UH
_i_ti
.23 Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

MPI in Python

vorgelegt von

Alexander Michael Gerlach

Fakultat fiir Mathematik, Informatik und Naturwissenschaften
Fachbereich Informatik
Arbeitsbereich Wissenschaftliches Rechnen

Studiengang: Software-System-Entwicklung
Matrikelnummer: 7216258

Veranstaltung: Python im Hochleistungsrechnen
Betreuer: Jannek Squar

Hamburg, 2019-08-26

Contents

1 Introduction

2 Fundamental Concepts of MPI

2.1 Distributed Memory Model
2.2 MPI in Python
2.3 Groups and Communicators

3 Communication Types

3.1 Point-To-Point Communications
3.1.1 Blocking and Non-Blocking Communications

3.1.2 Message Probing .
3.1.3 Deadlocks
3.2 Collective Communications

3.2.1 Collective Send Operations
3.2.2 Collective Receive Operations
3.2.3 Other Collective Communications

3.3 One-Sided Communication
4 Discussion and Conclusion

References

1 Introduction

In the past few years, the popularity of Python increased tremendously, resulting
in it becoming one of the most popular programming languages to date. According
to the TIOBE index, which ranks the popularity of programming languages based
on the number of search results for queries containing the name of the language,
Python ranks third, directly ahead of C++ (TIOBE, 2019).There are several factors
that contributed to its success. Not only is it relatively easy to learn compared to
other languages such as Java or C, but it also can be applied to a wide variety of
different contexts, ranging from simple automation scripts to full-fetched web- and
machine learning applications. What is more, there is an abundance of open-source
packages available online, which facilitates the development of new solutions sub-
stantially.

However, one of the main applications Python is used for today is scientific com-
puting. Scientific computing often deals with problems that cannot be solved
by traditional methods or where conducting experiments is simply not possible,
such as astrophysics or predicting the weather (Mehta, 2015). When dealing with
scientific computing, speed and efficiency are becoming crucial factors that need to
be considered (Eijkhout, Chow, & van de Geijn, 2014). This is particularly true
when a problem involves complex calculations or the processing of large amounts
of data.

One of many ways to achieve a boost in computation performance is the Message-
Passing Interface (MPI). The goal of this paper is to give an overview of how the
Message-Passing Interface works and how it can be utilized in Python.

2 Fundamental Concepts of MPI

The Message-Passing Interface is a message-passing library standard put forward
by the MPI Forum which comprises of over 40 organizations, including parallel
computing vendors, computer scientists, and application developers (MPI Forum,
2015). Prior to the initial release of MPI-1 in 1992, no standardized way of devel-
oping parallel applications existed, making the development of such applications
even more difficult than it already was at that time (Kendall, 2019).

Hence, the MPI Forum tried to address these problems by developing a standard-
ized approach based on the message-passing programming model, which was most
commonly used by the existing libraries (Kendall, 2019). The main goal was to de-
velop a standard for designing message-passing programs that is practical, portable,
efficient, and flexible (MPI Forum, 2015). The standard itself, however, is not an
implementation, but rather a specification of what a corresponding implementation

should look like.
This chapter is going to elaborate the fundamentals of the MPI standard as well as

the setup of MPI in order to use it with Python.

2.1 Distributed Memory Model

As already mentioned above, the MPI standard is based on the message-passing
programming model, also known as the distributed memory programming model,
where data is moved from the address space of one process to the one of the other
(MPI Forum, 2015). This is done by allowing the processes to send and receive
messages containing the data that needs to be transmitted. Figure 1 illustrates
the basic structure of the distributed memory model. It is important to be aware
of the differences between a process and a thread. A process is a self-contained
execution environment and has its own address space, whereas a thread exists
within a process and shares the memory of the process with other threads (Oracle,
2019).

In contrast to the shared memory model, where all processes access the same
address space, the distributed memory model is characterized by each process
having its own local memory (Blaise, 2019). This approach yields many advantages,
but also disadvantages.

