
Paving the Way towards
Energy-Aware High Performance Computing

Manuel Dolz
manuel.dolz@informatik.uni-hamburg.de

October 22nd, 2014

mailto:manuel.dolz@informatik.uni-hamburg.de

Motivation

High performance computing

Optimization of algorithms applied to solve complex problems

Technological advance ⇒ improve performance

Higher number of cores per socket (processor)

Large number of processors and cores ⇒ High energy consumption

Tools to analyze performance and power to reduce energy consumption

Energy Efficient High Performance Computing

2 / 1

Motivation

High performance computing

Optimization of algorithms applied to solve complex problems

Technological advance ⇒ improve performance

Higher number of cores per socket (processor)

Large number of processors and cores ⇒ High energy consumption

Tools to analyze performance and power to reduce energy consumption

Energy Efficient High Performance Computing

2 / 1

Outline

3 / 1

Introduction

Parallel scientific applications

Parallel apps., e.g., dense linear algebra: Cholesky, QR and LU factorizations

Tools for power and energy analysis

Power-performance profiling/tracing tools, e.g., Extrae+Paraver

⇓
Environment to identify sources of power inefficiency

Approach:

Energy-aware techniques: Leverage the available energy saving techniques: software
and hardware.

⇓
Energy savings

4 / 1

Introduction

Parallel scientific applications

Parallel apps., e.g., dense linear algebra: Cholesky, QR and LU factorizations

Tools for power and energy analysis

Power-performance profiling/tracing tools, e.g., Extrae+Paraver

⇓
Environment to identify sources of power inefficiency

Approach:

Energy-aware techniques: Leverage the available energy saving techniques: software
and hardware.

⇓
Energy savings

4 / 1

Tools for performance and power tracing

Why traces?

Details and variability are important (along time, processors, etc.)

Extremely useful to analyze performance of applications, also at power level!

Extrae library

Other libraries:

Computational

Communication
...

pm library

 ...

Extrae API :

 Extrae_init()

 Extrae_fini()

 pm_stop()

 ...

 pm_start()

pm API :
 app.c app’.c app.x

 Executable

MPI/Multi−threaded

 Scientific Application Scientific ApplicatonScientific Application

 Annotations
 +

MPI/Multi−threaded MPI/Multi−threaded

 Compiler+linker

Scientific application app.c

Application with annotated code app’.c

Executable code app.x

5 / 1

Performance and power measurement framework

Extrae+Paraver: instrumentation and visualization tools from Barcelona
Supercomputing Center (BSC)

pmlib library:

Power measurement package of Jaume I University (Spain)
Interface to interact and use self-design and commercial power meters

Power tracing

daemon

Power tracing

server

Computer

Mainboard

Application node

Power
supply
unit

External

powermeter

powermeter

InternalRS232

USB

Ethernet

Server daemon: collects data from power meters and send to clients
Client library: enables communication with server and synchronizes with start-stop
primitives

6 / 1

Code execution

Basic execution schema for tracing performance and power:

tracing
Power

server

trace file
PowerPerformance

trace file

Trace visualization tool

Target platform

Perfomance tracing tool

(instrumented with pmlib)

Scientific application

Power tracing tool

270, 120, 270, 120, 190, ...

Powermeter
devices

7 / 1

Example results
Cholesky factorization from MKL (dpotrf)

MFLOPS

L2 cache misses

8 / 1

Parallel analyzer to detect power bottlenecks

Inspection tool

Cstates
trace file

Performance
trace file

trace file
Power

trace file
Discepancies

Trace visualization tool

Performance trace

Discrepancies trace

Power trace

C−states trace

Thread 1

Thread 1

Thread 1

WATTS

Automates and accelerates the
inspection process

Comparison between the application
performance trace and the C-states
traces per core

Flexible analyzer

The user can define:

Task type that is “useful” work
Lenght of the analysis interval
Discrepancy threshold

