Basis 00000000000	Implementation 000000	

Integration of a microcontroller-based power measurement device

Manuela Beckert, Janosch Hirsch

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

January 21, 2015

Basis 000000000000	Implementation 000000	

1 Motivation

2 Basis

3 Setup

4 Implementation

5 Summary

6 Literature

Motivation	Basis 000000000000	Implementation 000000	

1 Motivation

2 Basis

3 Setup

4 Implementation

5 Summary

6 Literature

Motivation	Basis 000000000000	Implementation 000000	
Motivat	ion		

Objective: Precise and time dependent power-consumption measurement of code running on a computer

Available solutions: commercial devices

- expensive
- hard to integrate into hardware
 - laboratory use conditions not intended for permanent integration
- hard to integrate into software
 - intermediate software required
 - e.g. only for Windows
- not scalable

Motivation	Basis 000000000000	Implementation 000000	
Motivat	ion		

Objective: Precise and time dependent power-consumption measurement of code running on a computer

Project goal:

- observation of all mainboard, GPU and HDD power cords
- microcontroller based
- integration in the power measurement tool pmlib
- cheap, small (easy to integrate) and scalable

Basis 000000000000	Implementation 000000	

2 Basis

- Arduino
- Measurement shield
- Hall-Effect Sensor
- ADC
- pmlib

3 Setup

4 Implementation

	Basis ●000000000000	Implementation 000000	
Arduino	Mega 2560		

- Microcontroller Board
- On board bidirectional USB Interface
- Integrated ADC (Analog-to-Digital Converter)
 - 16 Channels with 10 Bit Resolution
- C like Programming language
- Many more Features like General Purpose Input/Output Pins
- Additional boards (called shields) can simply plugged on top
- Easy to use, open source, well documented, large community
- Cheap (around 40 Euro)

Basis 0●0000000000	Implementation 000000	

Arduino Mega 2560

Figure : Arduino Mega 2560 [1]

	Basis 00●000000000	Implementation 000000	
Arduinc	DE		

Arduinos provide their own simple IDE

- Code can easily be uploaded to the board by pressing one button
- selection of Arduino model and desired serial port from the Tools menu
- too crude for a real programmer

	Basis 000●00000000	Implementation 000000	
Arduinc	DE		

Arduino example code:

```
// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13:
// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pin as an output.
  pinMode(led, OUTPUT);
}
// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH); // turn the LED on
                             // (HIGH is the voltage level)
                          // wait for a second
  delay(1000);
  digitalWrite(led, LOW); // turn the LED off by making
                             // the voltage LOW
  delay(1000);
                            // wait for a second
```

	Basis 0000●0000000	Implementation 000000	
Measure	ement shield		

- Custom designed board for current measurement
- Consists out of 16 hall-effect sensor IC's (Integrated circuits)
- Can be directly plugged onto an Arduino Mega
- Cheap and simple

Basis 00000●000000	Implementation 000000	

Measurement shield

Figure : Arduino with halleffect sensor measurement shield

Manuela Beckert, Janosch Hirsch

	Basis ○○○○○●○○○○○	Implementation 000000	
Hall-Eff	ect Sensor		

- Can be used to measure current
- Working principle is based on the Lorentz force
- Outputs a voltage proportional to the current put through

Figure : Halleffect principle [3]

Basis 000000●00000	Implementation 000000	
act Concor		

Hall-Effect Sensor

- Can be used to measure current
- Working principle is based on the Lorentz force
- Outputs a voltage proportional to the current put through

Figure : Halleffect principle [3]

Basis S

ADC (Analog-to-Digital Converter)

- Converts analog signals to a digital representation
 - Transforms continuous values into discrete ones through sampling and quantization
 - Has a sampling rate and n bits for quantization

Figure : Sampling and quantization [2]

	Basis 00000000●000	Implementation 000000	
What is	pmlib?		

Power Measurement Library

Server daemon

- has access to power measurement devices
- collects data and sends it to clients

Client library

- enables communication with server
- allows clients to measure the power consumption of their programs

	Basis 00000000000000000000000000000000000	Implementation 000000	
pmlib			

Basis 000000000000000	Implementation 000000	

- one class for every device attached
- handles how information from the device shall be interpreted
 - has power measurement devices attached
 - if client asks for measurement, startes collecting data
 - reads from file settings.py
 - computes power from read values if needed
 - stops when client asks to stop
 - data will be stored until client asks to receive the data

pmlib Server

	Basis 0000000000000	Implementation 000000	
pmlib C	lient		

Usage for a client:

set needed information in file settings.py

- which power measurement devices
- which lines/channels to read from the devices
- in program source code: use library methods to start measuring

server is written in Python, but there is a library for C

```
pm_create_counter("DCM1",...)
pm_start_counter(...)
[Code to measure]
pm_stop_counter(...)
pm_get_counter_data(...)
```

