UH
_iﬁ
a3 Universitat Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Report
Git

written by

Jan Moritz Witt

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang;: Meteorologie
Matrikelnummer: 7174687
Betreuer: Dr. Hermann Lenhart

Hamburg, 2020-07-18

Contents

1 What is Git? 4
1.1 What is Version Control? 4
1.2 What makes Git so popular?o 6
1.3 Working with branches in Git, 7

2 Collaboration on one project 10
2.1 Remote Repositoryo 10
22 GitHub 11

One remark for the start: Because Git is a very powerful tool for version control with
a lot of unique commands it is not possible to cover everything in one presentation and
report. For everyone with further questions who starts with Git I recommend [1]. It was
the source for most of the information presented here and is very beginner-friendly.

1 What is Git?

When working on a project the worst thing that can happen is that on some way the
work gets lost. This can happen very spontaneously because of a lot of reasons like the
memory of the computer breaks or by overwriting something accidentally. Or the user
works on a problem and after several hours has to realize, something seemed unnecessary
or not as the right way to do it but now would be the perfect solution but got removed
already. Without Git or another Version Control System (VCS) all the work has to be
done all over again.

1.1 What is Version Control?

Version Control Systems offer the opportunity to record changes to a file or set of files
so you can recall any specific version of it later. This can be done with any type of
file, e.g. images, layouts, videos or text files. It is also possible for entire projects with
several contributors. For every change VCS save the time and the creator of the change,
therefore in case of problems in the integrations in the projects the source can be found
very easily. VCS can be divided into three groups; Local VCS, Centralized VCS (CVCS)
and Distributed VCS (DVCS).

The local Version Control Systems were the first that occurred and as the name indicates
describes a VCS on the same local machine as the real projects. It started with a
simple copy into another directory, the clever ones with a time-stamped directory. The
disadvantage of another directory is that it is easy to mix up the projects and its copy.
An example for a local VCS is Revision Control System (RCS). It keeps sets of patches in
a special format on a disk. A special version can be recreated by adding up all previous
versions.

After local VCS the centralized VCS were invented. The project is hosted on a single
server which contains all versions. Now several contributors were able to have access to
the data which enabled collaboration in the first place. Furthermore the contributors are
able to see what the other are doing so the risk of overlapping work gets reduces. Every
work on the projects can be easily supervised by an administrator, who has full access
control to the server. Prominent examples of centralised VCS are Concurrent Version
Control System (CVS), its successor Subversion (SVN) and Team Foundation Version
Control (TFVS) from Microsoft. On the down side, if the server is down, no one can
work on the project and if the server get somehow corrupted everything is lost when
there is no proper back-up. [2]

Which led to the development of the third group of VCS, the distributed ones (DVCS).
Every contributor mirrors the entire repository of the project, i.e. all files and all previous

versions of them, on its local machine. These copies are comprehensive enough that
each can be used to recover the original if it gets corrupted. Every contributor can work
simultaneously and independently and synchronises the local repository with the original
repository to share the work with the co-workers and download their work. Examples
are Mercurial, Bazaar and Git.

Git 87.2%

Subversion 16.1%

Team Foundation Version Control ~ 10.9%
Zip file back-ups 7.9%
Copying and pasting files to network ~ 7.9%

shares

| don't use version control 4.8%

Mercurial 3.6%

Figure 1.1: Result from a Survey made by Stackoverflow in 2018 [3]. The question was
which version control is used by the users. When adding the percentages it
exceeds 100% which leads to the conclusion that several users use more than
one version control.

While their are several options of version control systems figure 1.1 shows very clear
that in practise nearly 90% of all participants on the StackOverflow survey in 2018 used
Git as version control system [3].

Using Version Control

When a new repository of a project is created, it is empty. So far nothing is saved and
all files of the projects are untracked, i.e. no back-up with for example Git exists. To
track a file the user has to deliberately add it to the Git repository. The reason why
not all files of a folder or project are directly tracked by Git is that their might be files
that shouldn’t be shared with collaborator, e.g. which contain information about the
local computer, or files that contain no helpful information for the project and might
just irritate other users.

