UH
_i_ti_
.23 Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Report

Student Cluster Competition 2020

written by

Julius Plehn, Johannes Coym, Ruben Felgenhauer, Daniel Bremer, Roland
Fredenhagen, Lina Meyer, Yannik Konneker, Felix Maurer

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Betreuer: Jannek Squar, Michael Kuhn

Hamburg, July 8, 2021

Contents

1 Introduction

1.1 SCC2020 - The COVID-19 Special Edition
2 NSCC Aspire 1
2.1 Cluster Configuration
2.1.1 Hardwareo
2.1.2 System Architecture L
2.2 Challenges L
2.2.1 User Management on User Level
2.2.2 Heterogeneous System L
223 FileSystems
224 Noroot Access
2.2.5 Brute Force Node Allocation
3 Spack - WR’s favorite
3.1 Spack ...
3.1.1 Custom Package
3.2 Spack Chaining
4 MPI Benchmarks
4.1 MPI Variants
4.2 OSU Benchmark
4.3 Results
5 Tinker-HP
5.1 Architecture
5.2 Challenge
5.3 Imstallation
5.4 MPI Performance
5.5 Runningo
5.6 Visualization
5.7 Benchmark
5.8 Recapitulation
6 Charm++
6.1 Key Features
6.1.1 Chares e
6.1.2 Remote Method Invocation

6.1.3 Chare Arrays 25

6.1.4 Reductions 26
6.1.5 Pack/Unpack o 26
6.1.6 Load Balancer 26
6.1.7 Structured Dagger L. 27
6.1.8 Adaptive MPI 27
6.1.9 Complilation Process of Charm++ executables 27
6.2 Dependencies 28
6.3 Building Charm++ 28
6.4 Running Charm-++ L oL 28
Coding Challenge 30
7.1 Program Architecture 30
7.2 Implementation 32
7.2.1 Main Exercise 32
7.2.2 Bonus Exercise 35
7.2.3 Difficulties and Optimization Ideas 37
7.3 Application 38
7.3.1 Building Options 38
7.3.2 Execution Options 38
7.3.3 Job-Script 39
74 Results. 40
7.5 Performance Analysis Lo 40
ChaNGa 41
8.1 Background 41
8.2 Architecture 41
8.2.1 Barnes-Hut Algorithm 42
8.2.2 Smooth Particle Hydrodynamics? 43
8.2.3 Comoving Coordinates? 43
8.2.4 Octree? e 43
8.2.5 Ewald Summation? oo 43
8.2.6 Leapfrog Integrator? L. 43
8.2.7 Dependencies 43
8.2.8 Building 44
8.3 Assignment 44
8.4 Running 45
8.5 Parameters / Tuning o 45
8.6 Results. 46
8.6.1 Benchmark o0 46
8.6.2 Visualisation o 47

9 ElmerFEM/ICE
9.1 ElmerFEM

9.1.1 Elmer/ICE
9.2 Assignment
9.3 Dependencies and Buildingo
9.4 Running

9.4.1 Performance Tuning
9.5 Visualisation
9.6 Results.

10 BERT

10.1 BERT - Bidirectional Encoder Representations from Transformers
10.1.1 SQuAD - Stanford Question Answering Dataset

10.2 Background
10.3 Architecture
10.4 Assignment
10.5 Building . .
10.6 Running . .

10.6.1 Performance Tuning

10.7 Results . . .

11 Gromacs

11.1 Algorithm .
11.2 Assignment

11.3 Dependencies
11.4 Building . .
11.5 Running . .
11.6 Visualisation
11.7 Results . . .

12 Aurora

12.0.1 Vector Engine Lo oo

12.0.2 Usage

Bibliography

48
48
48
49
49
20
20
20
20

53
53
93
23
o4
25
56
57
o8
o8

59
29
60
60
60
61
62
62

64
64
65

68

1 Introduction

1.1 SCC2020 - The COVID-19 Special Editionpanicl Bremer

The Student Cluster Competition is a yearly competition held by the HPC-AI Advisory
Council. Normally it is held over three days at the International Super Computing
Conference in Frankfurt am Main with physical attendance of each team. Teams need to
acquire sponsors for hardware to build a cluster to run given tasks. Such tasks contain
benchmarks like the HPL, HPCC and HPCG, but also different “real world” scientific
applications like TensorFlow, ElmerFEM or Gromacs. Furthermore there are coding
challenges that require the teams to implement code themselves or secret applications
which are presented to the teams in the morning of a competition day and teams have
time until the end of the day to get the application to run and to tune the results.

The competition runs with only two big rule: Your cluster cannot consume more than
3kW of electrical power at any point in time and every cluster component must be
powered on over the whole span of the competition.

This means that the hardware has to be chosen carefully or that it has to be limited in
power draw to be under the power limit. The latter can be done by limiting clock speeds
or setting power targets. Also low level tuning like undervolting can be an option.

Due to COVID-19 the 2020 edition was changed very much, regarding participation and
cluster hardware. Initially the UHH team planned on using NEC’s SX-Aurora TSUBASA
vector engine cards as accelerators. As the ISC was held online, SCC was moved to a
virtual competition, too. The own hardware criteria was omitted and the competition
was moved to NSCC’s Aspire 1 cluster.

Previously teams had time before the competition to set up their systems and to get
familiar with the hardware. This was not possible this year. Because of this the
competition duration was extended to 17 days, not only for 10 hours per day (while the
exhibition center is open), but for 24 hours per day. In this time it was possible to get
familiar with the cluster, build applications, queue runs into the shared queue, etc. on
the Aspire 1 cluster.

With the rule changes, there was also a dedication to the Corona Virus Disease happening
with the introduction of the Tinker-HP and Gromacs challenges. These applications can
help with analysing virus proteins and therefore fighting the virus. With optimizations
that students can find while working with the applications the world wide development
or an antidote could be boosted, as well as in future research.

2 NSCC Aspire 1

Author: Daniel Bremer

WEOR I'IIEI'AIHITIIINN N

But what's that
shadowy place over there?

SCCASPIRETL J

2.1 Cluster Configuration

This years competition was held on the NSCC Aspire 1 cluster located in Singapore.
The computer system is a Peta-FLOPS capable system, spanning 1288 CPU nodes and
128 Tesla K40 equipped nodes, as well as 6 DGX-1 nodes featuring 8 NVIDIA V100
GPUs. All of the system is connected to a 13 PB storage system [30].

2.1.1 Hardware

Hardware configuration of CPU nodes:

CPU Intel E5-2690v3 (12 cores)
Sockets 2
Memory 128 GB DDR4

OS RHEL 6
Network | Infiniband EDR (100 Gbps)

Additionally there were 10 nodes configured for large memory jobs - 1 nodes was equipped
with 10 TB, 4 nodes with 2 TB and 5 nodes with 5TB.
GPU nodes were equipped like follows:

CPU | Intel Xeon E5-2698 v4 (20 cores)
Sockets 2
Memory 512GB DDRA4
GPU NVIDIA V100 (8 per node)
OS Ubuntu 18.01
Network Infiniband EDR (100 Gbps)

2.1.2 System Architecture

Aspire 1 is designed to implement a Fat Tree with full bisectional bandwidth. This design
enables high connectivity inside the cluster, guaranteed by the Fat Tree, while half of
the nodes can communicate simultaneously with their full bandwidth [30].

Attached to the system are two distributed filesystems, a GPFS for /home, to which file
quotas apply, and a Lustre filesystem mounting a /scratch directory without quotas.
In total the filesystems are capable of storing 13PB of data [1]s3SAH17NA? .

For job management, the PBS Professional scheduler is installed on the system.

2.2 Challenges

With Aspire 1 we have faced multiple challenges. These ranged from not knowing the
system to limited access to the nodes themselves. But we knew that because each team
had the same hardware, this year software optimization was key to success.

U= W N =

2.2.1 User Management on User Level

For cluster access we received one account for the whole team. While it is possible to
work like if every team member sticks to a specific folder in the user’s home, we wanted
to make sure that no corruption is possible. For this we implemented a bash hack to
create virtual users that each of the team members could use.

function loaduserenv () {
export HOME=/home/projects/50000010/%1
cd /home/projects/50000010/8$1
source .bashrc

Listing 2.1: .bashrc to enable multiple users in one unix user

A .bashrc was created for the UNIX user, that introduced a function loaduserenv.
This function then modified the $HOME variable and set it to a user home in a defined
location. In our case, we used the /project mount to store user homes, as it was the only
location big enough to store all virtual user home directories and was mounted with a
distributed file system.

Users could edit their ssh-config to contain the line RemoteCommand loaduserenv
daniel; /bin/bash (e. g. for the user “daniel”), which then loaded their virtual
environment and set up the system.

2.2.2 Heterogeneous System

Another challenge was given by the cluster architecture. While we learned working on a
homogeneous cluster with mistral and the WR cluster, the Aspire 1 installation was a
heterogeneous system. The login nodes and CPU cluster nodes were running RHEL 6,
while DGX nodes ran on Ubuntu 18.04. Not only did we encounter different operating
systems, but with these came version inconsistencies of libraries and tools. This could
be noticed heavily in the Coding Challenge, as a discussion in the Slack channel showed
that the results heavily depended on the used libm version and the checking program
failed on versions later than 2.12, as the results deviated massively.

Also with old operating systems came old compilers, so building a GCC version 9 required
multiple steps, first building version 7 with binutils and then building the target version
9.

While cross-compiling would have been an option, we have decided to directly build on
the target systems to take potential advantage of newer libs, when using the Ubuntu
nodes.

2.2.3 File Systems

Aspire 1 utilizes three mounts for user data: /scratch, /home and /project.
While /scratch allowed for unlimited storage for 30 days, unfortunately if was running
on a Lustre 2.13 installation and was mounted with default parameters - this lead to a

broken Spack, as Spack requires a file system that supports locking.

/home would have been easy to work with, but unfortunately the quota was set to 50 Gb,
which was neither enough for virtual user home directories, CUDA libraries with different
versions and a complete Spack stack.

Because of these limitations, we mostly used /project, where the virtual user directories
resided, as well as our Spack stack.

2.2.4 No root Access

A huge benefit of a own cluster is the ability to use root whenever needed or to change
hardware settings directly in the BIOS (e. g. setting power consumption behaviours
or thermal profiles). With root is is possible to set power target, enable/disable hyper-
threading and other hardware tweaks. As this year the power consumption played no
role in the competition these barriers did not impact us, but in other cases, root would
have been used to update libraries or other software, which then had to be installed in
user space, whenever possible.

2.2.5 Brute Force Node Allocation

This section is quite special, but might give some helpful ideas, if the SCC should run
again on shared hardware.

During the competition we have noticed that queue length were growing each day and
it got impossible to work on some applications, as they required trial and error (e. g.
BERT/SQuAD). For the last days, we have implemented a obscure hack that allowed us
to work on a GPU node. The used loopholes partially are possible, because PBS was
used as a job scheduler.

PBS allows allocation of interactive jobs. While running such an interactive job, resource

allocations were not enforces, meaning it was possible to allocate a node with 1 CPU,
but run tasks on all CPUs. For us, we have utilized this to allocate jobs that allocated 1
GPU on a node and 10 CPUs. As one GPU was allocated, no of the other team’s jobs
were starting on this node, as they all were written for 4 GPUs.

To make sure we always have a node available, we were using TMUX terminals, which
ran a loop on the allocation with an interactive flag. While the interactive shell is still
open, the interactive job is not killed (unless by the time limit) and the node can be
SSHed to. When detaching the TMUX terminals, these ran until terminated by a system
restart.

Such interactive jobs in theory also could be used with MPI, allocate 4 nodes, build
the MPI environment manually and run the application - a scheduler only automates
this process. This might even work stealthily when starting TMUX terminals on each
allocated nodes (imagine a dev queue with fast queue times - allocate a 5 min job and
start a TMUX on the node with the environment), but in this case you actively would
manipulate other team’s runs, as their machines do not receive full performance when
your applications are also running on them, and nobody likes cheating retards.

3 Spack - WR’s favorite

3.1 Spack

In order to enable us to configure and build applications and dependencies in many dif-
ferent variants we utilized Spack!. Spack was created by Todd Gamblin at the Lawrence
Livermore National Laboratory. It eases the use of handling multiple versions of the
same software and their dependencies e.g. by altering environments and abstracting
version and system specific differences. Build instructions are written in Python and in
general follow a simple schema. The user has the choice to specify an available version
and to select specific variants. For example the following instruction compiles GCC
version 9.2 with support for Fortran: spack install gcc@9.2.0 languages=fortran.
This package is then installed at the user level and no inference with system packages is
to be expected. Depending on other installed packages this variant can then be loaded
by executing spack load gcc

Spack is used heavily within the WR working group as well in previous student cluster
competitions. With over 4800 available packages Spack proved to be a solid foundation
for our applications. For our purposes we maintained a custom Spack fork? which contains
package contributions and configuration changes. To a large extent the available packages
were sufficient. However, the HPCG benchmark has been updated and a ChaNGa and
Tinker-HP package has been added.

3.1.1 Custom Package

In the following subsection a brief introduction into the development of a Spack package
is given. An application that initially was not available was ChaNGa and more details
can be found in Chapter 8. In Listing 3.1 an excerpt of this package is shown. This
package uses the build rules defined by the AutotoolsPackage in line 3 and therefor
inherits the phases autoreconf, configure, build and install from this given build
system. The autoreconf phase is only executed if the configure script is missing or
if the package author specifically requests the regeneration of this file. However, it is
recommended to apply additional patches to the configure script directly, as we have
done in line 9, if required.

In line 8 the SHA256 hash of ChaNGa 3.4 is defined. Given this hash and a version
resolution build into Spack, the url in line 5 is used to download and extract this version

'https://github.com/spack/spack
Zhttps://git.wr.informatik.uni-hamburg.de/scc/spack

10

https://github.com/spack/spack
https://git.wr.informatik.uni-hamburg.de/scc/spack

=W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

into a temporary directory. In the next step a dependency on Charm++ is defined.
Similar to the GCC example earlier, the variant build-target is set to ChaNGa. Requiring
a dependency makes Spack setup environment variables like LD LIBRARY PATH so
that other packages can find dependent libraries and other files.

