
Spack

presented by

Teffy Sam

Fakultät für Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Course of Study: Ocean and Climate Physics
Matrikelnummer: 7091617
Supervisor: Dr. Michael Kuhn

Hamburg, 2020-08-29

Abstract
Automated software installation tools are common on many Operating Systems. On
Linux, most users would be familiar with the Apt package manager, other examples
include RPM[6], Pacman[5]. Some package managers allow the user to build software from
source, like Homebrew[4] on MacOS, BSD ports on FreeBSD[3] and so on. What is Spack?
Spack is a simple package manager for High Performance Computing environments. It
has been built to cover a wide array of software. Typical HPC software has many libraries
and dependencies required to make a complete software package. Installing software
from source on a Supercomputer is time consuming and a massive effort. There are
many pieces in a supercomputer software ecosystem which include, but are not limited
to, compilers, platforms, programming models etc.

Spack has very flexible syntax enabling a user to specify which parts of a software stack
needs to be installed and how it needs to be done too. Why do we use Spack? Software
build time is drastically reduced since almost everything is efficiently automated. How
is Spack similar to other package managers? Package managers on different operating
systems tend to install software as pre-compiled binaries. This may not be the best
possible way to ensure, say, how a library is installed. If, for example, this library needs
to be linked with another binary, one must ensure that both of them are built using the
same compiler. Such incompatibilities are overlooked when installing a pre-compiled
binary. Spack solves this problem by having a neat and organised dependency tree which
is installed separately for an individual software. Each variation of a software install,
even within the same version, are located separately too. Not to mention the fact that
the whole process is automated at the same time giving the user control over which exact
dependencies are installed.

Contents
1 Introduction 4

1.1 Current Complexity of Package Managers 4
1.2 Containers and Environments . 5
1.3 Spack Usage . 6
1.4 Combinatorial Versioning . 9

2 Conclusion 13

Bibliography 14

List of Figures 15

3

1 Introduction

1.1 Current Complexity of Package Managers
Installing scientific software manually takes a lot of effort and time. The process be-
gins with researching and figuring out what additional components are required to
build the main software package. This then leads to installing and configuring the ad-
ditional components which normally include libraries, compilers and other bits and pieces.

To give some perspective of the scale of how spread out a dependency tree can be,
a finite element library software, dealii, is depicted in Fig 1.1. There are thirty three
dependencies needed to install this software and trying to do so manually needs careful
execution.

Figure 1.1: Spack Package Dependencies

In general HPC systems use environment modules. Environment modules allow the
user to list available software along with their different versions. The user has the
freedom to quickly load and unload modules and use them for their projects without
having to install anything. Ease of use (for the end user) is the primary feature here. But
the problem with environment modules is that the software still needs to be compiled
and built from source which is still a great effort for the system administrator. A user
is also limited to whatever available software. The burden then falls on the system

4

administrator, rather than the user, to comply to the needs of individual software versions
and configurations. This either results in the sysadmin having to maintain multiple ver-
sions of said software or it simply results in the specific software being unavailable for use.

The time to build and compile is drastically reduced as everything is streamlined.
Manual labour is a lot lesser. Spack is accessible to users of HPC systems and even
locally on personal computers too. Thanks to its refined flexibility Spack is gaining a lot
of traction in HPC communities.

1.2 Containers and Environments
Containers provide a lot of portability but within the container a binary package manager
is still required or packages have to be compiled from source. Spack also has container
support, in that the user can deploy a Docker container with a constrained package base
or environment in Spack that is easy to install with a few commands.

Containers like Docker[2] provide sand boxed environments and are good in terms of
portability. Docker containers allow a higher level of accessibility to deploy, and run
applications. Containers group together libraries and other dependencies for a software
package. This ensures all settings and configurations of the software work in a pristine
way in this closed environment. The operating system is usually stripped down to a bare
bones Linux distribution with minimal system processes running in the background, in
addition to the pieces required for the software to work. One small caveat is that the
Docker daemon requires root access and such access is not possible for the common user
base of a supercomputer. This isn’t a major drawback per se but some of extra features
of Docker containers remain out of reach for the user, for example mounting file systems
works only with root access.

Spack[8] enables users to install software in home directories thereby circumventing
the problem of root access that Docker containers have. Spack also brings together
the possibility of combining a Docker container with Spack environment which in turn
installs all necessary softwares. This can be especially powerful to deploy as this further
improves the automating process of installing a software stack. At the same time Spack
also has its own environment setup. This environment feature of Spack mirrors the
portability of Docker in that it can be installed on different computers while maintaining
compatibility with different Spack versions.