After a file is tracked, Git recognizes automatically if the version in the working area is
exactly the same as the back-up version in the repository or if it has been modified. If the
file has been modified the current version is not saved in the repository yet. When the
modification is complete and the user wants to update the repository, the file gets staged.
This means with the next commit this version of the file gets saved into the repository.

The staging area makes it possible to combine several modifications targeting the same
issue in one commit. A commit is the next snapshot of the state of the project in the
history of the repository. With a commit all staged files gets saved into the repository
and the user can later load this version again from the repository. The changes are saved
with useful comments to make the reasons behind them comprehensible even after a long
time after the commit or for collaborators which are not familiar with the issue.

The cycle of unmodified, modified, staged and again unmodified after the commit are
the states of a tracked file in the repository. It is done over and over again to create the
file history in the repository and is most basic way to use a VCS.

1.2 What makes Git so popular?

To understand this survey result, a deeper look into Git, its history and a comparison to
other VCS is necessary.

Git was not one of the first distributed version control systems. In 2005 the inventor of
Linux, Linus Torvalds, decided to create its own tool-based DVCS after the relationship
to the former DVCS of Linux, Bitkeeper, broke down. Due to his experience he had
several goals in mind how the implementation should look like:

o Speed

Simple design

Strong support for non-linear development (parallel branches)

Fully distributed

Able to handle large projects like the Linux kernel efficiently

With this goals in mind, Git has several different features to other DVCS. While most
DVCS save the changes as a list file-based changes, which is often called delta-based ver-
sion control, Git stores the history of the repository as a series of snapshots of the entire
system. In addition, most operations can be done directly on the local files so no con-
nection to the original repository is necessary which leads to no network latency overhead.

Comparing the time needed for several operations for Git and Subversion in figure 1.2
shows the advantage very clear. Git is faster for every of the shown operations.

For instance, a basic update of a file in the repository (Commit Files(A)) is faster by
the factor of 4 than Subversion. However, it has to be kept in mind that this also the
comparison between centralised and distributed version control systems. Therefore it is
not very surprising that taking a look into all changes to the repository (Log(All)) Git is
much faster (factor 325).

Operation Git SVN

Commit Files (A) Add, commit and push 113 modified files (2164+, 2259-) .64 2.60 4x
Commit Images (B) Add, commit and push a thousand 1 kB images 1.53 24.70 16x
Diff Current Diff 187 changed files (1664+, 4859-) against last commit 0.25 1.09 4x
Diff Recent Diff against 4 commits back (269 changed/3609+,6898-) 0.25 3.99 16x
Diff Tags Diff two tags against each other (v1.9.1.0/v1.9.3.0) 1.17 83.57 71x
LOg (50) Log of the last 50 commits (19 kB of output) 9.01 9.38 31x
Log (All) Log of all commits (26,056 commits — 9.4 MB of output) 8.52 169.20 325x
Log (File) Log of the history of a single file (array.c — 483 revs) .60 82.84 138X
Update Pull of Commit A scenario (113 files changed, 2164+, 22509-) 9.90 2.82 3x
Blame Line annotation of a single file (array.c) 1.91 3.04 1x

Figure 1.2: Speed comparison between Git and Subversion for several operations in both
CVS. The time needed for the operation is given in seconds. The last column
is the factor by which Git is faster. The comparison is taken from [4].

Killerfeature: Branching

But the feature what makes Git so advanced to other VCS is how branching is im-
plemented. A branch is a divergence from the main line of the development. This is
helpful to test new code without messing with the entire project. If the change works the
branch can be merged into the main branch, the master branch. The implementation of
branches in Git takes advantages of the fact that Git saves an update of the repository
as a snapshot of the entire repository. A branch is implemented as a pointer to one
specific state of the repository. Because a branch is only a pointer makes it extremely
lightweight and creating or switching between branches it nearly instantaneous. This
encourages the creation of branches multiple times during one working step for every
size of working task. That no contributor is changing the original repository everyone
is synchronizing with before the changes are stable on the local master branch is very
convenient and safeguarding.