In line 13 and 19 the behavior of the configure and install step is altered. First of all, a
required variable STRUCT DIR is set to the path of the utilities that were downloaded
in line 11. Finally, in the install step, a new directory is created whereas the prefix is the
final directory in user space and two binaries are moved to their final destination, while
maintaining file permissions.

from spack import *

class Changa(AutotoolsPackage):
homepage =
— "http://faculty.washington.edu/trq/hpcc/tools/changa.html"
url =
<~ "https://github.com/N-BodyShop/changa/archive/v3.4.tar.gz"
git = "https://github.com/N-BodyShop/changa.git"

version('3.4"',
— sha2b56="'c2bceb6ac00025dfd704bb6960bcl17c6df7c746872185845d1e75f47e6ce2a9
patch("fix_configure_path.patch")

resource (
name="utility",
url="https://github.com/N-BodyShop/utility/archive/v3.4.tar.gz",
sha256="19f9f09023ce9d642e848a36948788fb29cd7deb8e9346cdaac4c945f1416667"
placement="utility"

)
depends_on("charmpp build-target=ChaNGa")

def configure_args(self):
args = []
args.append ("STRUCT_DIR={0}/utility/structures"
.format (self.stage.source_path))
return args

def install(self, spec, prefix):
with working_dir(self.build_directory):
mkdirp (prefix.bin)
install ('ChaNGa', prefix.bin)
install('charmrun', prefix.bin)

Listing 3.1: ChaNGa package

11

1
2
3

3.2 Spack Chaining

Spack Chaining can be used to maintain multiple independent Spack installations which
rely on each other and use another if they fulfill a required dependency. We had several
reasons to go with this feature. First of all, we wanted to be able to work independently
on our own Spack environments which were shared by the same cluster user account.
Additionally, we tried to build a solid foundation of proven packages with good perfor-
mance characteristics. As can be seen in Chapter 4, especially regarding MPI variants,
the best library for an application is a great concern for the performance in general,
while each variant introduces challenges by itself. Among others, GCC 9.3, Charm++,
various MPI implementations, CUDA and HDF5 where provided. On the individuals
Spack version this upstream tree has been configured and other package installations are
able to install upon this base installation.

To make use of this feature the configuration in etc/spack/defaults /upstreams.yaml has
to be set like it can be seen in Listing 3.2. Every dependency lookup or queries like spack
find will try to fulfill their request by using their own Spack instance first. Otherwise
other instances are used in order of appearance in this configuration. For the most part
this worked very well for us. The only down sight we encountered was, that packages
can easily break if an upstream package is removed like it happened to us with several
last-minute MPI variant changes.

upstreams :

scc20-base:
install_tree: /home/users/industry/isc2020/iscst10/spack/opt/spack

Listing 3.2: Spack Chaining

12

O O UL W N+

I I I R N R R e e e o S e W e S S W S S
= W NP OO Uik Wwhh— OO

4 MPI Benchmarks

Author: Johannes Coym

As all of our applications had different requirements for their MPI variant we first did a
large scale benchmark on several aspects of all of the MPI variants we had available.

4.1 MPI Variants

The MPI variants that were tested were the two MPI variants which were provided on
the Aspire cluster of the NSCC, as well as six of our own MPI installations, consisting of
mpich, mvapich2, Intel MPI and three different OpenMPI variants. All of our variants
were installed in Spack using the following install commands.

#!/usr/bin/env bash
set -e

Clone spack repo and checkout SCC20 branch

git clone https://git.wr.informatik.uni-hamburg.de/scc/spack.git
cd spack

git checkout scc20

Activate Spack stack
cd ..
spack/share/spack/setup-env.sh

Install gcc 9.3.0 and add it as a compiler
spack compiler find

spack install gcc@9.3.0+binutils

spack load gcc@9.3.0

spack compiler find

spack install mvapich2 fabrics=mrail

spack install openmpi fabrics=ucx

spack install openmpi fabrics=mxm -~cuda

spack install openmpi@4.0.3 fabrics=ucx ~cuda
spack install intel-mpi@2019.6

spack install mpich netmod=ucx

Listing 4.1: Install all MPI variants with spack

13

4.2 OSU Benchmark

As the benchmark to test our MPI performance we chose the OSU micro-benchmarks
which have several benchmarks testing the performance and latency of MPI solutions.
The micro-benchmarks we tested with all of our MPI variants were latency, bandwidth,
bi-directional bandwidth, multiple bandwidth, multiple message rate, barrier latency,
allreduce latency and allgather latency. Using these benchmarks we then had tests for
multiple MPI operations with different block sizes, so we could choose the best MPI
variant for our applications.

4.3 Results

The first benchmark we take a look at is the bi-directional bandwidth benchmark and
as Figure 4.1 shows, the NSCC preinstalled MPI variants had the lowest bandwidth for
most of the tested block sizes. The best variants for most block sizes were OpenMPI
with UCX fabrics, in both tested OpenMPI versions, 3 and 4. With 8 KiB block sizes
both of these variants had a significant drop in performance, but that was recovered
quickly with 16 KiB. For really large block sizes, especially 4 MiB, all MPI variants had
significant drops in performance, except the two Intel MPI variants as well as mpich,
which all had a pretty consistent speed from 2 MiB to 4 MiB.

—_ 35000 T
% mvapich2 fabrics=mrail
= 30000 | openmpi fabrics=ucx _
- openmpi fabrics=mxm ~cuda
he! | openmpi@4.0.3 fabrics=ucx ~cuda
3 2000 intel-mpi@2019.6
§ mpich netmod=ucx ——
= 20000 - openmpi NSCC ——
5 intel-mpi NSCC —— /
B 15000
o
5
& 10000 [-
o
= 5000 [i
oo
[9p)
o 1
0

64
128
256
512 -

| | | | | | | | | | | |
T 0 O N ¥ 00 O N ¥ 00 VU N T
N & OO OO0 0 O M N < 0N In O
O O O - M N N O - &N In = ™M
— N < 00 O N N —H NN < O IN T
— M O M O N ¥ O O
— N 1N O O
— N <

Size

Figure 4.1: Bi-directional MPI Bandwidth

14

As the following table shows, OpenMPI also has much better latencies for barriers in all
variants except the one preinstalled on the Aspire cluster. The preinstalled MPI variants
were also much slower in the other benchmarks, so for a better overview they won’t be
included in the following diagrams.

MPI variant Barrier Latency in us
mvapich2 fabrics=mrail 1.27
openmpi fabrics=ucx 0.57
openmpi fabrics=mxm ~cuda 0.43
openmpi@4.0.3 fabrics=ucx ~cuda 0.54
intel-mpi@2019.6 2.08
mpich netmod=ucx 1.20
openmpi NSCC 1.85
intel-mpi NSCC 1.69

In Figure 4.2 you can see that the latency during data transfers is pretty similar for all
OpenMPI variants on the one hand and Intel MPI, mpich and mvapich2 on the other
hand. OpenMPI has a significantly better latency consistently for up to 2 MiB blocks,
but like with the bandwidth, in the latency test it is worse than Intel MPI, mpich and
mvapich2 with 4 MiB blocks.

600 T
mvapich2 fabrics=mrail
openmpi fabrics=ucx
500 openmpi fabrics=mxm ~cuda
openmpi@4.0.3 fabrics=ucx ~cuda
Q' 400 intel-mpi@2019.6
= mpich netmod=ucx
Q
c
g 300
©
-
?
o 200 -
100 -
0 | | | | | | | | | | | ! 1 !] | VI | |
— N I 00 O N ¥ 0 OV N T 0 OV N ¥ 0 O N ¥ 00 OV N T
— M O N N 4 N ¥ O OO 00 O M N T CON In O
— N In O O O - M N InN O = &N 1N — ™M
— N 00 O N 1N A N § O N T
— M O M O N ¥ OO O
— N In O O i
— N <
Size

Figure 4.2: MPI Latency

15

The last figure shows the message rate of the MPI variants and two of the OpenMPI
Variants are quite inconsistent with smaller block sizes, but most of the time the message
rate of OpenMPI is significantly better than with the other MPI implementations. Only
for smaller block sizes mpich is the fastest variant, closely followed by OpenMPI with
MXM fabrics.

1.2)(107 T
mvapich2 fabrics=mrail ——
7 openmpi fabrics=ucx ——
1x107 = openmpi fabrics=mxm ~cuda 7
openmpi@4.0.3 fabrics=ucx ~cuda
8x10° intel-mpi@2019.6 _

mpich netmod=ucx ——

OSU MPI Multiple Message Rate [Messages/s]

6x100 |- .
I
— -~
4x106 F .
2x10° .
0 | | | | | | | | | | | | | | = —_— L | | |
~ N < 00 O N ¥ 00 O N ¥ 0 O N « 0 O N ¥ 00 U N T
— M O N N ~ N ¥ O OO 00 O M N < 00O N INn O
< N N O O O = M N 1IN O = N In = ™M
~ N < 00 O N N A N < 0O N ¥
— M O M O N T O O
~— N In © O
— (N <
Size

Figure 4.3: MPI Multiple Message Rate

With all of the benchmarks analyzed there was not one MPI solution which was best for
all cases but this provides a pretty good help to select a fitting MPI variant. Without
specific requirements OpenMPI was a solid option most of the time, but for example
with Tinker-HP we found mpich to be the best option, so these benchmarks are only an
assistance for the selection.

16

5 Tinker-HP

Author: Johannes Coym

Tinker-HP is a tool for long polarizable! molecular dynamics simulations and to po-
larizable Quantum Mechanics(QM)/Molecular Mechanics(MM). It is based on Tinker
but Tinker-HP adds the ability to use with long molecular dynamics simulations. Also,
unlike the original Tinker, Tinker-HP is only CPU-based and optimized to be run on a
great number of nodes and CPU cores.

5.1 Architecture

Compiling Tinker-HP results in five applications, called analyze, bar, dynamic, test-
grad and minimize. The dynamic application is of special interest, as this is the only
one that was used in the competition. The others are used to modify or analyze the grid
or the simulation in general, whereas dynamic is used to run the molecular dynamics
simulation. Using the regular MPI call, a run for the competition could look like the
following: mpirun -np 128 dynamic papain 1000 2.0 1.0 2 300. In this case, the simulation
expects the papain geometry data to be available in papain.xyz, which is a widely used
chemical file format and the simulation setup in papain.key. The simulation itself is
influenced by various parameters and an overview is given in the official tinker guide?.
Additionally, 1000 MD steps, 2 femtoseconds for each step, 1 picosecond between writing
of geometry and NVT for the statistical ensemble are selected, while the simulated
temperature is 300 kelvin.

While we were not allowed to change the command line parameters, it was indeed possible
to change parameters within the key file. It turned out, that as long as the temperature
oscillates at around 300 kelvin the results where valid. Due to time constraints, we were
not able to gain performance improvements at this stage.

5.2 Challenge

For the competition we recieved three different input files which we needed to execute
while minimizing the execution time one step took on average. The first input file was
papain which consists of 160.233 atoms and represents an enzyme present in papaya.
The second input file, protease_dimer, is of a similar size with 168.076 atoms and
represents an enzyme that can split proteins or peptides. The last input file was stmv,

'Property of particles to change their charge in response to an electric field
?https://dasher.wustl.edu/tinker/downloads/tinker-guide.pdf

17

https://dasher.wustl.edu/tinker/downloads/tinker-guide.pdf

which is short for Satellite Tobacco Mosaic Virus, which is a specific virus that worsens
the symptoms of the Tobacco mosaic virus. It is by far the largest of the input files
with 1.066.624 atoms, which set us in front of a small problem. As the higher number of
atoms also uses far more RAM, it was impossible to run stmv as a small scale test on a
single node, we needed at least 2 nodes to run it. Because of the higher size we were also
only required to run 100 steps, opposed to the 1000 steps for the first two input files.

5.3 Installation

For the installation we created our own Spack package which used Intel MKL as the
math library since it is the only directly supported math library by Tinker-HP. We also
installed several versions of Tinker-HP, using several different versions of OpenMPI,
MPICH, mvapich2 and Intel MPI with our package to select the quickest variant. In the
end we selected MPICH as our MPI variant as it provided consistently the best results
of all MPI variants. In the following is the full install script using our Spack package
and GCC 9.3.

18

OO UL W N+

[N R e i el e e i e i
— O © 00O Ui W~ OO

#!/usr/bin/env bash
set -e

Clone spack rTepo and checkout SCC20 branch

git clone https://git.wr.informatik.uni-hamburg.de/scc/spack.git
cd spack

git checkout scc20

Activate Spack stack
cd ..
spack/share/spack/setup-env.sh

Install gcc 9.3.0 and add <t as a compiler
spack compiler find

spack install gcc@9.3.0+binutils

spack load gcc@9.3.0

spack compiler find

Install tinker-hp using mpich
spack install tinker-hp “mpich device=ch4 netmod=ucx

Listing 5.1: Install Tinker-HP with spack

5.4 MPI Performance

In order to select the best performing MPI Implementation we created an automatic
benchmark application which creates various jobs for specific tinker benchmarks. The
very first benchmarks were run on Mistral which uses SLURM as a job scheduler and
therefore various changes had to be made to support the PBS Scheduler 3. The output
of these runs were visualized by creating plots using a small Python application*. An
example output can be seen in Figure 5.1, where the Spack hash of 1k7p5de translates
to the use of MPICH using the ch4 device and netmod UCX.

Shttps://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/
tinker-examples/example/benchmark_dhfr_pbs.sh

‘https://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/
benchmark-visualizer/plot.py

19

https://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/tinker-examples/example/benchmark_dhfr_pbs.sh
https://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/tinker-examples/example/benchmark_dhfr_pbs.sh
https://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/benchmark-visualizer/plot.py
https://git.wr.informatik.uni-hamburg.de/scc/2020/src/branch/master/Tinker-HP/benchmark-visualizer/plot.py

Benchmark Comparison: Ave. Time per step

— 3ww3gaz
k7psde

— tsieay]

— egeuo7w

Nodes: 2, nTasks: 12 Nodes: 2, nTasks: 24 Nodes: 4, nTasks: 12 Nodes: 4, nTasks: 24

Figure 5.1: Tinker-HP performance using different MPI Implementations

In the end, the overhead of running benchmarks for many implementations using several
runs turned out to be of limited use on a cluster with long queue times. The insights
into differences of several MPI implementations were interesting, nevertheless.

5.5 Running

While there were many potential improvements to be made in the simulation setup
we focused on the number of MPI processes, OpenMP threads and the compilation in
general. As we already discussed the changes during compilation in the previous chapter,
only the number of MPI processes and OpenMP threads remain. For general testing of
these parameters we only used the stmv input on 4 nodes worth our MPICH installatiion
which we found worked best. On this ground we then ran the following five different
configurations (process numbers per node):

MPI/OMP Configuration Average time per step
24 procs / 24 threads 10.56s

24 procs / 48 threads 7.99s

12 procs / 12 threads 13.79s

12 procs / 24 threads 13.59s

12 procs / 48 threads 13.73s

20

As the benchmark results show, the variants with 12 MPI processes per node are
significantly slower than the variants with one process per core and with one process per
node OpenMP can make good use of Hyperthreading which can also reduce the runtime
significantly. For the other input files we didn’t even consider the 12 process variants
but found out that OpenMP only has a positive effect on stmv, which is why we ran the
other two input files without OpenMP.