9 / 1

Operation and implementation

Thread1

t

Discrepanciestrace−−−>Inspectiontool

t

Thread1

C−statestrace−−−>Internal−pmlibdaemon−−−>ReadingtheMSRsof thetargetsystemataconfigurablefrequency

Thread1

Performancetrace−−−>Extrae

t

Implementation:

Intervals of length t

Python multithreaded analyzer

Result:

Analytical ⇒ (c, ti , tf , %divergence)

Graphical ⇒ Paraver

10 / 1

Operation and implementation

Thread1

Performancetrace−−−>Extrae

t

t

Thread1

C−statestrace−−−>Internal−pmlibdaemon−−−>ReadingtheMSRsof thetargetsystemataconfigurablefrequency

Discrepanciestrace−−−>Inspectiontool

Thread1

t

Implementation:

Intervals of length t

Python multithreaded analyzer

Result:

Analytical ⇒ (c, ti , tf , %divergence)

Graphical ⇒ Paraver

11 / 1

Example 1: ILUPACK

ILUPACK: Concurrent solution of sparse linear systems

Multilevel preconditioners for general and Hermitian positive definite
problems
Parallelization:

Task partitioning of the sparsity graph
⇓

Task acyclic graph capturing dependencies
⇓

Tasks mapped to threads on-demand at runtime

Work by default: An idle thread polls the queue till a ready task becomes
available

Test platform:

Two Intel Xeon E5504 (4 cores, total of 8 cores) at 2.00 GHz
32 GB of RAM
Linux Ubuntu 12.04

12 / 1

Example 1: ILUPACK

Performance trace

0 us 57.275.209 us

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

C-states trace
Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

0 us 57.275.209 us

Discrepancies trace

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Thread 8

0 us 57.275.209 us

13 / 1

Example 2: LU Factorization

LU factorization with partial pivoting of a dense matrix

FLA LU routine of libflame library

Parallelized with the Supermatrix runtime

Hybrid CPU–GPU computation:

CPU ⇒ Intel MKL
GPU ⇒ NVIDIA CUBLAS

Test platform CPU–GPU:

Intel Xeon i7-3770 with 16 GB of RAM
NVIDIA Tesla C2050 (“Fermi”)

14 / 1

Example 2: LU Factorization

Performance trace

Thread 1

0 us 12.470.206 us

C-states trace

Thread 1

0 us 12.470.206 us

Discrepancies trace

Thread 1

0 us 12.470.206 us

15 / 1

Impact of power sinks

Statistical information for ILUPACK

Computation Polling C0 C1 C6 Discrepancies

THREAD 1 72.00% 25.56% 99.33% 0.29% 0.39% 27.49%

THREAD 2 96.45% 2.50% 99.25% 0.26% 0.50% 4.77%

THREAD 3 59.90% 39.14% 99.53% 0.10% 0.37% 40.59%

THREAD 4 70.81% 28.13% 99.48% 0.10% 0.42% 30.11%

THREAD 5 74.00% 25.14% 99.29% 0.90% 0.61% 26.61%

THREAD 6 99.18% 0.00% 99.34% 0.22% 0.45% 0.00%

THREAD 7 61.52% 37.17% 99.53% 0.12% 0.35% 38.84%

THREAD 8 75.03% 23.69% 99.27% 0.10% 0.64% 25.74%

Estimation of the costs of the power sinks

Time that cores are performing “useless” work ⇒ Wasting power

Potential savings:

(Power(“guilty” core) - Power(power-saving state)) * total duration power sinks

How we can avoid power sinks?
Leverage HW energy-aware mechanisms

16 / 1

Outline

17 / 1

Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed

configuration, power/thermal management of platforms

Performance states (P-states):
P0: Highest performance and power

Pi , i > 0: As i grows, more savings but lower performance

To DVFS or not? General concensus!
Not for compute-intensive apps.: reducing frequency increases execution time linearly!

Yes for memory-bounded apps. as cores are idle a significant fraction of the time.

But take care! ⇒ In some platforms (AMD) reducing frequency via DVFS also reduces memory
bandwidth proportionally!