1.3 Working with branches in Git

Figures 1.3 - 1.5 illustrate how branching makes work easier. The snapshots of the
history CO to C2 (=commit) are completely linear without any branches. Afterwards
some work were done on an issue (issh3) for which a branch and a change were made
(C3). But before the issue could be solved an urgent problem was found on the master
branch. Therefore another branch called hotfix was made and some correction are done
on this branch to solve the problem (C4).

When the changes on the hotfix branch solve the problem, the hotfix branch can be
merged into the master branch. In this case the master branch can reach the hotfix branch
by just following the history without divergences. This merge is called fast-forward merge
and is done by Git automatically. The pointer of the master branch moves forward to
commit C4 and the hotfix branch gets removed (see figure 1.4.)

co +— C1 <+ c2 4+— C4

AN

Figure 1.3: Example of a history of a repository history (CO to C4) with two branches
(orange pointers to points in the history). Figure is taken from [1].

co — C1 <+ c2 4+— c4

AN

Cc3 +— Cc5

Figure 1.4: Sequel of the example in figure 1.3: "Fast-Forward" merge. Taken from [1].

Afterwards the work on branch issb3 is continued and solved with another commit
(C5) and is ready to be merged into the master branch. But this time the two branches
are diverged and there is no straight connection between the two branches. As long as
different files were changed on the two branches Git can make the merge automatically
with the recursive strategy: Git goes back to the last commit the two branches had in
common and starts there to merge the changes into. Afterwards a new commit is created
with two commits as parents (C6, see figure 1.5). The branch issue53 can be removed.

Because creating, removing and switching between branches is nearly instantaneous,
this kind of workflow is supported by Git. If the same file is changed in two diverged
branches Git raises a conflict when it is tried to merge them together. The merge has
to be done manually to decide which version to keep. But Git offers several tools for a
manual merge.

There exists two common workflows with Git branches: longrunning and topic branches.

-

Cc6

F

ce +— c1 -+ c2 -+ c4

F
c3 +— CS

e

Figure 1.5: Second sequel of the example shown in figure 1.3: "Merge made by recursive
strategy". Taken from [1].

Longrunning branches stands for branches that are used as long as they are not com-
pletely stable. There could be several branches of different levels of stability. The topic
branches exists only short. They are created for one certain task, e.g. the hotfix in figure
1.3, are merged into the master branch and afterwards removed. With this workflow
branches are created and removed several times a day.

2 Collaboration on one project

Collaboration is necessary when working on a project. Nowadays no one is working
isolated on a topic without communication and sharing data with others. It is vital
that every collaborator has access to the data and everyone regularly synchronizes with
the work of the others to maintain a seamless workflow. This can be implemented by a
remote repository.

2.1 Remote Repository

Remote repositories are hosted somewhere else than the local machine. They are necessary
for collaboration with others because the main repository, also called origin repository,
has to be accessible to all which is not the case for local machines. At the beginning
of the projects everyone clones the remote repository on its local machine. When the
changes are stable and merged into the local master branch, they are ready to get pushed
to the remote repository. But before that it has to be checked if changes to the origin
repository have been made and if this is the case, the changes have to be pull and merged
into the local master branch to avoid correlations with other changes. Afterwards the
updated master branch can be pushed to the remote repository and the collaborators
can synchronize to it. The synchronization with the other collaborators is necessary and
not always a straight forward task. Good communication is mandatory.

Hosting Git

To host a Git remote repository it has to be accessible for everyone. Four protocols to
transfer data are available for Git: local, HT'TPS, SSH and git itself.

A local protocol requires a shared filesystem for all collaborators which might be the
case for companies. This has the advantage that the access already exists and it is easy
to get code from collaborators but it is generally difficult to set up and the chance of
accidental damage exists.

The HTTP protocol can use various HT'TP authentication mechanisms and encryption
but can be difficult to set up. Due to its high security options it is the most common
protocol used, especially for open source projects.

SSH protocols are commonly used when the server is hosted by the company because
the ssh connection already exists and it is safe. But due to the fact that collaborators
needs ssh access to the machine it is unsuited for open access projects.