Input + MPI/OMP Configuration Average time per step
protease_ dimer 24 procs / 24 threads 1.2464s
protease_ dimer 24 procs / 48 threads | 1.2531s
papain 24 procs / 24 threads 1.1037s
papain 24 procs / 48 threads 1.1312s

5.6 Visualization

For the visualization we were only required to visualize papain and protease_dimer,
but the runs which we were supposed to visualize should run with 10000 steps for higher
accuracy. This run then created .arc files which were used as an input in VMD to visualize
both proteins and were then posted on our twitter page® as a short video showing all
sides of the protein.

In the following figures you can see single still images of the short videos.

Figure 5.2: Visualization of papain Figure 5.3: Visualization of protease dimer

Shttps://twitter.com/UHH_ISC_SCC/status/1272519064624259079

21

https://twitter.com/UHH_ISC_SCC/status/1272519064624259079

5.7 Benchmark

As we already mentioned we used the same binary for all of the three inputs in our
final runs, but with stmv we did use OpenMP, which we did not use with papain
and protease_dimer. For stmv we also improved our time from the tests to 6.9915
seconds per step. We initially tested stmv with 1000 steps, but our time improved as
we only ran the 100 steps that were required for stmv in our final run. For papain and
protease_dimer the before mentioned 1.1037 seconds per step and 1.2464 seconds per
step were also the best runs which we submitted in the end.

5.8 Recapitulation

Comparing our results with the performance of the winning team we can see room for
improvements. We mainly relied on the benchmarks of different MPI implementations
whereas changes to the parameters of the actual models could lead to more improvements.
Those experiments probably could have been made early on on Mistral and those insights
might be of more use on a different system then the very specific insights of MPI
implementations. In the end we at least got a point for innovation.

22

6 Charm++

Author: Ruben Felgenhauer & Feliv Maurer € Yannik Konneker

The Charm++ project was initiated and is to this day actively maintained by researchers
of the HPC research group of the University of Ilinois. While the first official release of
Charm++ dates back to 1993, developement has been conducted since the late 1980’s.
It gives an alternative approach to managing computing units (i.e. processes) of parallel
C++ programs by using a dynamic way of allocating processing ressources at runtime.
To achieve this, Charm-++ introduces the concept of a “chare” to generalize the idea of
processes, omitting the limitation of allocating each computing unit to one exact unit of
hardware (i.e node).

Amongst other key features, we will give a thorough overview of chares and how they
interact with one another in Section 6.1.

Charm++ utilizes a custom precompiler to generate compilable C++ code. Much like
for example MPI’s mpirun, Charm-++ executables are run via a framework-specific
charmrun binary. Section 6.3 and Section 6.4 cover these two topics.

Additional information on what our workflow with Charm++ looked like can be found
in Chapter 7 and Chapter 8.

6.1 Key Features

As mentioned before the Charm++ software stack has been under development for a
significant amount of time. Therefore it should not come as a surprise it encompasses a
rich variety of features.

To understand the nature of Charm++ and what makes it different to alternative
multi-process parallelization frameworks (e.g. MPI), we will now cover some of its main
concepts. A more thorough description and guidance on usage for the following concepts
can also be found at the official Charm++ documentation. [9]

6.1.1 Chares

The Charm++ parallelization paradigm operates at a conceptually high level. You
can see this high-level approach when looking at the main object used in Charm++
applications: chares.

At the most basic level, a chare is a C++ object, which represents a certain state via
member variables and handles communication to other chares. Chares are dynamically
distributed and managed at runtime via Charm++’s load balancer system.

This means that, while from the programmer’s perspective chares are somewhat similar

23

to processes or threads, they are much more flexible. Unlike the latter two, chares can
be moved to other computing units at will using built in or custom load balancers and
are not bound to certain memory locations at initialization.

Usually you want to have more chares than logical processing resources. This enables
the load balancer to move chares from highly utilized to lesser utilized nodes and thus
get a better workload distribution overall. This process is called overcommitment. How
these chare objects are distributed and how they communicate with each other on a
lower level, e.g. via MPI or POSIX-threads, is customizable. We will now describe how
Charm+-+’s API for inter-chare communication works.

6.1.2 Remote Method Invocation

To understand how chares communicate with each other, we will first discuss entry
methods. Entry methods are to chares what member functions are to objects in Object
Oriented Programming: They define an interface that can be accessed from other chares.
To initialize chare objects at least one constructor entry method must be defined. Calling
an entry method on another chare invokes communication by sending a message to
the target chare. Since Charm-++ supports asynchronous communication only, entry
methods must return immediately upon invocation and thus cannot have actual return
values. This means that in order to get return values you need to send a callback from
the originally targeted chare to you.

Figure 6.1 is a visualization of what such a process can look like.

Chare D T
C hare C[0]| ® | vold entryMethod_2iMyMessage *msgi
hare C[2] : delete msg;
' hare C[1 Int mylnt = 4;
E' — float myFloat = 3.14f;
Chara & : Aentryhethod _3(myint, iy Float);
vold entryMethed _1() |
doSomeWork]);

MyMessage meg = new MyMessage(l;
B.entryMethod_2(msg); /' retums Immediately
dohoreWor k)

hare C[5
Ehare C[3] _ @'
Chare E
Ehare C4 _

Figure 6.1: Charm++ remote message invocation visualized [10]

1
vioid entryMethod_3int varl, float var2) [...]

As mentioned earlier, a chare’s location in memory can change across nodes throughout
execution. This is why in practice, you usually create local proxy objects (provided by
Charm++) that keep track of their corresponding chare’s location at all times. This
creates an easier interface to work with for the programmer, as you can abstract from

24

chare objects being stored in a certain location. Figure 6.2 shows the global object space
and how the objects or chares are distributed on multiple nodes.

Global Object Space

Chare A| =

Chare B

| |

— e —— — m— w—

Proxyfor) _ _ _ Proxyfor) _ _ _
\Ch_are_A) |Proxy for) \Ch_are_ A) |Proxy for)
\Chare C) \Chare E)
[-—— PP
Code local to this processor Code local to this processor
interacts with the proxy objects. interacts with the proxy objects.
Processor 0 Processor 1

Physical Hardware

Figure 6.2: Charm++ Proxies visualized [10]

6.1.3 Chare Arrays

Because chares are C++ objects, they can be treated as such. This makes it possible to
store them in datastructures, such as special Charm+-+ ones that require declaration in
the respective .ci file.

Most commonly used are chare arrays, which interface similar to data structures of
the C++ Standard Template Library, i.e. define operator[]. While being seamlessly
integratable into iterative C++ code, they are in practice often not coherently stored on
the same computing unit.

This is due to the fact that objects of chare collections get spread across all available
resources just like individual chares would. While this should not negatively impact
performance, you can instead use either of the following two to force a certain pattern of
distribution upon the Charm-++ runtime system:

o Chare Groups: Bijective mapping of chare objects to physical processors.

o Chare NodeGroups: Bijective mapping of chare objects to physical computing
nodes.

25

6.1.4 Reductions

A central concept in distributed computation are reductions, the operation to conclude a
solution out of multiple different processing units. Charm-+-+ has it’s own asynchronous
implementation of reductions. This implementation consist of three parts: a method
in a chare that contributes data to the reduction, a function that calculates or reduces
the data, and lastly a receiving method that receives the reduced data. Reductions
are calculated multiple times, first locally on the same process, then on the same node,
then with its neighbours and so on. Once every chare has contributed it’s data the final
reduction result gets sent to the receiving chare.

6.1.5 Pack/Unpack

The Pack/Unpack (PUP) framework is used to serialize objects into a generic way. This
enables sending and unpacking/rebuilding the object on another processor. This is
essential for load balancing, fault tolerance and makes checkpoint creation and restarting
easier.

6.1.6 Load Balancer

One of Charm++'s biggest strengths are its dynamic load balancers that can move
chares between different nodes or processing units to help utilize resources better. Load
balancing can happen at creation time or during runtime. Here are a few examples of
creation time load balancers:

o random: randomly assigns chares to processing units
e mneighbor: chares can be exchanged only between neighbours

o spray: reduces total average load and spreads chares to lesser utilized processing
units

o workstealing: idle processing units steal random chares

Runtime load balancers can be categorized into centralized, distributed and hierarchical
balancers. Centralized load balancers collect the workload of all processing units and
calculate if and where to move chares. Distributed load balancers work on a per node
basis, only exchanging chares with neighbours. Hierarchical load balancers balance
between these hierarchies: logical processing unit, physical processing unit or node, node
groups and root. Balancing only happens on each hierarchy.

Load balancing can happen at synchronized states, periodically or manually. It is possible
to write custom load balancers.

26

6.1.7 Structured Dagger

Because the Charm++ scheduler can interrupt chares it is possible that messages for a
given chare are not calculated one after another but in a random order. This behavior
can lead to inconsistent data. Structured Dagger (SDAG) introduces the “serial” keyword
which is on a conceptually level similar to the “atomic” keyword from C++. If you
enclose code within a “serial”, the code cannot be interrupted by the Charm++ scheduler.
With the “when” keyword it is possible to store messages and wait until it is allowed for
the messages to be calculated.

6.1.8 Adaptive MPI

Another feature of Charm++ is Adaptive MPI (AMPI) [22]: An implementation of the
MPI standard that uses Charm-++ worker threads instead of MPI processes. Therefore,
AMPI can not only be seen as a replacement to other MPI providers like MPICH,
MVAPICH2 or OpenMPI, but also rather as a competitor to hybrid approaches that
use both MPI and OpenMP [31], or using MPI-3 Shared Memory [5]. Such hybrid
approaches are popular in environment in which the data that is used by different ranks
is not disjoint and overall too large to fit into a node’s main memory. A performance
evaluation of AMPI can be found in a paper from Huang et al. in 2006 [23].

Note that an in-depth comparison between AMPI and its alternative remains to be done
and that we did not use AMPI during the SCC. Also note that this is strictly separated
from using MPI as a Charm++ backend, which is described in Section 6.2.

6.1.9 Complilation Process of Charm++ executables

As is usual for C++ Programs, a separation of header and implementation files is advised
when working with Charm++. This, however, needs to be supplemented by a .ci
interface file which specifies Charm++ internals, i.e. contains declarations and definition
of chares and chare data structures.

This .ci file uses a syntax similar to C-style and must contain include directives for all
headers your program wishes to use. This is due to the fact that solely this one .ci file
is fed to the charmc compiler.

The complete compilation process of a Charm++ program is depicted in Figure 6.3.

27

.decLh' ’
temp. . ,
ﬁ,ep #include “xxx.decl.h’ #include "oox.h”
. #include other header files #include other header files
) 'Cfl charmc h charmc bO
interface (charmi) C (C++ Compiler) object
= . Lor.c file
header file source filep p
.defh
temp. .
file ' #include “xxx.def.h”

Figure 6.3: Compilation process of a Charm++ program visualized [11]

As you can see, charmc can be divided into two parts: First, a precompiler generates
temporary header files written in standard C+4++-. It then uses its second mode of opera-
tion (i.e as a C++ compiler of choice) to compile the precompiled C++ code.

6.2 Dependencies

Charm++ can utilize different backends: The default is the built-in netlrts which
uses ssh, but it can also use MPI or UCX among others (note that e.g. MPI can also
use UCX as a backend). Using MPI as a backend will modify slightly how Charm++
applications are started which is further elaborated in Section 6.4.

6.3 Building Charm++

Charm-++ can be installed with Spack as shown in Listing 6.1. As already mentioned
in Section 6.2, netlrts is the default backend and therefore this argument can also be
omitted. Alternatively, one can specify the MPI backend with backend=mpi ~provider,
where provider is an MPI implementation, e.g. mpich. A performance evaluation of
different MPI providers can be found in Chapter 4. In our final submissions for both the
ChaNGa Challenge and the Coding Challenge, we exclusively used the MPI backend.
The exact installation directives can be found in Section 7.3.1 for the Coding Challenge,
and in Section 8.2.8 for the ChaNGa Challenge, where it has been used as a dependency.

1 H $ spack install charmpp backend=netlrts
Listing 6.1: Installing Charm++ with the netlrts backend

6.4 Running Charm++

Charm++ applications can be started with the charmrun binary which is comparable
to the mpiexec command in MPI environments. Using a standard netlrts installation,

28

1
2

the general form to start an application can be found in Listing 6.2.

$ spack load charmpp
$ charmrun [arguments] executable [arguments]

Listing 6.2: Starting a Charm++ application using the netlrts backend

The first list of arguments is used by charmrun, while the second list of arguments is
passed to the specified executable. Charm++ arguments have the form ++argument or
++argument value and can be found in the documentation?.

Notable examples are

++pN, where N is an integer, which specifies the exact number of worker threads,

++ppn N, where N is an integer, which specifies the number of worker threads per
node,

++mpiexec and ++mpiexec-no-n which allow using mpiexec,

++remote-shell which allows starting applications over a specified command
which will be executed in a remote shell,

++nodelist file which specifies a file that describes groups of nodes (see the
documentation?) to be used for the job. The parameter ++nodegroup can be used
to select a named group of nodes from this file and the parameter ++numHosts can
be used to specify how many nodes to assign.

If charmrun is used together with mpiexec, it will accept all MPI arguments and directly
pass it to the mpiexec command. This includes arguments like -ppn and -n, although
the latter should be set by charmrun automatically if ++mpiexec is used instead of
++mpiexec-no-n. On a system that uses SLURM as a batch scheduling system, this
should distribute the MPI processes without any further effort. However, on the NSCC
Aspire 1 cluster which uses PBS, this proved to be challenging.

'https://charm.readthedocs.io/en/latest/charm++/manual . html#running-charm-programs
’https://charm.readthedocs.io/en/latest/charm++/manual.html#nodelist-file

29

https://charm.readthedocs.io/en/latest/charm++/manual.html#running-charm-programs
https://charm.readthedocs.io/en/latest/charm++/manual.html#nodelist-file

7 Coding Challenge

Author: Felix Maurer € Yannik Konneker

In this year’s Coding Challenge we had to program a function that simulates particles
moving in a predefined manner within a two-dimensional space (bounding box). The
bounding box is divided into a grid of cells. The particles will be moving around in the
bounding box with <x,y> double precision floating point coordinates and belong to one
of the cells based on their coordinates. In each cell, the particles are stored as a vector.
The size of each cell is 1.0 x 1.0, making the entire bounding box have a size of n - n,
where n is the number of cells per dimension. We had a simulation size of 35 x 35 cells
and 10.000 iterations.