An environment consolidates a group of spack specs to enable simple deployment
of a group of software.

5

1.3 Spack Usage
The Spack spec command lists out what will be installed given a certain specification or
constrainment of a software install.

Unconstrained package installs simply install the software with default settings, mean-
ing it installs the latest version and builds using the default compiler on the system. But
options to install any software (Fig 1.2) are easy with clauses:

• @ lets the user specify a version of the software

• % lets you specify the compiler, compiler flags can be predefined before installation

• the operating system can be specified with os= and system architecture with
target=

• with ˆ dependencies for a certain software can be fine tuned recursively too. The
ˆ also allows a user to install two variations of a software package but say with
different dependency versions

• + and ~/- are used to choose build options

Figure 1.2: Spack Build Options

This in itself is a very useful tool when configuring a software stack for a project. With
the addition of clauses to install a specific variation of software, the install can be said
to be constrained. Fig 1.3 shows what the input specs are and if Spack concretize is
run for an environment, Spack will save the state of the installed package list into that
environment. This also lets the user add more constrained packages into an environment.

6

Figure 1.3: Spack Input Specs

Also shown in in Fig 1.3 is how the constraints for different openmpi versions are
set by default in order to make the install successful. Installing netcdf-c with an older
version of openmpi includes additional parts which Spack atomically takes care of. Spack
then ensures all options and dependencies for the older openmpi line up to make the final
build work flawlessly. This flexible modularity is where Spack shines when compared
against other HPC package managers.

When an environment is initialised the user is given the option of choosing which
software to install, whether to concretize that software or leave it as it is and then to
finally proceed with the actual installation itself. This ensures stability is preserved
within the environment over the course of upgrades too.

Environments install all its contained software over a single Spack call when installing
software individually. Multiple specs of the same package can be contained in an

7

environment.

Figure 1.4: Package Managers

There are other package managers available too but they are limited in their use case.
Conda is a popular package manager but it distributes binaries instead of building from
source thereby leaving users with less freedom to tweak a software build. Conda and
Python environments also have some of the feature set of Spack environments.

EasyBuild[9](Fig 1.4) is another HPC package manager but works on the module
basis.

Spack currently holds a repository of more than 4300 packages. The find command
lists all installed packages. Each install of a software has a unique hash which helps in
distinguishing very similar installs of a package.

8

Commonly used binary package managers usually install packages into /usr and
custom versions built with different compilers tend to go into /opt. This simplicity in
conventional tools like Apt[1] and Pacman (see Fig 1.4) is to ensure that stable software
is installed without any fuss over configuration. But these package managers are intended
for non-HPC applications where binaries are simply copied to directories and a few
environment variables are initialised (at least in most cases). When it comes to scientific
applications, quite a bit of tweaking and tuning is necessary to ensure that the final
executable works flawlessly.

Figure 1.5: Directory tree of installed packages

1.4 Combinatorial Versioning
As shown in Fig 1.5 packages go into ~/spack/opt/. Such paths tend to get lengthy
based on the dependencies branching out.

Spack handles combinatorial versioning[7] in a much more efficient way than say
Environment Modules[10]. From the installation layout, Spack extracts the directory
tree structure or Directed Acyclic Graph and stores it into a hash for each software
package built with a certain set of clauses, varying compiler version and/or dependency
changes. This makes finding constrained packages more easily. There is also a higher
level of control when changing dependencies easily.

Sometimes, there is a further need to tune installation parameters. The config.yaml
file provides that further access into fine tuning installs. Some useful features here are:

9

• By setting build_jobs to use desired(in this case lesser as Spack by default uses
all available cores to build) number of cores.

• source_cache allows the user to point Spack towards already downloaded tarballs
and stored in other locations.

• install_tree specifies the location of where packages are installed.

• The package directory locations sometimes turn out to be very lengthy leading to seg-
mentation faults in scripts used to build. To get around this problem Spack includes
the option of specifying install_path_scheme: ’{name}/{version}/{hash:7}’
in the config.yaml file. Here, the path is limited to a short and simple seven
character hash to distinguish between versions. The directory format can then
be shortened thereby maintaining human readability when searching for packages
manually.

Application Binary Interfaces provide a cohesive link between various binaries. A good
example of this would be a full scale Climate Model which is built of many sub models
each built in a different way. Spack ensures each version of a custom build is stored in
their own individual DAG hash.

Concretization involves specifying an abstract spec. Such features are lucrative for
HPC use cases where an environment with various configurations of a software can be
put together.