Firstly, with each process operating independently, cache coherency is not of con-
cern (Blaise, 2019). The problem of cache coherency especially occurs in shared
memory architectures based on the non-uniform memory access (NUMA) approach.
In the case of NUMA, every process has its own local memory, but the physically
distributed memory is treated as a logically shared memory (Eijkhout et al., 2014).
Hence, every process is able to access the memory of the other processes. Nonethe-
less, if two different processes are holding a reference to the same memory location
and are trying to change it at the same time, it becomes difficult to determine the
behaviour of the program (Eijkhout et al., 2014).

Secondly, it can be easily scaled as additional processes and memory do not increase
traffic as it would in a shared memory system (Blaise, 2019).

On the downside, while the shared memory model allows data to be easily shared
among processes, with the distributed memory model it is up to the programmer
to define how and when data is exchanged between processes, which may be more
difficult to work with (Eijkhout et al., 2014; Blaise, 2019).

What is more, even though each process can access its local memory relatively fast,
retrieving data from the memory of a remote process takes longer, as the process
trying to access the data may have to wait for the other process to be ready (Blaise,
2019).

BwWw NN =

CPU Memory CPU Memory

CPU Memory CPU Memory

Figure 1: Distributed Memory Model

2.2 MPI in Python

There are several packages available that add MPI functionality to Python. Nev-
ertheless, the probably most common package used for writing MPI programs
in Python is mpidpy. mpidpy is based on the latest MPI-3 standard and, thus,
facilitates switching to Python from another scientific language, such as C or C++,
since the semantics are quite similar (Dalcin, 2019). In addition, mpidpy not
only supports the communication of buffer-like objects, but also the transfer of
Python objects. However, this is not recommended due to the increase in overhead
resulting from pickeling and unpickeling the objects prior to their transmission
(Dalcin, 2019).

In order for mpidpy to work properly, an actual implementation of the MPI stan-
dard, such as MPICH or OpenMPI, and Cython have to be installed on the system
in addition to the package itself. The terminal commands for installing the required
packages can be seen in Listing 1.

brew install mpich # Mac 0S
apt install mpich # Ubuntu
sudo pip install mpidpy
sudo pip install cython

Listing 1: Installing MPI and its Dependencies

2.3 Groups and Communicators

In order for the processes to able to send and receive messages, a communica-
tion context needs to be defined to identify the receiver and sender of a message.
This is done by assigning a unique identifier, called a rank, in the form of an
integer between 0 and n — 1 to each process, whereas n is the total number of pro-
cesses (GWDG, 2019; MPI Forum, 2015). In accordance with MPI taxonomy, the
communication context is called a communicator (GWDG, 2019; MPI Forum, 2015).

Principally, two communicator types can be differentiated.

Intra-communicators are used for communicating within a group and are the most
commonly used type of communicator (MPI Forum, 2015). A group is an ordered
collection of processes, which are able to communicate with each other using their
ranks and is defined by each intra-communicator (MPI Forum, 2015).
Inter-communicators, on the other hand, define a communication context between
two non-overlapping groups of processes that allows them to communicate with
each other (MPI Forum, 2015). This is particularly helpful in situations where
multiple parallel modules need exchange messages (MPI Forum, 2015).

In mpidpy, the base intra-communicator is COMM_WORLD. It initializes COMM_ -
WORLD with an instance of the MPI.Comm class after executing the mpirun
command, which is the base class for intra-communicators (Dalcin, 2019; GWDG,
2019). It contains the number of processes defined in the -n argument of the mpirun
command and can be used to create additional communicators (Dalcin, 2019).
The methods Get_ size() and Get_rank() can be used to inquire the number of
processes in the communicator and the rank of each process. Listing 2 shows the
terminal command for executing a MPI program with two processes. Listing 3
shows a simple MPI program that queries the size of the communicator as well as
rank of each process.

Ezecutes example.py using a communicator with 4 processes
mpirun -n 2 python example.py

Listing 2: Executing a MPI program in Python

Upon executing the mpirun command on Listing 3, the program will be executed
two times. The print statement in line 6 will only be executed once, since the
if-statement in line 5 restricts it to the processor with rank 0. However, the print
statement in line 7 will be executed twice, as it is not restricted to any processor.
Listing 4 shows the output after executing the mpirun command on the example.

