Computational Fluid Dynamics

> Jathavan Sriram Seminar Modeling and simulation Department of Informatics Scientific Computing (WR) University of Hamburg 2013

Outline

- □ Introduction
- □ Models & Numerics

□ <u>Simulation</u>

- □ Validation
- □ Conclusion

Introduction

Computational Fluid Dynamics ...

□ <u>Method</u> of fluid dynamics

□ Uses numerics

□ Solve problems that involve fluid (flows)

Fluid flow problems

Science
 Weather forecast
 Climate simulation
 Medicine

□ Industry

External flow (e.g. aerodynamics)Internal flow (e.g. valve)

General types of CFD problems

Models & Numerics

- □ Major model types
- □ Fluid classification
- Coupled PDE: Navier-Stokes equations
 ...in depth

CFD Models

Mesh based

- More mathematically,,correct"
- Discretization with FDM, FVM, FEM

Mesh free

- "Practical results" not always accurate
- Discretization with placed particles: SPH
- Tracing particles

Mesh based models

- □ "Euler perspective" static reference system
- □ Finite Differences Method / Finite Volume Method
- □ Global, mostly static grids
- "Lagrangian perspective" Finite Element Method
- □ Structured or unstructured grids
- □ Global, often dynamic grids

Particle based model

- "Lagrangian perspective" dynamic reference system
- Smoothed Particle Hydrodynamics (SPH)
- □ Local, individual particles
- Each particle hold physical quantities like pressure, mass, density, ...
- □ Inherently takes care of conservation laws

Fluid classification (models itself!)

Most relevant physical quantities

- □ Velocity field: u
- □ Pressure: p
- \Box Density: ρ

Euler equations

Describes flux in fluids

□ No viscosity & No heat conduction

□ Focus: Conservation of Momentum

$$\frac{dv}{dt} + (v \cdot \nabla)v + \frac{1}{\rho}\nabla p = 0$$

Navier-Stokes equations

- Time and space model for laminar, viscose flux of incompressible fluids
- \Box With Viscosity \rightarrow includes friction
- \Box General description \rightarrow need more equations!

Classical Discretization methods

	Finite difference method FDM	<u>Finite volume method</u> <u>FVM</u>	Finite element method FEM
Pro	Simple implementation	Conservation of quantities (flux, mass, energy,)	Very precise High Stability
Con	 Very slow computation Structured/Unstructur ed (adaptive) grids Higher detail require denser mesh 	 Faster computation High memory consumption Higher detail require denser mesh 	 Mostly unstructured grids High memory consumption Complex implementation Complex mesh generation For strong deformations remeshing required
Typical app	Misc (Fluids, Solids,)	Fluids	Solids

Steps to a CFD simulations

Practical simulation

- Particle based
 - Smoothed-particle hydrodynamcis
 - Product: "Realflow" [S1]
 - Used in the vfx industry

- □ Grid based
 - □ Finite Volume Method
 - Free software:
 - "OpenFoam" [S2]

Validation

- □ In space (absence of certain forces)
- □ With real standard models
- □ Cross simulation comparison
- □ Prediction comparison (e.g. in weather forecast)

Take home message

Classical physical model: Navier-Stokes equations
 FVM and FDM are standard
 Not one equation for all fluid problems

Thank you for your attention !

References

Literature

[L1] McGuffie K., Henderson-Sellers A.: A climate modelling primer,

Wiley&Sons, Chichester, England, 1997

[L2] Press William H.: Numerical Recipies 3rd edition,

Cambridge University Press, New York, USA, 2007

[L3] Ferziger J.H., Peric M.: Computational Methods for Fluid dynamics,

Springer Verlag, Berlin, Germany, 2002

Figures

[F1] Sriram J., Sokol L.: Arjuna – A Java weather simulator, Screenshot,

, Project Scientific Computing, Germany, 2011

[F2] ebm-papst UK Ltd: Service Listing, CFD analysis for a backward curved centrifugal fan,

, URL: http://www.ebmpapst.co.uk/media/images/fans/Stroemungsbild.jpg, United Kingdom, 2013

Software

[\$1] Next Limit Technology : Realfow 2012, Fluid simulator,

, URL: http://www.realflow.com, Spain, 2013

[S2] OpenCFD Ltd. (ESI Group) : OpenFoam, Fluid simulator,

, URL: http://www.openfoam.com/, United Kingdom, 2013