Concretization of an environment can use packages already built outside the environ-
ment but is not limited to just that. If an extra spec is specified inside the environment
spack pulls together the needed dependencies and sets the respective build options too.
Running spack spec reveals the full concretization of a package, basically telling the
user how each dependency is built.

In Fig 1.6 gcc 4.8.5 did not optimise for 6th generation Intel Skylake architec-
ture simply due to the version being out of date. So Spack decided to fallback one
generation below to Haswell to ensure the package installed and that the compiler worked.

Spack installs are sand-boxed processes and each dependency install forks into a
separate process. Once the dependency builds are successful and all checks completed,
the Spack installer goes forward in building the main package.

The user can list out all the details of a package which range from all available versions
to configuration options. Before installation the user can use the info command to
figure out what variation of the install is required.

10

Figure 1.6: Example of architecture fallback

With spack find --paths Spack lists out the complete paths of all installed software.
This makes searching for binaries or libraries very simple. If the user only requires a
certain version of a package, spack find --format "{name}-{version}-{hash}" lists
out name of package with their respective hashes.

11

Figure 1.7: Package hashes

12

2 Conclusion
Spack is a very flexible package manager that integrates many useful features from many
other packaging solutions like Conda, Environment Modules etc. It is constantly gaining
more traction and adoption in the scientific computing community. High Performance
Computing divisions have a lot to gain when software needs to be reconfigured or built
from scratch, say when new hardware upgrades are due. Such a porting process takes a
lot of effort when the task is assigned to manual labour. But with Spack’s intelligent
automation build time is drastically reduced.

The general everyday user is also encouraged to use Spack as its versatile nature
is beneficial for compiling and maintaining custom software builds. Porting software
environments between colleagues within a project can be done without any hassle too.

13

Bibliography
[1] Apt for debian. https://www.debian.org/doc/manuals/debian-reference/

ch02.en.html#_literal_apt_literal_vs_literal_apt_get_literal_
literal_apt_cache_literal_vs_literal_aptitude_literal.

[2] Docker container. https://www.docker.com/resources/what-container.

[3] Freebsd ports. https://www.freebsd.org/ports/master-index.html.

[4] Package manager for MacOS. https://brew.sh/.

[5] Pacman for archlinux. https://www.archlinux.org/.

[6] Redhat package manager. https://rpm.org/about.html.

[7] G. Becker, P. Scheibel, M. LeGendre, and a. T. Gamblin. Managing combinatorial
software installations with spack. In 2016 Third International Workshop on HPC
User Support Tools (HUST), pages 14–23, 2016.

[8] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,
and W. S. Futral. The Spack Package Manager: Bringing order to HPC software
chaos. In Supercomputing 2015 (SC’15), Austin, Texas, November 15-20 2015.

[9] M. Geimer, K. Hoste, and R. McLay. Modern scientific software management using
easybuild and lmod. In C. Bording and A. Georges, editors, Proceedings of the
First International Workshop on HPC User Support Tools, HUST ’14, New Orleans,
Louisiana, USA, November 16-21, 2014, pages 41–51. IEEE Computer Society, 2014.

[10] R. McLay, K. W. Schulz, W. L. Barth, and T. Minyard. Best practices for the
deployment and management of production hpc clusters. In State of the Practice
Reports, SC ’11, New York, NY, USA, 2011. Association for Computing Machinery.

14

https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_literal_apt_literal_vs_literal_apt_get_literal_literal_apt_cache_literal_vs_literal_aptitude_literal
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_literal_apt_literal_vs_literal_apt_get_literal_literal_apt_cache_literal_vs_literal_aptitude_literal
https://www.debian.org/doc/manuals/debian-reference/ch02.en.html#_literal_apt_literal_vs_literal_apt_get_literal_literal_apt_cache_literal_vs_literal_aptitude_literal
https://www.docker.com/resources/what-container
https://www.freebsd.org/ports/master-index.html
https://brew.sh/
https://www.archlinux.org/
https://rpm.org/about.html

List of Figures
1.1 Spack Package Dependencies . 4
1.2 Spack Build Options . 6
1.3 Spack Input Specs . 7
1.4 Package Managers . 8
1.5 Directory tree of installed packages . 9
1.6 Example of architecture fallback . 11
1.7 Package hashes . 12

15

	Introduction
	Current Complexity of Package Managers
	Containers and Environments
	Spack Usage
	Combinatorial Versioning

	Conclusion
	Bibliography
	List of Figures

