g1t

*

Presentation by Moritz Witt

jan.witt@stadium.uni-hamburg.de
* https://git-scm.com/

https://git-scm.com/

Structure

* What is Version Control?
* Git basics

* Branching

* Remote Repository

* GitHub

* Workflows

e Switch to Git

Version Control System (VCS)

* Record changes of a file/set of files

 Possible to nearly any type of file (code, images, layouts,...)

e Local VCS

* Copy of files in another directory
* Error-prone; mix up directories

Centralized VCS

* One server that contains all file versions

* Enables Collaboration

* Everyone knows what the collaborator are doing
 Admin has access control

* No access if the server is down

* If central database is corrupted, everything is lost

* Concurrent Versions System (CVS), Subversion (SVN) and
Team Foundation Version Control (TFVC)

Distributed VCS

 Collaborator clones full repository onto local computer
* Deals with several remote repositories

e Simultaneous work of many people on the same project
* Offline work possible

* Mostly delta-based version control

* Git, Mercurial, Bazaar

VCS used in 2018

Git 87.2%
Subversion 16.1%
Team Foundation Version Control 10.9%
Zip file back-ups 7.9%
Copying and pasting files to network 7.9%
shares

| don't use version control 4 8%

Mercurial 3.6%

5/8/2020 Siw

* https://insights.stackoverflow.com/survey/2018

6/34

https://insights.stackoverflow.com/survey/2018

Git

* From Linux development community

* Goals:
* Speed
Simple design
Strong support for non-linear development (branches)
Fully distributed
Able to handle large projects

* Developed in 2005

Properties

* Entire repository as well as history gets saved on local PC
* No network latency overheat
e Offline work possible

e Stores as series of snapshots of current state
e Every further state easy to revert

* Every commit gets checksummed and stored by referring to it
* No undetected data loss

Speed Comparison

5/8/2020

Operation Git SVN
Commit Files (A) Add, commit and push 113 modified files (2164 +, 2259-) 0.64 2.60 4x
Commit Images (B) Add, commit and push a thousand 1 kB images 1.53 24.70 16x
Diff Current Diff 187 changed files (1664+, 4859-) against last commit 0.25 1.09 4x
Diff Recent Diff against 4 commits back (269 changed/3600+,6898-) 0.25 3.99 16x
Diff Tags Diff two tags against each other (v1.9.1.0/v1.9.3.0) 1.17 83.57 71x
Log (50) Log of the last 50 commits (19 kB of output) 0.01 0.38 31x
Log (AlD Log of all commits (26,056 commits — 9.4 MB of output) 0.52 169.20 325x
Log (File) Log of the history of a single file (array.c — 483 revs) 0.60 82.84 138x
Update Pull of Commit A scenario (113 files changed, 2164+, 2259-) 0.90 2.82 3x
Blame Line annotation of a single file (array.c) 1.91 3.94 1x %
Operation Git* Git SVN
Clone Clone and shallow clone(*) in Git vs checkout in SVN 21.0 107.5 14.0
Size of total client side data and files after clone/checkout (in
Size (MB)) 181.0 132.0 .

Siw

* https://git-scm.com/

9/34

https://git-scm.com/

Starting a Git Repository

~/Desktop/Siw
$ 1s
calculation.py hello_world.py README.md

~/Desktop/Siw

$ git init

Initialized empty Git repository in C:/Users/Moritz/Desktop/Siw/.git/
~/Desktop/Siw (master)

$ git status
on branch master

No commits yet

Untracked files:
(use "git add <file>...

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

~/Desktop/siw (master)

Git status

~/Desktop/siw (master)
$ git add *.py

~/Desktop/siw (master)
$ git status
on branch master

No commits yet

Changes to be committed:
(use "git rm --cached <file>...

to unstage)

Untracked files:
(use "git add <file>..." to include in what will be committed)

~/Desktop/Siw (master)

Git commit

~/Desktop/Siw (master)
$ git commit
[master (root-commit) 4e339be] Initial commit
2 files changed, 4 insertions(+)
create mode 100644 calculation.py
create mode 100644 hello_world.py

~/Desktop/Siw (master)
$ git log
commit 4e339bel44fbb1263274141ba843e60fc5b3d4fd (HEAD -> master)
Author: mwitt95 <moritz.witt@outlook.com>
Date: Mon May 4 21:03:35 2020 +0200

Initial commit

commit python files into Git repository
Leaves two files untracked, i.e. not saved in Git repository

~/Desktop/Siw (master)