P-states can be managed at socket level in Intel and at core level in AMD!

18 / 1

Hardware

Energy-aware hardware techniques

ACPI (Advanced Configuration and Power Interface):
Industry-standard interfaces enabling OS-directed

configuration, power/thermal management of platforms

Performance states (P-states):
P0: Highest performance and power

Pi , i > 0: As i grows, more savings but lower performance

To DVFS or not? General concensus!
Not for compute-intensive apps.: reducing frequency increases execution time linearly!

Yes for memory-bounded apps. as cores are idle a significant fraction of the time.

But take care! ⇒ In some platforms (AMD) reducing frequency via DVFS also reduces memory
bandwidth proportionally!

P-states can be managed at socket level in Intel and at core level in AMD!

18 / 1

Hardware

Energy-saving states: P/C-states

Power states (C-states):

C0: normal execution (also a P-state)

Ci , i > 0: no instructions being executed. As i grows, more savings but longer latency to
reach C0

How to exploit C-states?

Is impossible to change C-state at code level!

Solution ⇒ Set necessary conditions so that hw promotes cores to energy-saving C-states

19 / 1

Hardware

Examples: P-states/C-states

“Do nothing, efficiently...”
(V. Pallipadi, A. Belay)

“Doing nothing well” (D. E. Culler)

Problem! Not straight-forward. No direct user control over C-states!

20 / 1

Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

Two approaches:

Slack Reduction Algorithm (SRA): Search for “slacks” (idle periods) in the DAG associated

with the algorithm, and try to minimize them applying e.g. DVFS

Race-to-Idle (RIA): Complete execution as soon as possible by executing tasks of the

algorithm at the highest frequency to“enjoy” longer inactive periods

Which is better?

SRA: For memory-bounded apps., but take care of AMD platforms!

RIA: For compute-intensive apps. like dense linear algebra algorithms

21 / 1

Software

Energy-aware software techniques

Energy-aware techniques focused only on the “processors”!

Two approaches:

Slack Reduction Algorithm (SRA): Search for “slacks” (idle periods) in the DAG associated

with the algorithm, and try to minimize them applying e.g. DVFS

Race-to-Idle (RIA): Complete execution as soon as possible by executing tasks of the

algorithm at the highest frequency to“enjoy” longer inactive periods

Which is better?

SRA: For memory-bounded apps., but take care of AMD platforms!

RIA: For compute-intensive apps. like dense linear algebra algorithms

21 / 1

Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:

SRA: Time is compromised, increasing the consumption for largest problem sizes

Increase in execution time due to SRA being oblivious to actual resources

RIA: Time is not compromised and consumption is reduced for large problem sizes

22 / 1

Software

SRA vs. RIA

Impact of SRA/RIA on simulated time/energy for LUPP:
only power/energy due to workload

SRA: Time is compromised, increasing the consumption for largest problem sizes

Increase in execution time due to SRA being oblivious to actual resources

RIA: Time is not compromised and consumption is reduced for large problem sizes

23 / 1

Software

Energy-aware software techniques

Dense linear algebra applications:

Task-parallel execution of dense linear algebra algorithms: libflame+SuperMatrix

Queue of ready
tasks (no dependencies)

Queue of pending
tasks + dependencies
(DAG)

...
...

Algorithm

Symbolic
Analysis

Dispatch

Worker Th. 1

Worker Th. 2

Worker Th. p

Core 1

Core 2

Core p

Problem:

Naive runtime: Idle threads (one per core) continuously check the ready list for work
Busy-wait or polling ⇒ Energy consumption!

Solution:

Race-to-idle: Detect and replace “busy-waits” by “idle-waits”: avoid idle processors doing
polling!