© 0w N s W NN =

import mpi4py as MPI

comm = MPI.Comm_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
print (f'Communicator size: {sizel}')
print (f 'Rank {rank} reporting for duty')

Listing 3: Simple MPI Program

Communicator size: 4
Rank O reporting for duty
Rank 1 reporting for duty

Listing 4: Output of Example Program

3 Communication Types

This chapter delineates the basic communication types defined in the MPI standard.
When sending data from one process to another, the data is transmitted as a
stream of bytes. mpidpy offers two different methods for sending and receiving
data. Upper-case functions are used to send and receive buffer-like objects, that is,
objects that do not have to be serialized prior to their transmission, e.g. Numpy
arrays (Dalcin, 2019). Lower-case functions on the other hand can be used to
communicate Python objects (Dalcin, 2019). However, it is strongly recommended
to stick to the upper-case functions, as python objects need to be serialized prior
to their transmission, which may impose significant overheads on memory and
processor usage (Dalcin, 2019). Hence, the following sections are mainly focusing
on the the use of the upper-case functions.

3.1 Point-To-Point Communications

Point-to-point communications are the simplest form of communication between
two processes. It involves sending data from one process to another. Regardless of
whether the lower- or upper-case functions are being used, sending data to another
process typically involves specifying the data that needs to be transmitted, the
destination process, as well as a message tag, whereas the latter two may be omitted.
If that is the case, both will be set to the default value, which is 0 (GWDG, 2019).
Respectively, the receiving process needs to specify the source of the message, the

=W N =

© oo ~ o

10
11
12
13

message tag, as well as a buffer of sufficient size where the data of the message can
be stored (GWDG, 2019). The size of the buffer must be at least equal to the size
of the transmitted data (GWDG, 2019).

If the actual message tag and source are not of importance, MPI.LANY_TAG and
MPI.ANY_ SOURCE can be used instead, allowing the process to receive any
message from any source.

Listing 5 illustrates the basic syntax for sending and receiving buffer-like objects in

mpidpy.

buf = [data, count, typel
comm. Send (buf, dest=RANK, tag=MESSAGE_TAG)
comm.Recv(buf, source=RANK, tag=MESSAGE_TAG, status=STATUS_0BJ)

Listing 5: Send and Recv Syntax

As Listing 5 shows, the actual data is being transmitted as a list containing the
data itself as well as additional information about the data.

count defines the number of elements in the buffer and type defines the type of
the data (MPI Forum, 2015). In some cases, both count and type can be omitted
if they are implied by the data itself, for instance when sending Numpy array
objects. The example given in Listing 6 shows how a numpy array is sent from one
process to another. The output of the program after executing it with two or more
processes can be seen in Listing 7.

import numpy as np
import mpiédpy

a_size = 5

if rank ==
send_buf = np.random.randint(-100, 100, a_size, dtype='i')
print(f'Data to be transmitted: {send_buf}')
comm.Send(send_buf, dest=1, tag=14)

elif rank ==
recv_buf = np.zeros(a_size, dtype='i')
print (f'Data before transmission: {recv_buf}')
comm.Recv(recv_buf, source=MPI.ANY_SOURCE, tag=MPI.ANY_TAG)
print (f'Data after transmission: {recv_bufl}')

Listing 6: Point-to-Point Example

1
2
3

1

Data to be transmitted: [0 42 72 71 98]
Data before transmission: [0 O O 0 0]
Data after transmission: [0 42 72 71 98]

Listing 7: Output of Point-to-Point Example

3.1.1 Blocking and Non-Blocking Communications

Listing 6 is an example for a so-called blocking or synchronous communication.
The print statement in line 9 will only be executed, if a corresponding receive
method has been posted and all of the transmitted data has been copied to the
local memory of the receiving process.

The MPI standard also defines a non-blocking or asynchronous communication
mode. Instead of waiting for the message transfer to complete, non-blocking send
and receive calls return immediately, regardless of whether or not the transmission
has been finished (MPI Forum, 2015). This allows the process to perform other
tasks in the meantime.

In mpidpy, the non-blocking send and receive methods have the same names as the
blocking methods, only with a preceeding I, that is, ISend() and IRecv(). After
initiating a send or receive call, the process inquires the status of the transfer to verify
whether it has been completed or not (MPI Forum, 2015). In mpidpy, the IRecv()
and ISend() methods always return an instance of the Request class, which can
then be used to get the current status of the transmission using MPI.Request.Test()
(Dalcin, 2019).