The entire simulation is written using the Charm++ parallel programming model
as described in Chapter 6 and uses the power of the adaptive Charm+-+ runtime
system to parallelize, automatically overlap computation and communication and balance
imbalanced load. The assignment was to write a serial - non-parallel - part of the program
that moves each particle and then based on the movement of each particle, sends it to
an adjacent cell. A lot of the program was already prewritten like the parallelization of
the program and the simulation steps. In addition there was a bonus question, in which
we had to return the cells with maximum and minimum number of particles and the
values of the maximum and minimum particles across the bounding box using Charm++
custom reduction functions.

7.1 Program Architecture

The program sequence is rather simple. The main function reads all parameters, creates
the given number of cells as chares, lets the cells generate particles and then starts the
calculation. If the termination criteria is met, all cells compare their output to a given
pre-calculated output and reduce their data with a Charm++ reduction function to the
main class. Available parameters are

o the grid size,

the number of particles per cell,

the number of iterations,

the per cell particle ratio of red, green and blue particles in their respective areas
(top, bottom, diagonal, center),

a factor for reducing the particles’ velocity,

30

« a boolean to enable log output,
o frequency of the automatic load balancer.

The calculation occurs iteratively in every cell individually. First all particle positions
get updated, then particles get send to and received from neighbouring cells. Every fifth
iteration a reduction happens, printing out how many particles have been moved. At the
end of the iteration the cells synchronize to enable the automatic load balancing.

We will now focus on the five most importan files the program consists of.

Methods inside the main.cpp file read all parameters, generate cells and start the
computation. In the end it collects all data and prints out the results.

cell.cpp contains definitions of its own dimensions and a vector of particles. Ev-
ery cell has a size of 1.0 x 1.0 and a starting and an end point for both dimensions.
The cell at index [3][2] for example only contains particles that have their x coordinate
between 3.0 and 4.0 and their y coordinate between 2.0 and 3.0. There are also methods
for

o generating particles with given parameters,

« updating the position of a given particle,

o sendinh and receiving particles,

o calculating the number of particles in a cell,

« and verification of the results after finishing the calculations.

The file particle.h contains definitions for particles. Every particle has an ID to make
comparing results easy. They also have x and y coordinates and a string containing the
color used for visual output.

The particleSimulation.ci file contains all global variables, entry methods for com-
munication and the computating loop.

The exercise.cpp was almost empty because as part of the main task we were sup-
posed to write a method that sorts particles to their respective new cell after moving. For
the bonus question we had to write three new methods. The first method is named con-
tributeToReduction() in which the data is being packaged in a Charm++ reduction
message and then send to then main proxy. The second method is a Charm++ reduction
method named calculateMaxMin(int nMsg, CkReductionMsg **msgs) that iterates
through all received reduction messages and calculates the cells with the biggest and
smallest number of particles inside them. The third method belongs to the main chare
and receives the finished reduction message, “unpacks” it and then prints out the result.

31

00 O Utk W N

DO DD = = = s s e e e e
— O © 00O Ul W~ OO

22
23
24
25

7.2 Implementation

7.2.1 Main Exercise

The gist of our approach is that the particle’s position gets updated and then moved
into one of eight vectors corresponding to one of the eight neighbouring cells. After that
the particles are sent away to their new cell using a predefined method.

#include <string>

#include <limits>
using namespace std;

#include

#include

/*readonly*/ extern CProxy_Main mainProxy;
/*readonly*/ extern CProxy_Cell cellProxy;
/*readonly*/ extern int particlesPerCell;
/*readonly*/ extern int numCellsPerDim;
/*readonly*/ extern int iterations;
/*readonly*/ extern int 1bFreq;
/*readonly*/ extern int reductionFreq;
/*readonly*/ extern double boxMax;
/*readonly*/ extern double boxMin;
/*readonly*/ extern double cellDim;

#include
#include

//change the position of the particles and send messages to mneighbors
— with their <ncoming particles

void Cell::updateParticles(int iter) {
// movedirection bits: 0 0 0 0 left right up down
std::vector<Particle> outgoing[3][3];
char movedirection = 0x0;

Listing 7.1: Includes and definitions

In cell.cpp the particles are stored inside a vector called particles. First we defined a
3 x 3 vector “outgoing” to map the neighbours in the two dimensional cell chare-array.
Each index contains a particle vector because the actual number of particles that leave
the current cells coordinates is dynamic. The current cell would be in the middle of the
outgoing array but since no particles have to move, the particles won’t be put into the
middle vector. The graphics in Figure 7.1 visualize the movement of the particles. In
line 25 a char “movedirection” is defined that stores where the particle is supposed to
go. For that we designed a four bit pattern where if the first bit is a one the particle
will move to one of the left neighbouring cells, if the second bit is a one the particle will
move to one of the right neighbouring cells. Bit three and four describe the same pattern
just for up and down movement. For example 1001 would mean that the particle will be
sent to the lower left neighbour. The pattern 1100 would be impossible since no particle
can move the the left and the right at the same time. This redundancy enabled this

32

18
19
20
21
22
23
24
25
26
27
28

29

T [e][e] | [e][1] | [@][2]
|

-1 cell +——» [1][@] cell [1][2]
|
l [2]1[e] | [2][2] | [2][2]

(a) Visualisation of the particles mov-(b) Visualisation of the outgoing array

ing out of the current cells bounds

Figure 7.1: Visualisation of the particle movement from a cell’s perspective

simplistic system.

for (vector<Particle>::
— particle
perturb (&(*particle));

// check for cell changing
if (particle->x < startX) {
movedirection |= 0b1000;

} else if (particle->x > endX) {

movedirection |= 0b0100;

}

if (particle->y < startY) {
movedirection |= 0b0010;

} else if (particle->y > endY) {

movedirection |= 0b0001;

}

// fiz z/y values that would be out of boundaries

— of cells)
if (particle->x < 0)

particle->x += numCellsPerDim;

if (particle->x > numCellsPerDim * cellDim)
particle->x -= numCellsPerDim*cellDim;

if (particle->y < 0)

particle->y += numCellsPerDim;

if (particle->y > numCellsPerDim * cellDim)
particle->y -= numCellsPerDim*cellDim;

switch(movedirection) {
case 0b00O1:
— down

// move particle

outgoing [1] [2] . push_back (*particle);

33

iterator particle = particles.begin();
I= particles.end();) {

(0.0 < z/y < #

30
31
32
33
34
35
36

37
38
39
40

41
42
43
44

45
46
47
48

49
50
51
52

53
54
55
56

o7
o8
59
60
61
62
63
64
65
66

particles.erase(particle);
break;

case 0b0010: // move particle up
outgoing [1] [0] . push_back (*particle);
particles.erase(particle);
break;

case 0b0100: // move particle
— right
outgoing [2] [1] . push_back (xparticle);
particles.erase(particle);
break;

case 0b0101: // move particle
— rTight-down
outgoing [2] [2] . push_back (xparticle);
particles.erase(particle);
break;

case 0b0110: // move particle
— Tight -up
outgoing [2] [0] . push_back (xparticle);
particles.erase(particle);
break;

case 0b1000: // move particle
< left
outgoing [0] [1] . push_back (*particle);
particles.erase(particle);
break;

case 0b1001: // move particle
— left-douwn
outgoing [0] [2] . push_back (xparticle);
particles.erase(particle);
break;

case 0b1010: // move particle
— left-up
outgoing [0] [0] . push_back (*particle);
particles.erase(particle);
break;

default:
particle++;
break;

//IMPOSSIBLE 0b0011 0b0111 0b1011 0b1100 0b1101 0b1111

}

movedirection = 0x0;

Listing 7.2: For-Loop

In Listing 7.2 you can see the loop that iterates over all particle’s within the current cell.
First the particles position gets updated by a predefined method called “perturb”. Next
we decide if the particle is still within the current cells boundaries or if the particle has
to be sent away. To determine in which cell the particle will be in the next iteration
we simply compare the x and y values of the particle with the values of the cell and, if

34

N O U W N

10
11

T W N

~N o

necessary, set the bit pattern to the corresponding direction. In the lines 18 to 25 we
fix the coordinates should the particle go out of bounds of the cell array and, because
it is a bounding box, move the particle to the opposite side of the array. Next up is a
switch removing the current particle from the cell and putting it into the correct outgoing
vector. Nothing happens if the particle stays within the current cell. Afterwards the
“movedirection” gets reset to 0 to be ready for the next particle.

for(int i = 0; i < 9; i++) {
int x = (i >= 3) ?2 i % 3 : 1i;
int y = i / 3;
int newX = thisIndex.x + numCellsPerDim + x - 1;
int newY = thisIndex.y + numCellsPerDim + y - 1;
if(x == 1 & y == 1) continue;
sendParticles ((newX >= numCellsPerDim) 7 newX J numCellsPerDim
— newX,
(newY >= numCellsPerDim) ? newY % numCellsPerDim
— newyY,
iter,
outgoing[x][yl);
}

Listing 7.3: Sending particles

After every particle has been updated and put into the respective outgoing vector another
for-loop sends every particle to it’s respective new cell. The for-loop iterates “i” from
zero to eight. First the x and y of the outgoing array are calculated from the iterator “i”.
If x and y point to the middle ([1][1]) of the outgoing array the sending is skipped since
the vector is empty. Next up the new cell’s coordinate is calculated by adding x - 1 to
the current cell’s x-coordinate. It is x-1 because if x is 0 it becomes -1 therefore making
the targets x-coordinate lower by one. Same goes for the y-coordinate. Because the array
is a bounding box we need to add or subtract the maximum value that a coordinate can
have. To streamline this process we always add the maximum coordinate and check in
the “sendParticles()” if it’s too big, if it is, we use the module operator to subtract the
maximum coordinate.

7.2.2 Bonus Exercise

This chapter covers reductions as described in Section 6.1.4.
extern CkReduction::reducerType minMaxType;
void Cell::contributeToReduction() {

int datal[] = {thisIndex.x, thisIndex.y, (int) particles.size()};
CkCallback

< cbMinMax (CkIndex_Main::receiveMinMaxReductionData (NULL) ,mainProxy) ;

contribute (3*sizeof (int), data, minMaxType, cbMinMax);

Listing 7.4: Reduction contribution

35

0O Ui Wi+

el e e e e e e
O ~J O Ul W+~ O©

—
Ne)

O © 00O Uk Wi

—_

The first method we had to define is a contribution method for a Charm++ reduction.
This method gives its data to the custom reduction. First we define an integer array
containing the cells coordinates and the number of particles in it. Next we define
a CkCallback named “cbMinMax” which stores the method that the reducing chare
executes and the address of the reducing chare. In the last step we contribute the size of
the input, the input, a pointer to the reduction function and the CkCallback.

int outdatal[]l] = {0, 0, std::numeric_limits<int>::max(), 0, 0, O0};

CkReductionMsg *calculateMaxMin(int nMsg, CkReductionMsg **msgs){
int *data;
for(int i = 0; i < nMsg; i++) {
data = (int *) msgs[i]->getData();
if (data[2] < outdatal[2]){
outdata [0] = datal[0];
outdata [1] datal[1];
outdata [2] data[2];

}

if (data[2] > outdatal[5]){
outdata [3] = datal[0];
outdata [4] datal[1];
outdata [5] data[2];

}
}
return CkReductionMsg::buildNew (6*sizeof (int), outdata);

Listing 7.5: Reduction Method

This is the reduction method which takes the number of contributions or reduction
messages received and an array of reduction messages and returns a reductions message
itself. The reduction process is rather simple, we simply iterate over every data input
and store the biggest and smallest amount of particles in an array. The array’s data is
described like this: {x of lowest, y of lowest, lowest particle amount, x of highest, y of
highest, highest particle amount}. We chose the maximum integer value for the lowest
particle amount to ensure that in comparison every amount of particles is lower. After
comparing the particle amounts a new reduction message is sent containing the reduced
values.
void Main::receiveMinMaxReductionData (CkReductionMsg *data) {

int *output = (int *) data->getData();

minCellX = output [0];

minCellY = output[1];

minParticles = output [2];

maxCellX = output[3];

maxCellY = output [4];
maxParticles = output [5];

CmiPrintf (
, maxParticles, maxCellX, maxCellY);

36

11 ||

12
13

CmiPrintf (
, minParticles, minCellX, minCellY);
readyToOutput () ;

}
Listing 7.6: Receive reduction

Once all chares contributed to the reduction, this method receives the result, maps the
array indices to the predefined variables and prints them out.

7.2.3 Difficulties and Optimization Ideas

One of the main goals of all tasks at the Student Cluster Competition is to be time
efficient. In case of the Coding Challenge this means optimizing the source code itself,
which is what we did.

Here is what we tried. Of course, some ideas came out more successful than others.

Using "%’ (modulo) as little as possible

During our performance analysis, we came to the conclusion that the rather expensive
operation of modulation can take up a significant amount of time. We thus reduced the
usage of the C-Style '%’-operator, which accounted for a notable performance gain.

std::cos is a limiting factor

You might have wondered what the ominous "perturb’ function (called in the beginning
of Cell: :updateParticle()) is doing. It basically uses expensive cosine operations to
stretch the program’s runtime.

This is why we planned to replace all usages of std: :cos by a custom function which
reads equally accurate cosine values from a precalculated table.

This endeavor failed because of the high precision the program needs to stay congruent
to its control values. Rough estimates concluded that we would require at least 600 GB
of memory filled with precalculated cosine values, which would almost certainly have
meant a loss of performance.

Opting away from std::vector

One big problem which prevented us from using thread-parallel frameworks like OpenMP
to further boost the simulation’s performance was the fact that the code handed to us
uses predominantly std: :vectors to store data. This data structure is not thread safe.
We came to the conclusion that rewriting the entire program to use a thread safe
alternative would not be worth the effort.

37

Using Intel C Compiler

We tried getting Charm++ compile with the ICC but unfortunatly a few libraries were
out of date and could not be compiled in a timely manner.

Trying different load balancers

Because the program didn’t run efficiently enough to finish we didn’t get to try different
load balancers.