Basis 000000000000	Setup	Implementation 000000	

1 Motivation

5 Summary

6 Literature

ethernet connection

Manuela Beckert, Janosch Hirsch

	Setup		

Setup

	Basis 000000000000	Setup	Implementation 000000	
Setup				

- the arduino-blackbox is attached into a computer
- the computer can be closed again
- only a usb cable to the pmlib server is needed
- highly scalable
 - you can put one in every computer of whole cluster

Basis 000000000000	Implementation	

1 Motivation

ImplementationSerial ProtocolCode

5 Summary

6 Literature

	Basis 000000000000	Implementation ••••••	
Serial P	rotocol		

- used for communication between microcontroller and USB interface chip on the arduino board
- usb-to-serial is handled by the operating system

	Basis 000000000000	Implementation ••••••	
Serial Pro	otocol		

- used for communication between microcontroller and USB interface chip on the arduino board
- usb-to-serial is handled by the operating system

 $\textbf{pmlib} \rightarrow \textbf{arduino:}$ selecting channels for data retrieval

Protocol:

- 2 byte long, every bit represents a channel
- 1 means the channel shall be send
 - Example for channel 0, 1 and 3:

0000000 00001011

	Basis 000000000000	Implementation 00000	
Serial P	rotocol		

arduino \rightarrow pmlib: sending values

Format used:

```
OCCCCVVV 1VVVVVVV
```

- the first bit indicates whether we are reading the first or second byte
 - might be useful for robustness later
- 4 bit for the channel (C)
- 10 bit for the value (V)

	Basis 000000000000	Implementation 00000	
Serial P	rotocol		

arduino \rightarrow pmlib: sending values

Format used:

```
OCCCCVVV 1VVVVVVV
```

- the first bit indicates whether we are reading the first or second byte
 - might be useful for robustness later
- 4 bit for the channel (C)
- 10 bit for the value (V)
- we may use a different protocol with less overhead and higher sample data rate
 - Packing: A first value, B second value etc.

АААААААА ААВВВВВВ ВВВВСССС ...

Basis 000000000000	Implementation	

Arduino Code and pmlib Integration

- we'll show you some code
- and a live presentation

	Basis 000000000000	Implementation	
Calibrat	ion process		

- Measured current vs. bit representation of the hall-effect sensor voltage from the Arduino ADC
- Difficulties:
 - Noise
 - Hall-effect sensor offset voltage
 - Selection of a ADC reference voltage for higher precision
 - Calibrate on channel or shield level?
- Calibration through linear regression
- Make a script for fast calibration

Basis 000000000000	Implementation ○○○○●○	

Calibration process

Figure : Calibration arrangement

Basis 000000000000	Implementation ○○○○○●	

Calibration process

Figure : Linear regression graph

Manuela Beckert, Janosch Hirsch

29 / 33

Basis 000000000000	Implementation 000000	Summary	

1 Motivation

2 Basis

3 Setup

4 Implementation

5 Summary

6 Literature

		Summary	

Current State of the Project

Done:

- prototype of the device
- code for Arduino
- code for pmlib
- working serial protocol

Todo:

- consider using a different protocol for better sample data rate
- Measuring speed and performance of the code and hardware
- Calibrate the device
- Provide a script for automatized calibration
- Install the device in a server environment

Basis 000000000000	Implementation 000000	Literature

1 Motivation

2 Basis

3 Setup

4 Implementation

5 Summary

6 Literature

	Basis 000000000000	Implementation 000000	Literature ●00
Literature	2		

- Arduino homepage: http://arduino.cc
- pmlib Github: https://redmine.wr.informatik.uni-hamburg.de/git/pmlib
- ADC: http://en.wikipedia.org/wiki/Analog-to-digital_converter
- Hall-effect: http://en.wikipedia.org/wiki/Hall_effect
- 1 http://www.conrad.de/medias/global/ce/1000_1999/1900/1910/1917/191790_BB_00_FB.EPS_1000.jpg
- 2 http://upload.wikimedia.org/wikipedia/commons/thumb/0/04/Digital.signal.discret.svg/600px-Digital.signal.discret.svg.png
- 3 http://upload.wikimedia.org/wikipedia/commons/0/01/Hall_effect.png

	Basis 000000000000	Implementation 000000	Literature 0●0
_			

Questions

Are there any questions?

Basis 000000000000	Implementation 000000	Literature 00●

Thank you

Thank you for your attention