3.1.2 Message Probing

In the example given in Listing 6, the size of the Numpy array is visible to both
processes, which made it quite easy for process 1 to define a buffer of sufficient size.
In some cases, however, the receiving process may not know what the actual size
of an incoming message is. Thus, it needs to query the message size before saving
it to its local memory. This is done by probing the message before executing the
receive method (GWDG, 2019).

Listing 8 shows the syntax of the Probe method.

comm.Probe(source, tag, status)

Listing 8: Probe Syntax

© 00 9 O U s W N =

Ut e W N =

The source and tag parameters have already been discussed above. The status
parameter expects an instance of the Status class, which offers several methods
that can be used to gain information about the message, such as the source of the
message. The size of the data transmitted by the message can be queried with the
Get__elements(datatype) method (GWDG, 2019). Using this method, a buffer can
be initialized before the receive method is executed. Listing 9 illustrates how this
can be achieved.

if rank ==
a_size = 3
send_buf =
elif rank == 1:
info = MPI.Status()
comm.Probe (MPI.ANY_SOURCE, MPI.ANY_TAG, info)
sz = info.Get_elements(MPI.INT)
recv_buf = np.zeros(sz, dtype='i')
comm.Recv(recv_buf, source=0, tag=14)

np.random.randint (-100, 100, a_size, dtype='i')

Listing 9: Probe Example

3.1.3 Deadlocks

If a process tries to send (receive) data without another process calling the cor-
responding receive (send) method, a deadlock will occur. Listing 10 exemplifies
this scenario. Since the message tags defined in the send and receive methods are
different, trying to run the code snippet in Listing 10 will result in a deadlock,
as neither the send nor the receive method will return due to the absence of a
matching send / receive call.

if rank ==
send_buf = np.random.randint(-100, 100, 5, dtype='i')
comm.Send(send_buf, dest=1, tag=11)
elif rank ==
recv_buf = np.zeros(5, dtype='i')
comm.Recv(recv_buf, source=0, tag=4)

Listing 10: Deadlock Example

To avoid deadlocks, it is recommended to use the MPI.Comm.Sendrecv() method
offered by mpidpy. It combines the send and receive methods in a single method

1

o A

to avoid the situation encountered in Listing 10 (Dalcin, 2019; GWDG, 2019).
Listing 11 shows the syntax of the method.

comm.Sendrecv(send_data, dest=RANK, recv_data, source=RANK)

Listing 11: Sendrecv Syntax

3.2 Collective Communications

Collective communications are used to communicate data between multiple processes
of a group or groups of processes at the same time (MPI Forum, 2015; Dalcin, 2019).
While the MPI standard also defines non-blocking collective communications, the
mpidpy package offers blocking versions only (MPI Forum, 2015; Dalcin, 2019).
In general, two types of collective communications can be differentiated, namely
collective send and collective receive operations.

3.2.1 Collective Send Operations

Two of the most commonly used collective send operations in MPI are Beast() and
Scatter(), whereas Beast stands for broadcast. With Beast(), the same data is
distributed from a root process to all the other processes, including the root process
itself. As illustrated by Listing 12, Beast() requires two parameters, namely a send
buffer containing the data to be sent as well as the rank of the root process. It
does not require a separate buffer to store the received data, as the size of the send
and receive buffers is the same. Hence, send buffer is used to store the data after
the transmission.

Listing 13 exemplifies the broadcast operation. The output of the program after
executing it with 2 processes can be seen in Listing 14.

comm.Bcast (send_buffer=[data, count, MPI.DATA_TYPE], root=RANK)

Listing 12: Broadcast Syntax

send_buf = rank * np.arange(5, dtype='i')
print (f'Process {rank} - Data before transmission: {send_buf}')
if rank ==

send_buf = np.random.randint(-100, 100, 5, dtype='i')
comm.Bcast (send_buf, root=0)
print (f'Process {rank} - Data after transmission: {send_buf}')

10

e oW N e

N O O Re W N

Listing 13: Broadcast Example

Process 0 - Data before transmission: [0 O O O O]
Process 0 - Data after transmission: [-54 3 71 -2 -67]
Process 1 - Data before transmission: [0 1 2 3 4]
Process 1 - Data after transmission: [-54 3 71 -2 -67]

Listing 14: Output of Broadcast Example

Scatter() works quite similar to Beast(). In contrast to the broadcast operation,
each process receives a different portion of the data with each portion being equal
in size. In other words, the process with rank k receives the k-th portion of the
data. Thus, the size of the data that is supposed to be distributed to the other
processes needs to be n *x data__size, whereas n is the total number of processes
the data is being scattered to and data_size represents the size of the data each
process receives (GWDG, 2019).