7.3 Application

7.3.1 Building Options

As for all applications that were part of this year’s Student Cluster Competition, we
used spack as our package manager of choice for a structured apporach of comparing
different multiple different implementations of compilers and software dependencies in
the Coding Challenge.

Spack allows for an easy side-by-side installation of mutliple instances of the same package
with varying build parameters, which further simplified the aforementioned comparison.

For example, the shell command
spack install charmpp backend=mpi ~“openmpi@3.1.5\%gcc@9.3.0

creates a new unique installation of Charm++, which uses a specific MPI instance
as their communications backbone: OpenMPI 3.1.5 compiled using GCC 9.3.0.

Overall we tried out:
o OpenMPI, MPICH and MVAPICH
« GCC (9.3.0, 4.7.0, 7.4.0)
o with/without MXM

7.3.2 Execution Options

The job scheduler in use at the Aspire HPC cluster is PBS.

Much like other scheduling systems, PBS lets you specify the exact resources (nodes,
cores, time) you wish to utilize for running your job.

In addition to that, it is neccessary to give an upper bound on the estimated runtime on
your program, i.e. once this so-called “walltime” is reached, your job is terminated.

This proved to be fatal to measuring actual times for a full execution of the testbench

38

0 3 O Ul = W N

RN RN NN /= e s
Tl W N O OO0 Ui WwWwhh — OO

at hand using our implementation, as allocating such quantities of time (see Section 7.5)
would lead to being queued for inacceptable timespans.

We thus had to either find optimizations that would lead to significant performance
increases (factor 200 would have been sufficient) or accept what we could get and see
how far that would take us. While unfortunately not succeeding at the former, you can
find results of the latter pursuit below.

7.3.3 Job-Script
#1/bin/bash

#PBS —N CC _muvapich_2x24cpu_bench
#PBS —q normal

#PBS —1 select=2:ncpus=24:mpiprocs=12
#PBS —1 walltime=1:00:00

#PBS —P 50000010

set UCX High Bandwidth device
#export UCX _NET DEVICES=mlx5 0:1

ENV SETUP
spack/share/spack/setup—env.sh

spack load gcc@9.3.0

spack compiler find

spack load /bg3sjge

spack load /uTsey73

#go to cc dir
cd CC_MVAPICH

#execulte cc
make clean
make testbench > CC_ mvapich 2x24cpu_bench.out

Listing 7.7: PBS jobscript executing the Coding Challenge’s testbench

This is what the average job script we used looked like.

In lines 3 to 6, you can find macros that are interpreted by PBS to allocate ressources
accordingly. In this case, we used two nodes running 12 MPI processes each, meaning a
total number of 24 CPUs are requested.

In the “ENV SETUP” section of the script, we utilized the spack package manager to

39

make sure the right compiler version and the correct installations of MVAPICH and
CHARM++ are being loaded: The two hashes correspond to specific spack installations.

7.4 Results

There were two given modes of execution for this year’s Coding Challenge: test and
testbench.

As the first one of these two does not judge efficiency given that it runs for merely a
few seconds, it was (as the name suggests) mainly used as a tool to deliver a proof of
concept of your implementation.

Our solutions to both main and bonus exercise behave as expected during this test
scenario.

Testbench gives a functionally identical, albeit significantly larger simulation than test.
While not encountering any errors during execution of this performance benchmark, it
failed by timing out in every attempt regardless of the MPI implementation we were
using.

We thus conclude our implementation to be correct but too imperformant to be a
contender of winning this year’s Coding Challenge.

7.5 Performance Analysis

Because of the execution time limit on NSCC the simulation always got interrupted in
the 55th iteration. Out of 10.000 that is . We tried executing our code on Mistral and
used about 1.700 cores and still only managed to get through 1% of all iterations before
timing out after eight hours.

40

8 ChaNGa

Author: Ruben Felgenhauer

8.1 Background

ChaNGa (Charm N-body GrAvity solver)! is a collisionless n-body cosmology simulation
application which uses the Charm++ framework which is already described in detail in
Chapter 6. “It can perform cosmological simulations with periodic boundary conditions
in comoving coordinates or simulations of isolated stellar systems. It also can include
hydrodynamics using the Smooth Particle Hydrodynamics (SPH) technique. It uses a
Barnes-Hut tree to calculate gravity, with hexadecapole expansion of nodes and Ewald
summation for periodic forces. Timestepping is done with a leapfrog integrator with
individual timesteps for each particle” [8]. The Barnes-Hut algorithm is further explained
in Section 8.2.1.

ChaNGa has first been mentioned in a paper from Jetley et al. in 2008 [25], where it was
described as “recently released”; while the first commit from ChaNGa’s git repository on
GitHub? has been created in 2002.

In their paper, Jetley et al. state, that “[cJosmological simulators are an important
component in the study of the formation of galaxies and large scale structures, and can
help answer many important questions about the universe”. Consequentially, ChaNGa’s
development was initiated due to the lack of a cosmological simulation that retains
good scalability even on systems with thousands of processors. The developers are an
“interdisciplinary group led by Tom Quinn [which] includes faculty and students from
the departments of Astronomy and Computer Science and Engineering at the University
of Washington” [36] and calls itself the “N-Body Shop”.

Furthermore, several techniques are used to improve performance: The overlap between

computation and communication is maximized so that communication tasks don’t have
to wait for pending communication, and “novel load balancing schemes” are used.

8.2 Architecture

Like the Charm++ framework, ChaNGa is written in C++-.

lhttp://faculty.washington.edu/trq/hpcc/tools/changa.html
2https://github.com/N-BodyShop/changa/

41

http://faculty.washington.edu/trq/hpcc/tools/changa.html
https://github.com/N-BodyShop/changa/

8.2.1 Barnes-Hut Algorithm

The Barnes-Hut algorithm is an approximation method for n-body simulations which
was proposed by Josh Barnes and Piet Hut in 1986 [4]. Its main advantage is its low
computational complexity of O(n log(n)) as opposed to traditional methods which
calculate the total force that acts on each of the n particles by summing over the forces
that are induced by all other n — 1 particles

where the individual forces may be

- T — T
Fij =T mim; ———
175 = 75

in a simulation that only considers gravity, where I' is the gravitational constant, m; is
the mass and 7 is the position of the i-th particle, yielding a computational complexity

of

n(n —1)

5 c O(n?).

The factor of % arises from Newton’s third law of motion:

—

Fij = —Fji.

The algorithm is especially interesting in the field of Astrophysics, where the structure
of the simulated objects is far from homogeneous, but rather has a hierarchical nature:
Stars (or solar systems) form galaxies, which form galaxy clusters, which then again form
superclusters. Inside a galaxy cluster, the gravitational force between two galaxies might
be noticeable, even if they have a large distance between them, but the force between
two stars in those separate galaxies will be negligible in comparison. Likewise, the
gravitational force of a distant galaxy on a star might be in the same order of magnitude
as the influence from a star in the same galaxy. Therefore, when simulating the motion
of a single star, one has to incorporate the effects of all nearby stars directly, while all
the stars of a distant galaxy can be regarded as one object; they can get reduced to the
galaxy’s mass and its center of mass.

This approximation can only done if the ratio
0=—
,

between the diameter d and the distance r of a group as seen from a particle is small,
which is called the Multipole-Acceptance-Criterion. This is guaranteed by partitioning
the three-dimensional space into octants until every sector has at most one element

42

and then organizing this structure in a tree, a so-called “Octree”, where every leaf-node
represents a particle, and every inner node saves the accumulated mass and center of
mass of its children. This is demonstrated in Figure 8.1 for the two-dimensional case.

Calculating the force on each of the n particles can be done by traversing this tree, which
has a depth of log(n) while summing up the gravitational forces, which finally yields the
computational complexity of O(n log(n)).

(a) (b) (c)

Figure 8.1: Example of 2D Barnes-Hut tree (quad tree). (a) shows a particle distribution
that resembles two neighbouring galaxies [12]. (b) shows the complete tree [13].
(c) shows only the cells that are considered for the force on a particle in the
origin [14].

8.2.2 Smooth Particle Hydrodynamics?
8.2.3 Comoving Coordinates?

8.2.4 Octree?
8.2.5 Ewald Summation?
8.2.6 Leapfrog Integrator?

8.2.7 Dependencies

ChaNGa depends on Charm++ which has to be installed with ChaNGa set as its
build-target as shown in Section 8.2.8. Furthermore, as has already been described in
Section 6.2, Charm++ can utilise different backends: For ChaNGa, we only considered
the default netlrts backend and the MPI backend. Finally, ChaNGa can also be used
with CUDA. To ease the use of different configurations a new Spack package has been
created which can be found in the official branch?®.

Shttps://github.com/Julius-Plehn/spack/blob/develop/var/spack/repos/builtin/
packages/changa/package.py

43

https://github.com/Julius-Plehn/spack/blob/develop/var/spack/repos/builtin/packages/changa/package.py
https://github.com/Julius-Plehn/spack/blob/develop/var/spack/repos/builtin/packages/changa/package.py

CO J O UL W N+

RN N DN DNDN == s e e e s s
DU WD O OO Uk W~ OoOo

8.2.8 Building

As you can see in Listing 8.1, we installed ChaNGa with Spack and used the MPI
backend of Charm++ and OpenMPI with UCX as a backend. We did not use the
netlrts backend, because we could not manage to enable charmrun to find the nodes
allocated by the batch scheduling system (both with SLURM on Mistral and PBS on
the NSCC Aspire 1), therefore being limited to only one node. The reason for us to use
the specified OpenMPI as an MPI provider lies in its performance: In our benchmarks
(see Section 8.6.1) this option turned out to be the fastest.

#!/usr/bin/env bash
set -e

Clone spack repo and checkout SCC20 branch

git clone https://git.wr.informatik.uni-hamburg.de/scc/spack.git
cd spack

git checkout scc20

Activate Spack stack
cd ..
spack/share/spack/setup-env.sh

Install gcc 9.3.0 and add it as a compiler
spack compiler find

spack install gcc@9.3.0+binutils

spack load gcc@9.3.0

spack compiler find

Install python3 for the ChalNGa package
spack install python
spack load python

Install ChalNGa wtith Charm++, OpenMPI 3.1.5 and UCX

spack clean --all

spack install changa “charmpp build-target=ChaNGa backend=mpi
— “openmpi@3.1.5 fabrics=ucx

Listing 8.1: Install ChaNGa with spack

8.3 Assignment

For the SCC, the teams were given the parameters and data-set to “run a cosmological
simulation of a galaxy cluster with an unprecedented resolution” [21]. The challenge
was split in two: Firstly, the goal was to run this simulation with the shortest runtime
possible, using up to 4 nodes of the NSCC Aspire 1 cluster, where the “Big Step” time
was monitored from the standard output as a performance indicator, and secondly, the

44

visualisation output of ChaNGa had to be submitted as well which is a series of frames
in the Portable Pixmap (PPM) format which were afterwards converted to a video. It
was not necessary to generate the visualisation in the same run that was used for the
performance benchmark, since the visualisation was decreasing the performance [7].
The performance evaluation can be found in Section 8.6.

8.4 Running

As has already mentioned in Section 8.2.8, we built ChaNGa with Spack using the
MPI backend of Charm++4-. The command that we used for the performance bench-
mark can be found in Listing 8.2. This command was executed via a PBS script that
allocated 4 nodes with 24 CPUs each, resulting in the 96 MPI processes that can be
found in the listing. The file “h1.768.vis.param” contains the launch configuration.
They are accompanied by a file called “h1.cosmo50PLK.768_dm.002016” which is about
2.3 GiB in size and contains the initial conditions of the simulation, and a file called
“h1.vis.768_dm.director” which contains parameters for the visual output. In the
following, we will refer to this Benchmark and group of files as the “h1 Benchmark”.
For the performance run, we commented out the dDumpFrameStep parameter from the
param file which deactivates the visual output. As can be found in Section 8.6.1, this
took 01:07:35 of walltime. For the visualization run, we only used 2 nodes instead of 4,
because the runtime performance wasn’t critical and this decreased the waiting time for
the jobs to be scheduled significantly, since PBS was configured so that it prefers jobs
that require at most 2 nodes. This run took 02:06:28 of walltime.

$ spack load changa
$ charmrun +p96 ChaNGa ./h1.768.vis.param

Listing 8.2: Starting ChaNGa’s performance benchmark

8.5 Parameters / Tuning

For benchmarking, we built ChaNGa with Charm++ which we linked against the
following MPI implementations:

e OpenMPI 4.0.3 with UCX
e OpenMPI 3.1.5 with UCX
e OpenMPI 3.1.5 with MXM
« MPICH 3.3.2

« MVAPICH 2.3.3

45

Since executing the h1 Benchmark took over an hour on the NSCC Aspire 1, we used a
benchmark that we are going to refer to as the “dwf1 Benchmark” which “[...] isa b
million particle zoom-in simulation. It is cosmological, but the particle sampling focuses
on a single halo of roughly [10'!] solar masses” [6]. Since the runtime of this was in the
order of several minutes (the fastest being little over 2 minutes), we could perform over
300 benchmarks. An in-depth look into our benchmark results can be found in Section 8.6.
For the final run, we also made sure to enable process pinning to CPU threads to keep
the scheduler from moving threads around over the cores which can be done by setting
the environment variable KMP_AFFINITY=verbose,granularity=thread, compact,1.

8.6 Results
8.6.1 Benchmark

Our benchmarks can be split into three phases:

In the first phase we ran ChaNGa with all combinations of the MPI backends as listed
in Section 8.5 together with 1, 2 and 4 nodes and 1, 2, 4, 6, 8, 12, 16, 20 and 24
processes per node. The results are not given here for space reasons and showed that
the fastest 7 runs were all using 4 nodes, of which the fastest was using 12 processes
per node. We concluded that ChaNGa’s performance scaled well with the number of
used nodes (given only the tiny amount of at most 4 nodes) and that it was relatively
safe to assume that we would get the best performance using either 12 or 24 processes.
However, this phase also contained a lot of invalid results, e.g. all runs that used
OpenMPI, because our job script contained launch parameters that its mpiexec could
not understand, but the runs that used MVAPICH2 were also failing seemingly randomly.

In the second phase, we only concluded benchmarks that were using 4 nodes and 12 or
24 processes per node. The runs that used OpenMPI were still entirely failing even after
removing the unrecognised parameters which only revealed further unrecognised options.
Fortunately, all runs that used MPICH or MVAPICH2 were successful. The results can
be found in Table 8.1. As one can read from the table, MPICH was consistently faster
and the quickest run was using 24 processes per node.

