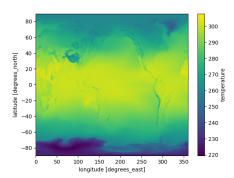
Python Dask Softwareentwicklung in der Wissenschaft

Alena Pils

Arbeitsbereich Wissenschaftliches Rechnen Fachbereich Informatik Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

2020-06-08

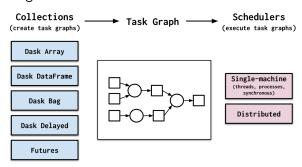
Gliederung


- 1 Motivation
- Überblick
- 3 Data Collections
- 4 Scheduler
- 5 Zusammenfassung
- 6 Informationen
- 7 Literatur

Motivation

Motivation

- Analysieren von Daten, die den Arbeitsspeicher übersteigen
- große Datenmengen führen in Python zu einem Memory Error
- Beispiel ERA5 (Klimadaten)¹
 - stündliche Daten von 1979 bis heute
 - räumliche Auflösung von global 30 km

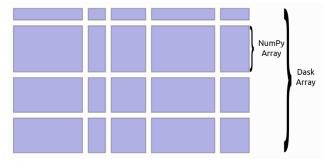

//www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5

Alena Pils Python Dask 3/15

¹https:

Überblick²

- Bibliothek zur Parallelen Programmierung in Python
- sowohl auf einem Laptop als auch auf verteilten Cluster möglich
- sinnvoll, wenn die Datenmenge den verfügbaren Arbeitsspeicher übersteigt


Quelle: https://docs.dask.org/en/latest/

Alena Pils Python Dask 4/15

²https://www.youtube.com/watch?v=nnndxbr_Xq4

Dask Array³

- ist n-dimensionalem NumPy Array ähnlich
- ermöglicht Arrays größer als der Arbeitsspeicher sowie parallele Berechnungen
- nutzt Aufteilung der Daten in Blöcke

Quelle: https://docs.dask.org/en/latest/array.html

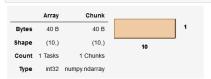
Alena Pils Python Dask 5 / 15

³https://tutorial.dask.org/03_array.html

Importieren von numpy

```
import numpy as np
```

Erstellen eines Arrays


```
x = np.arange(10)
x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

Importieren von dask.array

```
import dask.array as ds
```

Erstellen eines Arrays

```
x = ds.arange(10)
```



```
x.compute()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
```

```
y = ds.arange(10,chunks=(5,))
```

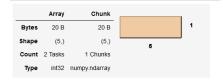

Array

x
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Slicing

x[::2]
array([0, 2, 4, 6, 8])

Mittelwert bilden

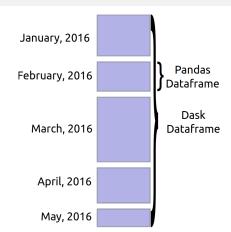

x[::2].mean()

Array

x.compute()
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Slicing

x[::2]


x[::2].compute()
arrav([0, 2, 4, 6, 8])

Mittelwert bilden

x[::2].mean().compute()
4.0

Dask DataFrame⁴

- ermöglicht DataFrames, die größer sind als der Arbeitsspeicher sowie parallele Berechnungen
- Dask DataFrame besteht aus vielen Pandas DataFrames
- Aufteilung eines Dask DataFrames in Pandas DataFrames geschieht entlang des Indexes

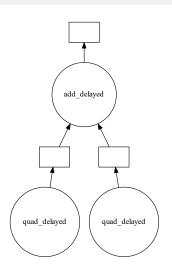
Quelle: https://docs.dask.org/en/latest/dataframe.html

Alena Pils Python Dask 8/15

⁴https://tutorial.dask.org/04_dataframe.html

Dask DataFrame⁶

- Dask DataFrame besteht aus mehreren Partitions, die jeweils ein Pandas DataFrame sind
- Dask DataFrame deckt einen kleinen Anteil der Pandas API ab
- größter Unterschied zu Pandas: Erstellen eines Task Graphen anstelle einer unmittelbaren Berechnung
- keine Dask DataFrames mit mehreren Indices möglich⁵

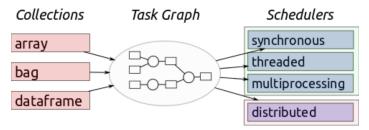

 $^6 {
m https://tutorial.dask.org/04_dataframe.html}$

Alena Pils Python Dask 9 / 15

⁵http://xarray.pydata.org/en/stable/dask.html

Dask Delayed⁷

- Parallelisieren von Funktionen
- Parallelisierung möglich, wenn
 Funktionen unabhängig voneinander
- Delayed object: zeichnet aufzurufende Funktion und die an sie zu übergebenden Argumente auf
- Erstellen eines Delayed object mit:
 - Ødelayed über der Funktion oder
 - beim Funktionsaufruf: delayed(func)(arg)



⁷https://tutorial.dask.org/01_dask.delayed.html

Alena Pils Python Dask 10 / 15

Scheduler⁸

- Namen der Scheduler: "threaded", "processes", "single-threaded", distributed
- Auswahl des Schedulers:
 - beim Funktionsaufruf: wert.compute(scheduler="threaded")
 - innerhalb eines Blocks: with dask.config.set(scheduler="threaded")
 - global: dask.config.set(scheduler="threaded")

Quelle: https://docs.dask.org/en/latest/scheduling.html

Alena Pils Python Dask $11\,/\,15$

⁸https://tutorial.dask.org/05_distributed.html

Zusammenfassung

- Übersteigt die Datenmenge den Arbeitsspeicher ist es sinnvoll Dask zu nutzen
- Dask ist eine Bibliothek zur parallelen Programmierung in Python, die sowohl auf dem eigenen PC als auch auf einem Cluster funktioniert
- Dask Collections erzeugen Task Graphen, die dann von Schedulern ausgeführt werden
- große Überschneidung der API zwischen Dask und NumPy sowie Pandas

Alena Pils Python Dask 12 / 15

Informationen

Dokumentation und Links zu Tutorials:

https://dask.org/

Tutorial:

https://github.com/dask/dask-tutorial

Kurze Einführungsvideos:

https:

//www.youtube.com/channel/UCj9eavqmvwaCyKhIlu2GaoA

Beispiele aus den Geowissenschaften:

http://pangeo.io/use_cases/

Literatur I

- [1] Inc. Anaconda and contributors Revision ab99d961, 2014-2018. https://docs.dask.org/en/latest/.
- [2] Inc. Anaconda and contributors Revision ab99d961, 2014-2018. https://docs.dask.org/en/latest/array.html.
- [3] Inc. Anaconda and contributors Revision ab99d961, 2014-2018. https://docs.dask.org/en/latest/dataframe.html.
- [4] Inc. Anaconda and contributors Revision ab99d961, 2014-2018. https://docs.dask.org/en/latest/scheduling.html.
- [5] Dask, 2019. https://www.youtube.com/watch?v=nnndxbr_Xq4.
- [6] Dask Developers, 2018. https://tutorial.dask.org/03 array.html.

Alena Pils Python Dask 14/15

Literatur II

- [7] Dask Developers, 2018. https://tutorial.dask.org/04_dataframe.html.
- [8] Dask Developers, 2018. https://tutorial.dask.org/01_dask.delayed.html.
- [9] Dask Developers, 2018. https://tutorial.dask.org/05_distributed.html.
- [10] European Centre for Medium-Range Weather Forecasts. https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5.
- [11] xarray Developers Revision, 2014-2020.
 http://xarray.pydata.org/en/stable/dask.html.

Alena Pils Python Dask 15 / 15