As Listing 15 shows, the syntax of Beast() and Scatter() are quite similar. Since
each process, including the root process, only receives a portion of the transmitted
data, Beast() requires a separate receive buffer of size data__ size.

Listing 16 gives an example of how to use Scatter() and Listing 17 shows the output
of the example after executing it with 2 processes.

comm.Scatter(send_buffer=[data, count, MPI.DATA_TYPE], recv_buffer=[data,
< count, MPI.DATA_TYPE], root=RANK)

Listing 15: Scatter Syntax

recv_buf = np.zeros(5, dtype='i')
send_buf = None
if rank ==
send_buf = np.arange(5 * size, dtype='i')
print (f'Data to be transmitted {send_buf}')
comm.Scatter(send_buf, recv_buf, root=0)
print (f'Process {rank} received {recv_buf}')

Listing 16: Scatter Example

11

1
2
3

0w N O g W N =

Data to be transmitted [0 1 2 3456 7 8 9]
Process 0 received [0 1 2 3 4]
Process 1 received [5 6 7 8 9]

Listing 17: Output of Scatter Example

3.2.2 Collective Receive Operations

The simplest collective receive operation is Gather(). Gather() does quite the
opposite of what Beast() does. It collects an equal portion of data from every
process in a group and saves it into the local memory of the root process. As
Listing 18 shows, Gather() expects three parameters: the rank of the root process,
a send buffer as well as a receive buffer.

The size of the receive buffer must be n *data_ size, where n represents the number
of processes data is gathered from and data_ size is the size of the data portion
retrieved from each process (GWDG, 2019).

Listing 19 gives an example of how Gather() can be used with the output displayed
in Listing 20.

comm.Gather (send_buffer=[data, count, MPI.DATA_TYPE], recv_buffer=[data, count,
< MPI.DATA_TYPE], root=RANK)

Listing 18: Gather Syntax

recv_buf = None
send_buf = (rank + 1) * np.arange(5, dtype='i')
print (f'Process {rank} data {send_buf}')
if rank ==

recv_buf = np.zeros(5 * size, dtype='i')
comm.Gather (send_buf, recv_buf, root=0)
if rank ==

print (f'Data received: {recv_bufl}')

Listing 19: Gather Example

Process 1 data [0 2 4 6
Process 0 data [0 1 2 3
Data received: [0 1 2 3

8]
4]
40246 8]

Listing 20: Output of Gather Example

12

3.2.3 Other Collective Communications

There are several additional collective communication modes defined in the MPI
standard apart from the ones discussed above. For instance, Scatter() as well as
Gather() offer a vector based variant, known as Scatterv() and Gatherv(), where
the portion of each data section can be defined individually (GWDG, 2019).

Other interesting communication modes are the so-called Reduce() and Alltoall()
functions. Reduce() gathers an equal portion of data from each process within a
group, performs a reduction operation on each element of the data, and saves it to
the receive buffer of the root process. Alltoall() on the other hand is a mixture of
both collective send and receive operations. It collects data from all processes within
a group and sends the k-th portion of every data block gathered to the process with
rank k. However, due to the scope of this paper, they will not be discussed in detail.

3.3 One-Sided Communication

Both Point-to-Point and collective communications are synchronous, two-sided
communication modes, meaning that each communication call requires a sender
and receiver. Requiring two parties to participate in the communication has some
disadvantages, as it can for instance cause a delay when one of the parties needs to
wait for the counterpart to be ready (Nguyen, 2014).

To address these issues, the MPI Forum implemented one-sided communications
with the release of the MPI-2 standard (Nguyen, 2014).