In the third phase we moved to the hl1 Benchmark and tested only MPICH and and
MVAPICH2, because we were not confident that we could initiate a successful run using
OpenMPI and the batch scheduling queue was getting increasingly longer which resulted
in very long wait times. For the same reason, we also used only 1 and 2 nodes to get
an approximation for the runtime of the final runs by assuming a sub-linear speedup.
Unfortunately, out of 8 runs, only one run was successful: The runtime using MPICH
and 2 nodes with 12 processes each was 01:57:17 from which we concluded that we had
to account for at least 58 minutes of runtime for the final runs.

46

Lastly, we decided against using MVAPICH2 for the final runs because of its unreliability
and only did a run with MPICH. Afterwards, we also managed to successfully run
ChaNGa with OpenMPI 3.1.5 using UCX, which ended up having a shorter runtime, so
this run was then included into our final submission. An overview over these two runs,
sorted by runtime, can be found in Table 8.2.

Table 8.1: Runtimes of ChalNGa on the dfwl Benchmark

Runtime Big Step Time® Nodes PPN MPI impl. Fabrics
[s] [m:s] [s]
121.689 2m1.689s 10.3037 4 24 mpich@3.3.2 none
123.307 2m3.307s 10.4831 4 24 mpich@3.3.2 none
124.969 2m4.969s 10.4041 4 12 mpich@3.3.2 none
125.644 2m5.644s 10.3132 4 12 mpich@3.3.2 none
125.792 2mb5.792s 10.3139 4 12 mpich@3.3.2 none
130.778 2m10.778s 10.7839 4 24 mpich@3.3.2 none
134.690 2m14.690s 10.4989 4 24 mvapich202.3.3 mxm
138.957 2m18.957s 10.3471 4 24 mvapich202.3.3 mxm
138.967 2m18.967s 10.6538 4 24 mvapich202.3.3 mxm
301.454 5ml1.454s 22.2244 4 12 mvapich202.3.3 mxm
309.449 5m9.449s 23.7092 4 12 mvapich202.3.3 mxm
312.796 5ml12.796s 24 .1721 4 12 mvapich202.3.3 mxm
Table 8.2: Runtimes of ChaNGa on the h1 Benchmark
Runtime Big Step Time® Nodes PPN MPI impl. Fabrics
[hh:mm:ss] [s]
01:07:35 258.024663 4 24 openmpi@3.1.5 ucx
01:10:53 270.125498 4 24 mpich@3.3.2 none

8.6.2 Visualisation

The visualization of the h1 data-set is a 3 second long video which can be found at the
team’s twitter page*.

3This specifies the median Big Step Time from the Standard Output
‘https://twitter.com/UHH_ISC_SCC/status/1272519064624259079

47

https://twitter.com/UHH_ISC_SCC/status/1272519064624259079

9 ElmerFEM/ICE

Author: Daniel Bremer

9.1 ElmerFEM

Elmer is a Finite Element Solver developed by IT Center for Science (CSC) in Finland.
With the software suite it is possible to solve “physical models of fluid dynamics, structural
mechanics, electromagnetics, heat transfer and acoustics” [15] and also geological models
and ice sheet movements. Inputs for the program usually are a mesh that describes the
object that is simulated, and a solver, e. g. Navier-Stokes, that is used for calculation of
the problem. Tuning to arbitrary problems can be done by providing a custom solver,
best fitted to any problem.

The software suite delivers three main programs: ElmerSolver (and ElmerSolver _mpi),
which is the finite element solver (and its MPI capable counterpart), ElmerGrid, for
mesh creation and manipulation, and ElmerGUI, a graphical interface for Elmer.

9.1.1 Elmer/ICE

The main repository on Github! features a branch elmerice that extends ElmerFEM to
model ice sheet movement, glacier and ice flows. It provides a navier-stokes-solver. The
underlying Navier-Stokes Equations describe motion of viscous fluid in a set of partial
differentials.

Ice, similarly to glass, can be described better as a fluid than as a solid - although a
very viscous fluid. This is at least due to the fact that ice is in fact not a “huge block of
material”, but many grains and impurities of minerals. Also it is incompressible, another
property that is shared with fluids.

Flow dynamics can be described with the flow of the ice V o + p* g = 0 considering the
constant sum of all surface forces and gravity and V * u = 0 a constant sum of volumes.
Doing this for all 6 surfaces of a block provides a Full Stokes Model.

While the one could approximate ice sheets as shallow ice shelfs, only considering
shear stresses in the equations, Elmer/ICE implements a full model without such
approximations. Furthermore, it can be coupled with other models, e. g. Bedrock Models
that simulate bedrock movement influenced by the mass of ice sheets on top or FISOC,
an Ice-Ocean coupler, providing data on ice melting at the ocean borders.

'https://github.com/ElmerCSC/elmerfem.

48

OO UL W N+

[I e N el e el s e
N — O O© 00O Uik W~ OO

9.2 Assignment

With Elmer the task was to simulate the ice sheet movement of the Greenland ice sheet.
The model was a coupled model, containing not only the ice sheet, but also oceans at
the boundaries of the land/ice mass and the bedrock below the ice. To not only was the
ice movement simulated, but also the lift of the bedrock, when the pressure of the ice
lifted and temperature influences of the oceans.

Given was a mesh describing the ice sheet, Greenland’s bedrock and the surrounding
oceans and 4 input files solversettings.sif, header.sif, stokes.lua and Stokes_-
steady_vec_lua.sif. It was allowed to modify the first two files, while the latter ones
should remain untouched.

The output files showed a runtime, that was used for performance evaluation. Also it
was possible to visualize the results with ParaView.

9.3 Dependencies and Building

ElmerFem was build using Spack. For the SCC a special scc20 release was to be used, as
this one contained the required permafrost-solvers for this challenge which are developed
outside of the standard ElmerFEM package on the elmerice branch. This release was
implemented into Spack and used as expected from there.

When building, the build_type was set to “Release” and flag +1ua was provided. GCC
version 9.3.0 was used as the compiler and OpenMPI 3.1.5 for the MPI backend.

#!/usr/bin/env bash
set -e

Clone spack rTepo and checkout SCC20 branch

git clone https://git.wr.informatik.uni-hamburg.de/scc/spack.git
cd spack

git checkout scc20

Activate Spack stack
cd ..
spack/share/spack/setup-env.sh

Install gcc 9.3.0 and add it as a compiler
spack compiler find

spack install gcc@9.3.0+binutils

spack load gcc@9.3.0

spack compiler find

Install Elmer/ICE

spack clean --all

spack install elmerfem@scc20 “charmpp build_type=Release +1lua
<~ “openmpi@3.1.5 fabrics=ucx

Listing 9.1: Install Elmer/ICE with spack

49

Other dependencies are a BLAS and LAPACK capable library (we have used OpenBLAS)
for linear algebra functions, MUMPS for solving of sparse linear algebraic systems.
Building with OpenMP introduced several problems, as the application crashed when

running with OpenMP on Mistral. On the Aspire 1 system, we have build the application
for the Ubuntu nodes. On these, only OpenMPI worked reliably, which then was used in
the submitted run.

9.4 Running

Before running the program, a mesh has to be generated for the desired number of
partitions and the header file has to be modified.

Partitions here are parts of the ice sheet that can be feed to single solvers, e. g. MPI
processes. Splitting the mesh is done with the following command: To now use the

ElmerGrid 2 2 Input_Mesh -metiskway #grid_partitions -out Output_MESH

generated partitions, the header file has to be modified, so that the variable $MESH
contains the same value as the out parameter of the ElmerGrid command.
Furthermore it was allowed to change existing parameters in the solversettings.sif
file to tune the run. We did not make changes here.

Please not that the runs do not converge arbitrary partition sizes. 96 partitions was

given to be a guaranteed converging run.

9.4.1 Performance Tuning

To determine scaling of the given task, we have run jobs on Mistral to determine a good
combination of number of partitions and whether to use hyperthreading or not.
Comparing runs in Figure 9.1, disabling hyperthreading gives a performance improvement
with the best performance being around 96 partitions.

9.5 Visualisation

This visualization (Figure 9.2 was done with ParaView. It shows the velocity of the ice
sheets as simulated.

0.6 Results

The final submitted result was as follows.

The result was ran on two DGX nodes with 40 cores each, meaning a total of 80 MPI
tasks without hyperthreading. In theory this should have produced the best possible

20

6000

5000

Py,

3000

Runtime [s]

2000

1000

24 48 72 o6 120 144 168 192
Partitions

—t Y PEM-OMD s yper-omp

Figure 9.1: Diagram of Elmer runs with different partition sizes and their corresponding
runtimes.

result.

With software optimization and changing the source code it would have been possible to

gain massive runtime improvements, but we did not find the correct source code lines for
this.

51

— 4.5e+04

10000

— 6.0e02

Figure 9.2: Visualization of the simulated velocities of ice sheets on Greenland’s landmass

SOLVER TOTAL TIME(CPU,REAL): 2714.16 2761.52

52

10 BERT

Author: Daniel Bremer, Lina Meyer

10.1 BERT - Bidirectional Encoder Representations
from Transformers

BERT is a language representation model invented by Devlin et al. in 2019 [17]. It is an
acronym for Bidirectional Encoder Representations from Transformers, which emphasizes
the key techniques BERT uses: a combination of a Transformer and bidirectional training.
Bidirectional means that the sentences are not read from the beginning to the end or the
other way around, but are processed as a whole [20]. A Transformer or Transfer Learning
means a neural network learns to understand texts in general first and afterwards uses
it’s universal understanding to solve specific natural language processing tasks [37]. One
possible task is for example answering questions.

For BERT multiple implementations exists, like ALBERT (A Lite BERT), which reduces
parameters and enables better model scaling, or the implementation by the Huggingface
team, which was also used in the competition and implements the model directly without
model optimizations.

Implementations with TensorFlow and PyTorch are available, which implement the
neural network methods for the implementations.

10.1.1 SQuAD - Stanford Question Answering Dataset

The Stanford Question Answering Dataset is a dataset used to test reading comprehen-
sion. The dataset consists of questions based on Wikipedia articles which either have an
answer, are unanswerable or can not be answered directly, but with a block of text from
a text passage in an article.

SQuAD exists in multiple versions. Version 1.1, which we have used in this competition,
features over 100000 questions with corresponding answers on a set of over 500 articles.
Version 2.0 combines the existing questions from version 1.1 with 50000 more, unanswer-
able questions. Comparing human performance to the performance achieved by nets
answering, nets based on the ALBERT implementation of BERT achieve super-human
scores with SQuAD 2.0 [32].

10.2 Background

Since computers exist humans try make them understand our natural language. That is
a difficult task as some words have several meanings, sentences have complex structures

23

and there is infinite number of combinations to link words, so that there is no easy way
to create rules about how to read texts [38]. This is where machine learning comes into
play. The first feed forward neural net for natural language processing (NLP) was built
in 2001 [18]. Since then, neural networks were developed in a lot of directions. The most
significant areas for BERT are context and transfer learning. That is why we will take a
closer look at them.

There are some models that use context and some that do not. As the word says
contextual models do not just look at one word, but also at the surrounding words. So
that a contextual model would recognize the different meaning of “bank” in “river bank”
and “bank deposit” while a non-contextual would not. BERT of course belongs to the
contextual models and is even a bidirectional one, so the words before as well as the
words after the word we are looking at are taken into account [3].

The second field are Transformers, which were mostly used in the field of image recognition
at first. For example researchers trained nets on ImageNet and then used the trained
network to distinct between a certain set of pictures. Transformers are deep learning
models, which basically take an sequential data input and transform it to an output. In
the field of NLP Transformers are first used in 2017 by researchers at Google and the
University of Toronto [37]. Then this strategy was also integrated in BERT. When it
was published BERT got the highest fl-score on the SQuAD leaderboard [33].

10.3 Architecture

BERT’s training has two stages: pre-training and fine-tuning. On the first stage BERT
develops a general language model using unsupervised learning. The net learns on huge
text collections like Wikipedia.

The techniques used to “teach a language” are masked language modelling (LM) and
next sentence prediction. For Masked LM 15 % of all words in the text are being masked
and the net’s task is it to predict the this word by reading every other word in that
sentence. The net’s output is probability of being behind the mask for every existing
word. This is what makes BERT deeply bidirectional, because the whole sentence goes
into the analysis and not just the part before or after the mask [20].

Next sentence prediction does exactly what the name suggests: predicting the next
sentence. More precisely, the network gets two sentences as an input and then has to
guess whether they belong together or are just randomly combined. These sentence pairs
are build with 50 % probability of being next to one another originally or not [20].

The step of pre-training takes a lot of time and resources. That is why there a some
pre-trained BERT networks available for download. They exist in several languages,
network sizes and taking into account upper-case or not [16].

For the next step you can either use your self-trained network or one of the pre-built and
train it with any specific natural language task, for example sentence classification or in
our case question answering. Fine-tuning requires another data set with task specific
data like SQUAD. Now the network should learn to mark the answer to a question in a
specified text sequence. SQuAD contains more than 100000 question answer pairs we

o4

can “feed” the network with [32]. For this the architecture has to be changed very little,
only some pre- and post-processing steps are necessary [3].

10.4 Assignment

This year’s Al challenge consisted of the SQuAD v1.1 benchmark. For training the
“BERT-Base, Uncased” model was used.

Several limitations were given to narrow the fields of performance optimization. First of
all the HuggingFace implementation for BERT was set as the standard. The model’s
architecture was not to be modified, so it was allowed to alter optimizers and learning
rate schedulers and other techniques, as long as this did not have deeper changes as a
consequence. Also it was disallowed to freeze layers, so with every training the whole
model had to be trained.

Later on, even more rules were specified: It was not allowed to add the dev-set into
the training data, as well as it was disallowed to integrate any other additional data.
Hyper-parameters we allowed globally, so learning rate schedulers, optimizers, drop-out
strategies, etc. were free to be used as desired. Also random seeding was enabled,
allowing to reduce variance between training runs.

As a result, the f1 score was used for team ranking. The fl score shows the balance

between recall and precision of a model. Recall is given by

TruePositive
Recall = 10.1
ced TruePositive + FalseNegative ()

which gives an estimation how many actual Positives can be found in positively labeled
data, while precision is defined by

TruePositive
Precision — 10.2
recsion TruePositive + FalsePositive ()

and gives information on how many predicted positives are actually positives
f1 the is calculated with the harmonic mean of recall and precision

(10.3)

Recall™ + Precision™ !
fl=
N 2

The f1 score heavily weights False Negatives and False Positives, therefore gives a good
estimation of “wrongness” [35] [24].
For the final evaluation, 5 runs had to be handed in, where the top 3 f1 scores were

averaged. Predictions were done on the dev-set dev-v1.1.json, which is used with
evaluate-vl.1.py. A unseed json with questions was also given, to be used as a
tie-breaker [28].