The Stages of a File

* Modified: File is changed but not staged yet
 Staged: File will get saved in next commit

 Committed: File is saved in Git repository

add commit

Working Tree » Staged Area

—_—D
»

Git Repository

Branching

* Diverging from main line of development
 Branch = Pointer to one commit state

e “Killer feature”
* Lightweight
* Nearly instantaneous
* Switching between branches nearly instantaneous

 git branch <name>

* git checkout <branch_name>

Merge Branches

* Merge content of two branches
e git merge <branch _to_merge>

* “Fast-forward”
* “Merge made by recursive strategy”
* CONFLICT

* Workflows:
* Long-Running Branches
* Topic Branches

Merge Branches

* Merge content of two branches m ?

* git merge <branch_to_merge> o +— O +«— @ +«— o
* “Fast-forward” ™N ,
* “Merge made by recursive strategy” t *
* CONFLICT
* Workflows: DD

* Long-Running Branches o o

* Topic Branches h

* Pro Git

5/8/2020 Siw 16/34

Merge Branches

* Merge content of two branches
* git merge <branch to _merge>

* “Fast-forward”

* “Merge made by recursive strategy”

* CONFLICT

* Workflows:
* Long-Running Branches
* Topic Branches

5/8/2020

Siw

Co

C1

c2

c4

C3

* Pro Git
17/34

Merge Branches

* Merge content of two branches
e git merge <branch _to_merge>

* “Fast-forward”
* “Merge made by recursive strategy”
* CONFLICT

* Workflows:
* Long-Running Branches
* Topic Branches

Remote repositories

* Project that is hosted somewhere else
* Necessary for collaboration

* git clone <URL>

* git remote add <URL>

e git fetch <Remote>

* git merge <Remote>

Git Protocols

* Local e HTTP
+ Access already exists + One URL for authentication and
+ Easy grabbing from others encryption
- Difficult to set up - Sometimes more difficult to set up

- Chance of accidental damage

* Git e SSH
+ Fastest transfer + Easy to set up, safe

- No authentication - Collaborators need SSH access to
the machine, no anonymous access

Git Servers

e Several open source options
* Some explicitly for Git

* Different in
 Amount of data space per repository
 Number of collaborators
* Number of free private and/or open source repositories

* E.g. Bitbucket (only 5 collaborators),
Visual Studio Team Services (only private repositories) -

* https://git.wiki.kernel.org/index.php/GitHosting

https://git.wiki.kernel.org/index.php/GitHosting

S |

* Databased-backed web application

* Free to use

e Unlimited repositories and collaborators
* Private and public projects

* Different options of access permissions
* Push access or merge requests

* https://about.gitlab.com/press/press-kit/

https://about.gitlab.com/press/press-kit/

GitHub

* Largest host for Git repositories

* Unlimited private and open source repositories

* Max three collaborators per repository

* Repositories are deleted if original author leaves GitHub
* Possible two-factor authentication

* GitHub flavored Markdown
* Personalizing GitHub

* https://github.com/logos

https://github.com/logos

GitHub New Repository

5/8/2020

Pull requests Issues Marketplace Explore

Create a new repository

A repository contains all project files, including the revision history. Already have a project repository elsewhere?
Import a repository.

Owner Repository name *

mwitt95~ |/ Siw v
Great repository names are short and memorable. Need inspiration? How about improved-barnacle?
Description (optional)

Remote Repository hosted on GitHub

Public
Anyone can see this repository. You choose who can commit.

. Private
You choose who can see and commit to this repository.
Skip this step if you're importing an existing repository.

Initialize this repository with a README
This will let you immediately clone the repository to your computer.

Add .gitignore: None ~ Add a license: None = @

Siw

24/34

Add Remote from Existing Repository

~/Desktop/Siw (master)
$ git remote add origin https://github.com/mwitt95/Siw.git

~/Desktop/siw (master)
$ git remote -v
origin https://github.com/mwitt95/siw.git (fetch)
origin https://github.com/mwitt95/siw.git (push)

~/Desktop/siw (master)

$ git push origin master
Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 4 threads
compressing objects: 100% (2/2), done.
writing objects: 100% (4/4), 386 bytes | 386.00 KiB/s, done.
Total 4 (delta 0), reused 0 (delta 0), pack-reused 0
To https://github.com/mwitt95/siw.git

* [new branch] master -> master

~/Desktop/siw (master)

