: PETAFOOPS (10^15)
- Scientific areas:
- - examples: medicine (epidemics, pandemics), physics, climate research
HPC PLATFORM

- simulations
- benefits society and industry
 - mistakes found during simulation are less costly and tragic

Not only in scientific areas, but also in modeling new cars and airplanes: less costly to simulate a new model then making new prototypes
With higher computing power come more costs
So we need cost efficiency
TOTAL COST OF OWNERSHIP

- Investment costs (to acquire an HPC Platform)
 - hardware (servers, storage, cooling systems, cabling, network, ...)
 - software
 - datacenter construction
- Operational costs
 - Energy efficiency
 - Personnel ("brainware" pays off, more to it later)
 - Maintenance
TOTAL COST OF OWNERSHIP

- higher computing performance -> higher energy consumption
- energy costs have become a contributor to TCO
- Green500 list: reflects computing efficiency (not raw computing power)
TOTAL COST OF OWNERSHIP

- Investments worldwide:
 - 2011: $27 billion
 - 2012: $29 billion
 - 2017: $40 billion
Tianhe-2 is Chinese and means: milkyway-2
- #1 on TOP500 list
- #49 on Green500 list
- Built for $390 million by National University of Defence Technology
- 24 MW (with cooling) => $20 million a year ($65000 – $100000 a day)
- 34 petaflops
- World's fastest computing system, but isn't used to its fullest capacity (lack of good software)
- => too much focus on good hardware, not software
LOWERING THE COSTS

- better planning of the whole project
- what kind of software do we need
- is the supercomputer too powerful for the problem/simulation it is designed for?
- lowering the power consumption -> lowers costs
Local and efficient energy sources
- Renewable energy -> saves much money and is economically good
- Not always possible (good climate for datacenter <-> bad climate for renewable energy)

Better cooling:
- Use different, new cooling systems
- Most of energy is spent on cooling
- Most datacenters use cooling which requires much energy
- Free cooling?
- Raising aisle temp tp 27° C
- - usually chilly at 20°C
- BUT: no server or network equipment needs temperatures at 20°C.
- Can still run efficiently, w/o failure at 27°C
- Improves efficiency of chillers
- -> allows higher chilled water temp -> reduced runtime of chillers
Power Usage Effectiveness (PUE):
- measures how efficiently a data center uses energy
- ratio of total amount of energy used by the data center to the energy delivered to computing equipment.
- PUE of 1.0 is ideal

\[
PUE = \frac{\text{Total Facility Energy}}{\text{IT Equipment Energy}}
\]

PUE
- Measures efficiency of a data centers energy usage
- Ideal PUE: 1.0
- Average PUE 2 – 2.5

- Cooling energy is not IT equipment energy.
- IT Equipment Energy is only energy spent on the IT Equipment, like servers etc.
COOLING

- Cooling takes much energy
- Traditional Cooling: chillers
 - Cold water or liquid coolant exchange heat with the hot air
 - The hot liquid has to be cooled down to be reused -> chillers
 - Removes heath via a vapor-compression
COOLING

- better way: cooling towers
 - warm water from data center flows down a tower
 - cools down mainly through evaporation
 - cheaper than chillers (free cooling)
 - in colder climates (but not too cold)
Google's data center are a good example for energy efficient HPC. They are always trying new ways to make their data centers even more energy efficient.

- **Investements.**
 - Average PUE across all data centers: 1,12
 - But one data center has a PUE of 1,06 (best value)
- "Standby mode": waiting for task -> use little energy
- Buy only needed hardware
- Raising aisle temperature to 27°C
- Prevent hot air mixing with cold air
- -> curtains to seal off the cold air
- -> appropriate ducting and permanent enclosure
- Cooling system: cooling towers (or sea water)
- Trained HPC specialists support performance optimization of user's codes.
- analyze efficiency of hardware and software -> make changes to make it more efficient
- Cost less then the unnecessary hardware
Example from RWTH Aachen University:
Wrote an paper about Brainware and used University computing center

1. Building: 7.5 Mio €
 for compute cluster, offices
 25 years
 so 300.000€ each year

2. Hardware
 2 Mio €
 Maintenance: typically 10% of investment price
 maintenance for 4 years
 Why 4? Afterwards more advantageous to buy new equipment with better performance
 (Moore’s Law)

3. Power consumption
 will be operated 24/7
 PUE 1,5
 assumed power consumption of 850 KW per year
 1840€ per KW/Year => 1,56 Mio € per year

4. Software
 employ free software to a large extend
 calculate minor cost for compiler and tools (50000€)
 licenses provided by end users

5. Staff
 12 full time employees
 running the HPC equipment and supporting users
 60000€/year for 1 FTE
BRAINWARE

- It takes 2 months to tune one project
- An expert can handle 5 projects per year
- HPC experts can improve the performance of projects by 5, 10 or 20 %
- HPC performance expert can take care of 10 projects at a time
- First take care of the „hot spots“ (top projects in order of CPU usage)
"Brainware for Green HPC" : Christian Bischof, Dieter an Mey, Christian Iwansky
Example:

- 1,5 FTE
- take care of 15 projects
- 50% of CPU usage
- 10% performance improvement
- => 0.1 * 0.5 * 5.5 Mio € - 1.5 * 60000 € = 185000 € Savings
BRAINWARE

- Example:
 - 3 FTE
 - 30 projects
 - 60 % CPU usage
 - $0.2 \times 0.6 \times 5.5 \text{ Mio}\ € - 3 \times 60000 \ € = 480000 \ € \text{ Savings}$

- Brainware pays off
CONCLUSION

- higher computation power -> higher energy consumption -> higher costs
- good planning needed
- different methods to lower the TCO
 - but: making an HPC more energy efficient, makes it also more cost-efficient
REFERENCES

[2] The Datacenter as a Computer

[3] Brainware for Green HPC; Christian Bischof, Dieter an Mey, Christian Iwansky; Springer Verlag; 2011

REFERENCES