95

SO W N

10.5 Building

Different code bases were possible starting points for this application. We have focussed
on the code that is delivered with the NVIDIA Deep Learning Examples!, an BERT
implementation on the basis of TensorFlow 2% and the Lambdal implementation [3].

NVIDIA’s Deep Learning Examples focus very much on containerized running of appli-

cations. For better performance, we have tried to pull all required scripts and programs
out of the container to run them natively, but from the source codes, no NVIDIA specific
tuning was to be found.

To compare the performance between TensorFlow 1 and TensorFlow 2, we were not

satisfied with the outputs of the TF2 implementation. For that reason, and for its native
support for Horovod, we have decided to use the Lambdal code base.
To build BERT you have to clone Lambdals repo https://github.com/lambdal/bert and

then download the pre-trained BERT-base and the SQuAD data set like in listing List-
ing 10.1

download bert base
wget https://storage.googleapis.com/bert_models/2018_10_18/

< uncased_L-12_H-768_A-12.zip
download squad
wget

— https://rajpurkar.github.io/SQuAD-explorer/dataset/train-vl.1. json
wget https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-vl.1. json
wget

— https://github.com/allenai/bi-att-flow/blob/master/squad/evaluate-vl.1.py

Listing 10.1: Download BERT base and SQuAD

Lambdal’s BERT uses Horovod to train the net across multiple GPU’s with the help of
openmpi [3]. Horovod only works with some versions of OpenMPT for example 3.0.0 and
we had to use a special version of GCC, because many versions conflicted on the GPU
nodes.

install and load openmpi

spack install openmpi@3.0.0

spack load openmpi@3.0.0

install and load gcc

spack install gcc@4.9.0 +binutils
spack load gcc@4.9.0

Listing 10.2: Build dependencies

For CUDA and CuDNN libraries, we have settled on versions 10.0.130 for CUDA and
7.4.1 for CuDNN. Although CUDA 11 was released shortly before the competition start,
the driver version present on the Aspire 1 cluster limited our choice to this specific
version, being the most recent compatible with the drivers.

'https://github.com/NVIDIA/DeepLearningExamples
Zhttps://github.com/kpe/bert-for-tf2

26

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/kpe/bert-for-tf2

CO O UL W N+

= =
N = OO

0O Ul Wi

= e e
=~ wNn = O o

We then decided to run BERT in a python virtual environment which allows better control
of installed packages and built all necessary dependencies as shown in listing Listing 10.3.
To run TensorFlow on GPU you can use the package tensorflow-gpu and version 1.15.0
is needed for horovod.

load python

spack load /dtyxxve

create a virtual environment

python -m venv envname

activate virtual environment
./envname/bin/activate

install dependencies

pip install numpy

pip install six

pip install mxnet

pip install tensorflow-gpu==1.15.0

HOROVOD _WITH_TENSORFLOW=1 pip install --no-cache-dir
< horovod[tensorflow]

Listing 10.3: Set up python virtual environment with all dependencies

10.6 Running

Running BERT includes two steps: training on SQuAD and evaluating the scores. You
can start the training with run_squad.py as shown in listing Listing 10.4 with several
parameters. There are a lot of files that have to be specified and their names are self-
explaining. The most important parameters we had to adjust were batch size, learning
rate and number of epochs. With do_predict and do_train you can decide whether
the net should be trained and BERT should predict answers to the questions.

python run_squad.py \
--vocab_file=$BERT_BASE_DIR/vocab.txt \
--bert_config file=$BERT_BASE_DIR/bert_config.json \
--init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
--do_train=True \
--train_file=$SQUAD_DIR/train-v1i.1.json \
--do_predict=True \
--predict_file=$SQUAD_DIR/dev-vl.1.json \
--train_batch_size=12 \
--learning_rate=3e-5 \
--num_train_epochs=2.0 \
--max_seq_length=256 \
--doc_stride=128 \
--output_dir=output-runl/

Listing 10.4: Run SQuAD

Parameters that we also altered were learning rate and num_train_epoch, which
modified learning speed and the number of training epochs on the data. When trying to

o7

increase train_batch_size for faster learning runs, we very quickly ran into memory
limit issues, which is why this parameter was left untouched.

Evaluation was done by running evaluate-v1l.1.py against the dev-set and the predic-
tion file acquired from the predictions, when using ~do_predict==True in run_squad.py

10.6.1 Performance Tuning

To reduce variance between runs, one can introduce random shuffling of the input
data. This was done by changing the randomiser in run_squad.py. At first it only got
initialized with rng = random.Random(12345), which made the randomness “static”, not
being random at all. By switching this with rng = random.Random(datetime.now()),
a different seed was used with every run, enabling “better” randomness.

10.7 Results

The results handed in were as follows:

Run Learning Rate | Epochs Score
1 3e-5 2 f1: 87.97936255542666
2 (random shuffling) 3e-5 2 f1: 88.28141595606796
3 2e-5 3 f1: 87.99612501421532
4 3e-5 3 f1: 88.14213130502958

Run 1 was a run with default parameters, while runs after Run 2 implemented the
random shuffling changes, or run parameters.

o8

11 Gromacs

Author: Lina Meyer

Gromacs is a a tool for molecular dynamics simulations. It can be used to simulate millions
of atoms with different forces, non-bonded as well as bonded. Gromacs is extremely
fast compared to other molecular dynamics simulations due to several performance
optimisations and its GPU plus CUDA support. Usually is it used to compute simulations
of biochemical molecules, e.g. proteins, lipids and nucleic acids [27].

11.1 Algorithm

The simulation works as follows: The first step is the initialisation of the particles. All
of them have to be brought to the right spots and the velocities have to be adjusted.
Additionally, the potential of the forces is initialized and after that the forces themselves
are calculated. The next step consists of calculating the movement of the atoms by
solving the Newton’s Equation of Motion with the forces from the previous step. In the
end, the particle positions are updated, also taking into account some restraints like
boundary conditions. Afterwards the second and third step are repeated as often as
the user wants to run the simulation. When all steps are completed, Gromacs outputs
end positions, velocities, energies, temperature or other produced data [26]. In figure
Figure 11.1 the main steps of this simulation are shown schematically, again.

. calculate update
initialisation "
forces positions

Figure 11.1: Schematic representation of general steps of the algorithm

In Gromacs distinguishes three different kinds of forces:

o Non-bonded
Particles in non-bounded systems in certain ranges interact with each other, because
the forces have a short range.

o PME (Particle Mesh Ewald)
Non-bonded particles in big ranges interact with each other due to long range
forces. The calculations are performed with Fourier Transformations.

29

[IENEGCR N

e Bonded
Bonded forces only act on direct neighbors (up to four) of an atom if they are
bonded covalently.

Since 2019 Gromacs is able to calculate all of the forces on GPUs, but updating the
positions only worked on CPUs. That is why a lot of data had to be transferred from GPU
to CPU and back via PCle. To boost the performance Gromacs’ version 2020 features
position update on GPUs, so that the data does not have to be transferred anymore.
When using multiple GPUs, they communicate via NVLink which is significantly faster
than PCle [19].

11.2 Assignment

The task was is to run Gromacs with two input files: lignocellulose and STMV. Lignocel-
lulose is the woody material plants are made of and can be used for the production of
bio fuel [34]. The letters STMV stand for Satellite Tobacco Mosaic Virus, which is a
plant virus dependent on the host Tobacco Mosaic Virus [2]. We had to run each of the
simulations with 100000 steps and then try to decrease the run time [29]. As a measure
for time we used the period the particles were simulated (in nanoseconds) divided by the
time needed for running the simulation (in days).

11.3 Dependencies

Gromacs has some optional dependencies: It supports MPI, GPUs via CUDA and Fast
Fourier Transformation (FFT). For simulations on a single node Gromacs has a build-in
thread-MPI parallelizing the program over multiple cores. If you want to run Gromacs
on more machines, you have to build it with external MPI, e.g. OpenMPI or MPICH.
For additional parallelization OpenMP is automatically added during compilation. As
Gromacs does a lot of Fourier transformations during simulations you need library support
for FFT, for example FF'TW or MKL. The fallback FFTPACK is only recommended if
the performance is unimportant. We chose FFTW as the documentation suggests it is
the fastest. On NVIDIA GPUs complex calculations can be done with CUDA [26].

11.4 Building

As you can see in the code in Listing 11.1, we build Gromacs 2020.1 with spack on our
own stack. To install Gromacs with CUDA support, we had to use gcc version 7.4.0,
because that is the latest compatible version with CUDA 10.0.130. Additionally, we used
Open-MPI 3.1.5.

#!/usr/bin/env bash

set -e

60

Clone spack repo and checkout SCC20 branch

git clone https://git.wr.informatik.uni-hamburg.de/scc/spack.git

cd spack
git checkout scc20

Activate Spack stack

cd

spack/share/spack/setup-env.sh

Install gcc 9.3.0 and add it as a compiler

spack
spack
spack
spack

compiler find
install gcc@9.3.0+binutils
load gcc@9.3.0
compiler find

Install GCC 7.4.0 for CUDA

spack

install gcc@7.4.0+binutils’gcc@9.3.0

Install CUDA and GROMACS

spack
spack

11.5

To run the simulation you have to start gmx_mpi mdrun with an input file in tpr format
containing structure, topology and molecular dynamics parameters. Additionally, there

install cuda@10.0.130%gcc@7.4.0

install gromacs%gcc@7.4.0 +cuda “openmpi/hxteols ~“cuda@10.0.130

Listing 11.1: Install Gromacs with spack

Running

are several parameters that can be adjusted:

-s input file

-steps number of steps, had to be 100000

-nstlist number of steps after the neighbourhood is updated again
-nb non-bonded forces, on gpu or cpu

-bonded bonded forces, on gpu or cpu

-pme

-ntmpi

pme forces, on gpu or cpu
number of MPI processes

-ntomp number of OMP threads

To run Gromacs we used the dgx nodes, because they had GPUs. In our runs we set -nb
and -bonded to gpu to run all forces on GPU instead of CPU. -pme gpu was not working
on the dgx nodes. We also had to set some environment variables to activate all GPU
features of the Gromacs 2020.1 version. To get the optimal results we varied the -nst1list
parameter. In the code below you can see an example run:

export GMX_GPU_DD_COMMS=true

export GMX_GPU_PME_PP_COMMS=true
export GMX_FORCE_UPDATE_DEFAULT_GPU=true

61

4| gmx_mpi mdrun -s lignocellulose-rf.tpr -nsteps 100000 -nstlist 75
— -ntomp 40 -nb gpu -bonded gpu

Listing 11.2: Running Gromacs

Gromacs automatically used 40 OMP threads, as the node has 40 cores, and one MPI
process. Unfortunately, we could not manage to use more MPI processes, which would
have led to a huge performance boost [26]. We tried to build Gromacs with external MPI
(mpich and multiple versions of open mpi) and also with the provided internal MPI setting
the cmake option DGMX_MPI=on, but both options did not work on the NSCC-Cluster.

11.6 Visualisation

The visualization was not a part of the challenge, but we visualized one of the input files
just to know what we are working on. In figure Figure 11.2 you can see the structure of
lignocellulose.

Figure 11.2: Visualisation of lignocellulose made with vmd

11.7 Results

Our main focus while benchmarking Gromacs was the parameter -nstlist. In the
following diagram the performance measured in ns/day is plotted against the value of

-nstlist.

62

14 T T T T T T
X X lignocellulose X
131 % X X stmv X
12
1k X
10
>
(1]
T 9
(%]
c
8 —
7 —
X
6 X %
X
5 X
4 | | | | | |
0 100 200 300 400 500 600
nstlist

Figure 11.3: Correlation of performance and nstlist parameter

Our best results are:

o lignocellulose: 1 GPU, 40 OpenMP threads, nstlist=>50
— 6.515 nanoseconds per day
— walltime: 2652.505 seconds

o stmv: 1 GPU, 2 GPU tasks, 40 OpenMP threads, nstlist=100
— 13.243 nanoseconds per day
— walltime: 1304.85 seconds

63

12 Aurora

Due to the special circumstances we were unable to use the Aurora Vector Computers in
the actual Competition, but before the world fell into chaos there was a workshop at the
RWTH Aachen. Introducing the principle of Vector Engines, possible use cases as well
as a programming tutorial with a hands on.

Author: Roland Fredenhagen

12.0.1 Vector Engine

Vector engines are optimized for highly parallel calculation workflows that can the
implemented using vector algorithmic. The Vector Engine Processor is built up from a
vector register, comparable to the register of a normal CPU only specialized for storing
high dimensional vectors and a Vector Processing Unit able to compute these vectors in
parallel, as shown in Figure 12.1.

Figure 12.1: Visualisation of vector computation

This is comparable to GPGPUs, but with added benefits as illustrated in Figure 12.2 It
avoids PCle bottleneck as the whole application is executed on the Vector Engine, it
has a larger memory of 48GB on the current generation models and can run a standard
languages with compilers for FORTRAN or C/C++.

It is also possible to combine scalar an vectorized calculations either using the Vector
Engine as an accelerator in an x86 application or the opposite using the x86 CPU to
accelerate scalar calculations while running the main application on the Vector Engine.

64

GPGPU Architecture Aurora Architecture
— "-.\\
OB —i-y © O
PCle ’ I PCle

exec exec
Transmission Start Processing
Result Transmissj
. OSSN WO ete
exit {"=_ exit

Frequent PCIe transmission Whole AP is executed on VE

End Processing
Figure 12.2: GPGPU vs Aurora Architecture Comparison

12.0.2 Usage

Tools

Writing applications for Vector Engines is supported with many standard tools with gdb
or PROGINF and libraries as OpenMP or MPI.
The vectorization and parellelization can be automated using a Vector Cross Compiler
like ncc and can be controlled using compiler directives telling the compiler what should
be done at specific places in the source code:

INEC\$ vector allows vectorization

INEC\$ novector disallows vectorization

INEC\$ vreg(array-name) Assigns array "array-name' to vector registers

This can be monitored using Format List File generated by the compiler as shown in
Figure 12.3.