GitHub Repository

5/8/2020

Pull requests Issues Marketplace Explore

£ mwitt9s / SIW [p @ uUnwatch~ | 1 | st | 0 0
<> Code ssues 0 Pull requests 0 Actions Projects 0 Insights Settings
Example Remote Repository Edit
pics
=0 3 commits P 1branch [T 0 packages > 0 releases
nch: master - New pull request Create new file | Upload files | Findfile | [aSUERRTLTEREY
mwitt95 Commit .gitig Latest commit d1aaadf 5 minutes ago
[.gitignore Commit .gitignore and README 5 minute:
[E README.md Commit .gitignore and README 5 minutes ago

Add sum function

nitial commit

5 README.md

README example for a repository

8 minu

A README file is the first introduction to the repository. It should include every information necessary or helpful for new

collaborators of this project:

+ Reason for the project

» How to configure, how to install
+ Example of how to runit

+ The license the project uses

* How to contribute

This file will be automatically detect from GitHub and shown on the project's

frontpage.

Siw

26/34

GitHub Workflow

Fork the project

Create a topic branch

Make some commits

Push to own GitHub project

Open Pull Request

Discuss, work in some comments

Product owner merges/closes Pull Request
Pull updated Master back to fork

© N o Uk Wwh =

Git Workflows

e Centralized
shared

repository

* Integration-Manager

developer developer developer

e Dictator

* Pro Git

5/8/2020 SiW 28/34

Git Workflows

* Centralized
blessed developer developer
repository public public

integration developer developer
manager private private

* Integration-Manager

e Dictator

* Pro Git

5/8/2020 SiW 29/34

Git Workflows

e Centralized

blessed
repository

* Integration-Manager

developer developer developer
e Dictator public public public *
* Pro Git

5/8/2020 SiW 30/34

Commit Guidelines

* Makes collaboration a lot easier
* One commit per issue
* Whitespace errors: git diff --check

* Comment rules:
* Capitalized, short summary
* More detailed explanation (72 characters)
* Write in imperative
* Further paragraphs (next steps) or bullet points

Git with Subversion

* Bidirectional bridge: “git svn clone”
* Needs to check every commit individually, needs very long!!

e Uses git as valid client, all git features are available
* Linear history, rebase before pushing

* Migration:
* Push clone to Git server
e Author information needed
e Post-import clean-up

Git with Mercurial

* Bridge as remote helper: git-remote-hg

* git clone <shortname> <URL>

e Usual Git client, all features available

* git push

 Remote helper translates between different name assignment

* Migration:
 Straightforward due to same structure
* “hg-fast-export” tool
* Create author mapping

summary 0

* Git is the largest Version Control System (VCS)

A commit is a snapshot of the current state

* Every clone includes the entire history

* Branches are lightweight pointers at specific commits
* Add remote repositories for collaboration

* Several open source Hosts

* Suited for any number of collaborators

5/8/2020 Siw

*https://git-scm.com/

34/34

https://git-scm.com/

References

* Pro Git by Chacon and Staub, The Expert Voice; 2"9 Edition

e https://git-scm.com/

* https://guides.github.com/

* https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners

* https://insights.stackoverflow.com/survey/2018 - 25.04.20

* https://git.wiki.kernel.org/index.php/GitHosting - 01.05.20

* https://help.github.com/en/github/getting-started-with-github/git-and-github-learning-resources
* https://about.gitlab.com/press/press-kit/

e https://github.com/logos

* https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-
to-github-using-the-command-line

* https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/

5/8/2020 Siw 35

https://git-scm.com/
https://guides.github.com/
https://product.hubspot.com/blog/git-and-github-tutorial-for-beginners
https://insights.stackoverflow.com/survey/2018
https://git.wiki.kernel.org/index.php/GitHosting
https://help.github.com/en/github/getting-started-with-github/git-and-github-learning-resources
https://about.gitlab.com/press/press-kit/
https://github.com/logos
https://help.github.com/en/github/importing-your-projects-to-github/adding-an-existing-project-to-github-using-the-command-line
https://biz30.timedoctor.com/git-mecurial-and-cvs-comparison-of-svn-software/

Git and TFS

e Git-tfs: .NET project, only runs on Windows
* git tfs clone —with-branches: maps TFVC branches to Git branches
» Setting of Git configuration necessary
* Features for branches that aren’t represented in TFVC are complicated
 git rebase / git merge

e Git-tf: Java projects, not able to have branches
 git tf clone : shallow copy (only latest version) of repository
 git tf pull —rebase

* Migration for Git-tfs:
 Map usernames and format it
* Full clone of repository
* Clean got-tfs-id section