24 / 1

Software

Results: Dense linear algebra

Energy-aware techniques on multicore platforms:

RIA1: Reduce operation frequency when there are no ready tasks: DVFS ondemand governor

RIA2: Remove polling when there are no ready tasks (while ensuring a quick recovery):
POSIX Semaphores

On multicore: FLA LU (LUpp fact.) from libflame + SuperMatrix runtime

Consistent savings around 5% for total energy and 7–8% for application energy

Poor savings? Dense linear algebra operations exhibit little idle periods!

25 / 1

Software

Results: Dense linear algebra

Why CPU+GPU (for some compute-intensive apps.)?

High performance computational power / Affordable price / High FLOPS per watts ratio

Energy-aware techniques for hybrid CPU+GPU platforms:

EA1: blocking for idle threads without task: POSIX Semaphores

EA2: blocking for idle threads waiting for GPU task completion
Set blocking operation mode (synchronous) for CUDA kernels

On hybrid CPU+GPU: FLA Chol (Cholesky fact.) from libflame+SuperMatrix

Execution of tasks in GPU makes CPU cores inactive during significant time!

26 / 1

Software

Results: Sparse linear algebra

Sparse linear algebra applications:

Task-parallel implementation of ILUPACK for multicore processors with ad-hoc runtime

Sparse linear system from Laplacian eqn. in a 3D unit cube

Energy-aware techniques:

Application of RIA1+RIA2 techniques into ad-hoc runtime

27 / 1

Software

Results: Sparse linear algebra

Polling vs. blocking for idle threads when obtaining ILU preconditioners:

Blocking vs polling for idle threads
Saving around 7% of total energy

Negligible impact on execution time

...but take into account that

Idle time: 23.70%, Dynamic power: 39.32%

Upper bound of savings: 39.32 · 0.2370 = 9.32%

28 / 1

Exa2Green Project

29 / 1

Exa2Green

30 / 1

Conclusions

Tools for power/energy analysis

Detect code inefficiencies in order to reduce energy consumption

Automatic detection of power bottlenecks:

Performance inefficiency ⇒ hot spots in hardware and power sinks in code

Energy-aware software

A battle to be won in the core arena
More concurrency
Heterogeneous designs

A related battle to be won in the power arena
“Do nothing, efficiently...”, V. Pallipadi, A. Belay
“Doing nothing well”, D. E. Culler

31 / 1

Related publications

M. Barreda, M. F. Dolz, R. Mayo, E. S. Quintana-Ort́ı, R. Reyes

Binding Performance and Power of Dense Linear Algebra Operations

The 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, 2012.

P. Alonso, R. M. Badia, J. Labarta, M. Barreda, M. F. Dolz, R. Mayo, E. S. Quintana-Ort́ı, R. Reyes

Tools for Power and Energy Analysis of Parallel Scientific Applications

The 41st International Conference on Parallel Processing, 2012.

M. Barreda, S. Catalán, M. F. Dolz, R. Mayo, E. S. Quintana-Ort́ı

Tracing the Power and Energy Consumption of the QR Factorization on Multicore Processors

12th International Conference on Computational and Mathematical Methods in Science and Engineering, 2012.

S. Barrachina, M. Barreda, S. Catalán, M. F. Dolz, R. Mayo, E. S. Quintana-Ort́ı

An Integrated Framework for Power-Performance Analysis of Parallel Scientific Workloads

The Third International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies, 2013.

Maŕıa Barreda, Sandra Catalán, Manuel F. Dolz, Rafael Mayo, Enrique S. Quintana-Ort́ı

Automatic Detection of Power Bottlenecks in Parallel Scientific Applications

4th International Conference on Energy-Aware High Performance Computing, 2013.

P. Alonso, M. F. Dolz, F. D. Igual, R. Mayo, E. S. Quintana-Ort́ı

Reducing energy consumption of dense linear algebra operations on hybrid CPU-GPU platforms

The 10th IEEE International Symposium on Parallel and Distributed Processing with Applications, 2012.

32 / 1

Thanks for your attention!

Questions?

33 / 1

	Introduction
	Tools for performance and power tracing
	Energy-aware hardware and software
	Hardware
	Software

	Exa2Green Project
	Conclusions