18: Ve====- > DO i = 2, 2048

11: | F B(i) = B(2048-i+1) + 2*A(i-1)
12: V-===-- END DO

13:

14: 4=====-=- > DO i = 2, 2048

15: | B(i) = SQRT(B(i-1))

16: | IF (MOD(i,256) == @) &

17: | WRITE(*,*) i

18: 4=====-=- END DO

Figure 12.3: Format List File: the first loop can be factorized (V), the second is not due
to the I/O Operation (+)

65

This helps identify errors fast, showing in detail what the compiler did at which part of
the code.
Examples for loop Transformations:

e > Loop is not vectorized

V-————- > Loop is vectorized

U--—---- > Loop is unrolled

X------ > Nested loops are interchanged and vectorized
| k=mm— >

Examples for special instructions:

1 A function call is inlined
M Nested loop is replaced by matrix-multiply routine
¢ Vector gather memory operation

Programming

For this to work it is important that the structures are vectorizable ie. loop count needs
to be knows upon entering the loop otherwise the compiler cannot distribute the loop
correctly and data needs to be parallel ie. the order of operation must not matter, that
means A(i) = A(i — 1) + B(i) cannot be vectorized. On top of that no complicated
function calls are allowed only functions that can be inlined. Some data structures as
strings ar non-vectorizable as well.

For optimal performance, memory access needs to be taken int account as well, optimally
each index only depends on its corresponding cache as shown in Figure 12.4, inefficient
memory access as reduction, scatter or gather Figure 12.5, should be avoided or reduced
when possible.

Vector Register

Figure 12.4: Optimal Memory Access (Stride 1) A(i) = B(7)

66

Vector Register

S KA

Figure 12.5: Inefficient Random Memory Access (Gather) A(i) = B(idz(i))

67

Bibliography

[13]

AL System__QuickStart.pdf. URL: https://help.nscc.sg/wp-content/uploads/
AI_System_QuickStart.pdf (visited on 09/20/2020).

Anton Arkhipov et al. Molecular Dynamics of Viruses. http://www.ks.uiuc.
edu/Research/STMV/. May 13, 2013. (Visited on 09/16/2020).

Stephen A. Balaban. bert. Feb. 7, 2019. URL: https://github.com/lambdal/bert
(visited on 10/05/2020).

Josh Barnes and Piet Hut. “A hierarchical O(N log N) force-calculation algorithm”.
In: 324.6096 (Dec. 1986), pp. 446-449. DOT: 10.1038/324446a0.

Mikhail Brinskiy and Mark Lubin. “An introduction to MPI-3 shared memory
Programming”. In: Awailable https: |/software. inteLcomlenus (2017).

ChaNGa Benchmarks — N-BodyShop/changa Wiki. URL: https://github.com/N-
BodyShop/changa/wiki/ChaNGa-Benchmarks (visited on 09/21/2020).

ChaNGa Challenge — HPC-Works — HPCAC' Technical Community. URL: https:
/ / hpcadvisorycouncil . atlassian . net / wiki / spaces / HPCWORKS / pages /
1182171137/ChaNGa+Challenge (visited on 09/21/2020).

ChaNGa Wiki on Github. URL: https://github.com/N-BodyShop/changa/wiki/
ChaNGa (visited on 09/19/2020).

Charm++: Documentation. URL: https://charm.readthedocs.io/en/latest/
charm++/manual . html#basic-charm-programming (visited on 09/28/2020).

Charm++: Tutorial. URL: http://charmplusplus.org/tutorial/CharmConcepts.
html (visited on 09/28,/2020).

Charm++: Tutorial. URL: http://charmplusplus.org/tutorial/CharmComponents.

html (visited on 09/28,/2020).

Wikimedia Commons. File:Barnes hut partikel.png — Wikimedia Commons, the
free media repository. [Online; accessed 20-September-2020]. 2020. URL: https:
//commons .wikimedia.org/w/index.php?title=File:Barnes_hut_partikel.
png&oldid=462896270.

Wikimedia Commons. File:Barnes hut tree.png — Wikimedia Commons, the free
media repository. [Online; accessed 20-September-2020]. 2020. URL: https://
commons . wikimedia.org/w/index.php?title=File:Barnes_hut_tree.png&
01did=462896306.

68

https://help.nscc.sg/wp-content/uploads/AI_System_QuickStart.pdf
https://help.nscc.sg/wp-content/uploads/AI_System_QuickStart.pdf
http://www.ks.uiuc.edu/Research/STMV/
http://www.ks.uiuc.edu/Research/STMV/
https://github.com/lambdal/bert
https://doi.org/10.1038/324446a0
https://github.com/N-BodyShop/changa/wiki/ChaNGa-Benchmarks
https://github.com/N-BodyShop/changa/wiki/ChaNGa-Benchmarks
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1182171137/ChaNGa+Challenge
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1182171137/ChaNGa+Challenge
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1182171137/ChaNGa+Challenge
https://github.com/N-BodyShop/changa/wiki/ChaNGa
https://github.com/N-BodyShop/changa/wiki/ChaNGa
https://charm.readthedocs.io/en/latest/charm++/manual.html#basic-charm-programming
https://charm.readthedocs.io/en/latest/charm++/manual.html#basic-charm-programming
http://charmplusplus.org/tutorial/CharmConcepts.html
http://charmplusplus.org/tutorial/CharmConcepts.html
http://charmplusplus.org/tutorial/CharmComponents.html
http://charmplusplus.org/tutorial/CharmComponents.html
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_partikel.png&oldid=462896270
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_partikel.png&oldid=462896270
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_partikel.png&oldid=462896270
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_tree.png&oldid=462896306
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_tree.png&oldid=462896306
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_tree.png&oldid=462896306

[14]

[25]

[26]

[27]

Wikimedia Commons. File:Barnes hut used nodes.png — Wikimedia Commons,
the free media repository. [Online; accessed 20-September-2020]. 2020. URL: https:
//commons . wikimedia . org/w/index .php?title=File :Barnes_hut _used_
nodes.png&oldid=462896326.

CSC. Elmer - Elmer - CSC Company Site. URL: https://www.csc.fi/web/elmer
(visited on 10/06/2020).

Jacob Devlin et al. bert. Mar. 11, 2020. URL: https://github. com/google-
research/bert (visited on 10/05/2020).

Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

Keith D. Foote. A Brief History of Natural Language Processing (NLP). May 22,
2019. URL: https://www.dataversity.net/a-brief-history-of-natural-
language-processing-nlp/ (visited on 10/05/2020).

Alex Gray. Creating Faster Molecular Dynamics Simulations with GROMACS
2020. Feb. 25, 2020. URL: https://developer .nvidia.com/blog/creating-
faster-molecular-dynamics-simulations-with-gromacs-2020/ (visited on
10/07/2020).

Rani Horev. BERT Ezplained: State of the art language model for NLP. Nov. 10,
2018. URL: https://towardsdatascience . com/bert-explained-state-of -
the-art-language-model-for-nlp-£8b21a9b6270 (visited on 10/05/2020).

HPC' Advisory Council ISC' 2020 Student Cluster Competition — Benchmarking.
URL: http://www.hpcadvisorycouncil.com/events/2020/student-cluster-
competition/benchmarking.php (visited on 09/20/2020).

Chao Huang, Orion Lawlor, and L. V. Kalé. “Adaptive MPI”. In: Languages
and Compilers for Parallel Computing. Ed. by Lawrence Rauchwerger. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 306-322. 1SBN: 978-3-540-24644-
2.

Chao Huang et al. “Performance evaluation of adaptive MPI”. In: Proceedings of
the eleventh ACM SIGPLAN symposium on Principles and practice of parallel
programmsing. 2006, pp. 12-21.

Purva Huilgol. Accuracy vs. F1-Score. Aug. 24, 2019. URL: https://medium.
com/analytics-vidhya/accuracy-vs-fl-score-6258237beca2 (visited on
10/05,/2020).

P. Jetley et al. “Massively parallel cosmological simulations with ChaNGa”. In:
2008 IEEE International Symposium on Parallel and Distributed Processing. 2008,
pp. 1-12. bor1: 10.1109/IPDPS.2008.4536319.

Lindahl et al. GROMACS 2020.3 Manual. Version 2020.3. July 2020. DOI1: 10.
5281/zenodo.3923644. URL: https://doi.org/10.5281/zenodo.3923644.

mabraham. About GROMACS. http : //www . gromacs . org/ About _ Gromacs.
Sept. 24, 2018. (Visited on 07/11,/2020).

69

https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_used_nodes.png&oldid=462896326
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_used_nodes.png&oldid=462896326
https://commons.wikimedia.org/w/index.php?title=File:Barnes_hut_used_nodes.png&oldid=462896326
https://www.csc.fi/web/elmer
https://github.com/google-research/bert
https://github.com/google-research/bert
https://arxiv.org/abs/1810.04805
https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/
https://www.dataversity.net/a-brief-history-of-natural-language-processing-nlp/
https://developer.nvidia.com/blog/creating-faster-molecular-dynamics-simulations-with-gromacs-2020/
https://developer.nvidia.com/blog/creating-faster-molecular-dynamics-simulations-with-gromacs-2020/
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
http://www.hpcadvisorycouncil.com/events/2020/student-cluster-competition/benchmarking.php
http://www.hpcadvisorycouncil.com/events/2020/student-cluster-competition/benchmarking.php
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://medium.com/analytics-vidhya/accuracy-vs-f1-score-6258237beca2
https://doi.org/10.1109/IPDPS.2008.4536319
https://doi.org/10.5281/zenodo.3923644
https://doi.org/10.5281/zenodo.3923644
https://doi.org/10.5281/zenodo.3923644
http://www.gromacs.org/About_Gromacs

[28]

Ophir Maor. AI Challenge - SQuAD 1.1 with BERT-Base Guidelines. June 9, 2020.
URL: https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/
pages/1326612594/AI+Challenge+-+SQuAD+1.1+with+BERT-Base+Guidelines
(visited on 10/05,/2020).

Ophir Maor. Gromacs Challenge. June 9, 2020. URL: https://hpcadvisorycouncil.
atlassian.net/wiki/spaces/HPCWORKS/pages/1453719580/Gromacs+Challenge
(visited on 10/07,/2020).

NSCC Software/Hardware Information. URL: https://help.nscc.sg/softwarehardware-
information/ (visited on 09/20/2020).

R. Rabenseifner, G. Hager, and G. Jost. “Hybrid MPI/OpenMP Parallel Program-
ming on Clusters of Multi-Core SMP Nodes”. In: 2009 17th Furomicro International

Conference on Parallel, Distributed and Network-based Processing. 2009, pp. 427—
436.

Pranav Rajpurkar et al. The Stanford Question Answering Dataset. URL: https:
//rajpurkar.github.io/SQuAD-explorer/ (visited on 10/05/2020).

Pranav Rajpurkar et al. The Stanford Question Answering Dataset. URL: https:
//rajpurkar.github.io/SQuAD-explorer/ (visited on 12/01/2018).

K Sanderson. “Lignocellulose: A chewy problem”. In: Nature (July 22, 2011).
Koo Ping Shung. Accuracy, Precision, Recall or F19 Mar. 15, 2018. URL: https://

towardsdatascience.com/accuracy-precision-recall-or-£f1-331fb37c5cb9
(visited on 10/05/2020).

University of Washington N-Body Shop Home Page. URL: http://faculty.
washington.edu/trq/hpcc/ (visited on 09/19/2020).

Sarthak Vajpayee. Transformers (State-of-the-art Natural Language Processing).
Aug. 6, 2020. URL: https://towardsdatascience.com/transformers-state-
of-the-art-natural-language-processing-1d84c4c7462b (visited on 10/05/2020).

Diego Lopez Yse. Your Guide to Natural Language Processing (NLP). Jan. 15, 2019.
URL: https://towardsdatascience.com/your-guide-to-natural-language-
processing-nlp-48ea2511f6el (visited on 10/05/2020).

70

https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1326612594/AI+Challenge+-+SQuAD+1.1+with+BERT-Base+Guidelines
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1326612594/AI+Challenge+-+SQuAD+1.1+with+BERT-Base+Guidelines
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1453719580/Gromacs+Challenge
https://hpcadvisorycouncil.atlassian.net/wiki/spaces/HPCWORKS/pages/1453719580/Gromacs+Challenge
https://help.nscc.sg/softwarehardware-information/
https://help.nscc.sg/softwarehardware-information/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
https://towardsdatascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9
http://faculty.washington.edu/trq/hpcc/
http://faculty.washington.edu/trq/hpcc/
https://towardsdatascience.com/transformers-state-of-the-art-natural-language-processing-1d84c4c7462b
https://towardsdatascience.com/transformers-state-of-the-art-natural-language-processing-1d84c4c7462b
https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1
https://towardsdatascience.com/your-guide-to-natural-language-processing-nlp-48ea2511f6e1

	Introduction
	SCC2020 - The COVID-19 Special Edition

	NSCC Aspire 1
	Cluster Configuration
	Hardware
	System Architecture

	Challenges
	User Management on User Level
	Heterogeneous System
	File Systems
	No root Access
	Brute Force Node Allocation

	Spack - WR's favorite
	Spack
	Custom Package

	Spack Chaining

	MPI Benchmarks
	MPI Variants
	OSU Benchmark
	Results

	Tinker-HP
	Architecture
	Challenge
	Installation
	MPI Performance
	Running
	Visualization
	Benchmark
	Recapitulation

	Charm++
	Key Features
	Chares
	Remote Method Invocation
	Chare Arrays
	Reductions
	Pack/Unpack
	Load Balancer
	Structured Dagger
	Adaptive MPI
	Complilation Process of Charm++ executables

	Dependencies
	Building Charm++
	Running Charm++

	Coding Challenge
	Program Architecture
	Implementation
	Main Exercise
	Bonus Exercise
	Difficulties and Optimization Ideas

	Application
	Building Options
	Execution Options
	Job-Script

	Results
	Performance Analysis

	ChaNGa
	Background
	Architecture
	Barnes-Hut Algorithm
	Smooth Particle Hydrodynamics?
	Comoving Coordinates?
	Octree?
	Ewald Summation?
	Leapfrog Integrator?
	Dependencies
	Building

	Assignment
	Running
	Parameters / Tuning
	Results
	Benchmark
	Visualisation

	ElmerFEM/ICE
	ElmerFEM
	Elmer/ICE

	Assignment
	Dependencies and Building
	Running
	Performance Tuning

	Visualisation
	Results

	BERT
	BERT - Bidirectional Encoder Representations from Transformers
	SQuAD - Stanford Question Answering Dataset

	Background
	Architecture
	Assignment
	Building
	Running
	Performance Tuning

	Results

	Gromacs
	Algorithm
	Assignment
	Dependencies
	Building
	Running
	Visualisation
	Results

	Aurora
	Vector Engine
	Usage

	Bibliography