The Git protocol has the fastest transfer of all methods but has no authentication. It is
often used in combination with another protocol which then is used for writing and Git

10

is used for read-only access.

Next to buying or renting a server for hosting a Git repository, there are also several
open-source solutions. Some are specifically set for Git and a list can be found under
[5]. They differ in the amount of space for the repositories, how many collaborators per
repository and the number of free private and open-source repositories. Examples for
server host that support also other VCS are bitbucket.org (Mercurial) and Visual Studio
Team Services (TFVS), while GitLab supports only Git.

2.2 GitHub

Figure 2.1: GitHub logo taken from [6].

But the largest host for Git repositories is GitHub. It is free to use with unlimited
private and open source repositories, but with a maximum of three collaborators for a
private repository. Next to the general hosting, GitHub can be used for issue tracking,
code review and many more tasks. The paid services and features of GitHub includes
advanced tools and an increased limit of collaborators as well as memory space. What
makes GitHub so popular is opportunity to simplify communication and comments with
flavoured markdowns like links, quotes, task lists, code snippets and even emotes. There
also exists a lot of introduction material for complete beginners [7],[8],[9]. For example,
how to move a local repository on GitHub to enable collaboration on an already existing
project [10]. Futhermore, GitHub is also attractive for experienced programmers and
large companies because the GitHub base is hackable to personalize the server or to
integrate external services.

Despite all these advantages for all kind of skilled programmers, it has to be mentioned
that the owner of the origin repository removes the account, all hosted repositories by
that account get removed.

GitHub Workflow of an Open-Source Repository

For open-source projects everyone on GitHub can see the repository, but only a few people
have write access, which is necessary to insure quality code. But other programmers who
wants to contribute can do that by cloning the repository into their GitHub account,
which is called "Fork a project". This is how a workflow would look like:

1. Fork the project

11

2. Create a topic branch

3. Make some commits to improve the projects

4. Push branch to own GitHub projects

5. Open a Pull Request on GitHub

6. Discuss and optionally continue to write commits
7. Project owner merges or closes Pull Request

8. Synchronize the updated master branch back to own fork

Therefore everyone who wants can contribute but in the end the owner of the projects
decides what is helpful and gets included.

Final Remark

This is the report to my presentation about the VCS Git in the seminar "Softwa-
reentwicklung in der Wissenschaft". It will held only a part of the information and
visualisation I presented in the seminar, therefore I recommend to look at the presentation
as well. Especially, because it was a presentation mostly done as an introduction to
Git and version control in general. In the presentation I show how to set up a first
Git repository and how to connect it to a GitHub server. The presentation can be
found under https://wr.informatik.uni-hamburg.de/teaching/sommersemester _
2020/softwareentwicklung in_der_ wissenschaft.

12

https://wr.informatik.uni-hamburg.de/teaching/sommersemester_2020/softwareentwicklung_in_der_wissenschaft
https://wr.informatik.uni-hamburg.de/teaching/sommersemester_2020/softwareentwicklung_in_der_wissenschaft

References

10.

. Pro Git by Chacon and Staub, The Expert Voice; 2nd Edition

. https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-

software/

https://insights.stackoverflow.com/survey/2018 [25.04.2020]
https://git-scm.com/

https://git.wiki.kernel.org/index.php/GitHosting [01.05.2020]
https://github.com/logos

https://guides.github.com/
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners

https://help.github.com/en/github/getting-started-with-github/git-and-
github-learning-resources

https://help.github.com/en/github/importing-your-projects-to-github/
adding-an-existing-project-to-github-using-the-command-line

13

https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/
https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/
https://insights.stackoverflow.com/survey/2018
https://git-scm.com/
https://git.wiki.kernel.org/index.php/GitHosting
https://github.com/logos
https://guides.github.com/
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://help.github.com/en/github/getting-started-with-github/git-and-github-learning-resources
https://help.github.com/en/github/getting-started-with-github/git-and-github-learning-resources
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line

	What is Git?
	What is Version Control?
	What makes Git so popular?
	Working with branches in Git

	Collaboration on one project
	Remote Repository
	GitHub