One-sided communication, also known as Remote Memory Access (RMA), al-
lows a process to access the memory of a remote process without interrupting the
remote process of its current task and requiring it to interact (Nguyen, 2014).
For one-sided communications to work, the remote process, also known as the
target process, needs to define a so-called window, which is a shared memory region
(Dalcin, 2019; Nguyen, 2014). Windows define a specific memory area on the target
that can then be accessed by a so-called origin process to transfer data to or retrieve
data from the target process. (Eijkhout et al., 2014).

In mpidpy, windows can be created on several different ways. With MPL.Win.Create()
a window is created by passing a buffer to the the function (Eijkhout et al., 2014).
MPI.Win.Allocate() on the other hand lets MPI handle the memory allocation
(Eijkhout et al., 2014). This method has also been used in Listing 21. Lastly,
MPI.Win.Create dynamic() creates a window and postpones the memory alloca-
tion (Eijkhout et al., 2014).

13

© 0 N O s W N =

[e S S S S
N o s W NN = O

The MPI standard defines two different modes to access the window of a target
process. With active RMA, the window can only be accessed in a specific time
period, a so-called epoch (Eijkhout et al., 2014). An epoch is typically initiated by
calling the MPI.Win.Fence() method and lasts until the MPI.Win.Fence() method
has been called a second time (Eijkhout et al., 2014). During this time period, the
window can be accessed by the origin process. In passive RMA, the window can
be accessed at any time by the origin process (Eijkhout et al., 2014). The origin
process locks the target window, performs some transfer operations, and unlocks
the window again to make it accessible by other processes again (Eijkhout et al.,
2014).

To actually transfer data to a window, the MPI standard defined three meth-
ods: MPL.Win.Put(), MPL.Win.Get(), and MPL.Win.Accumulate().

As the name already suggests, MPL.Win.Put() is used to transfer data to the target
window. It requires two parameters: a buffer-like object containing the data that
should be saved to the remote window and the rank of the target process.
Secondly, MPL.Win.Get() is used to retrieve data from the window. It too requires
a buffer-like object where the data can be saved to as well as the rank of the target
process.

Both MPIL.Win.Put() and MPI.Win.Get() also accept an offset as a parameter that
can be used to access a different portion of the window.

Lastly, MPI.Win.Accumulate() performs a reduction operation on the data that is
transferred to the window of the target process (Eijkhout et al., 2014).

Listing 21 exemplifies the put and get operations and Listing 22 shows the output
of the example.

comm: MPI.Comm = COMM_WORLD
rank: int = comm.Get_rank()

Defining the size of the window for process 0
window_size = 100
dtype_size = MPI.INT.Get_size()

if rank == 0:

nbytes = dtype_size * window_size
else:

nbytes = 0

Creating the actual window
window: MPI.Win = MPI.Win.Allocate(nbytes, itemsize, comm=comm)

window.Fence() # Initializing epoch
if rank ==

14

18
19
20
21
22
23
24
25
26
27
28

localmem = rank * np.arange(15, dtype='i')
window.Put (localmem, 0)
window.Fence() # Ending epoch

window.Fence() # Initializing second epoch
if rank ==
localmem = np.zeros(10, dtype='i')
print(f'Initial content of localmem: {localmem}')
window.Get (localmem, O, 5). # Offset set to 5
print (f'Content after executing get method: {localmem}')
window.Fence() # Ending second epoch

Listing 21: Example of using the Put and Get methods

Initial content of localmem: [0 O 0 0 0 0 O O O O]
Content after executing get method: [5 6 7 8 9 10 11 12 13 14]

Listing 22: Output of the One-Sided Communication Example

4 Discussion and Conclusion

The goal of this paper was to give a brief overview of the Message-Passing Interface
and how it can be used in Python using the mpidpy package. The first chapter
discussed the basic structure of MPI and how to set up MPI to use it with Python.
The second chapter focused on the different communication modes defined in the
MPI standard and how they can be used in Python with the mpidpy package.

It is safe to say that the mpidpy package adds a great set of tools to Python
that might come in handy in many different situations, especially in combination
with other Python packages, such as Numpy. For instance, instead of executing
a sorting algorithm in serial, with mpidpy the work can easily be split up among
multiple different processes, resulting in a substantial boost in performance. This
is particularly helpful when dealing with large amounts of data.

What is more, mpidpy makes it significantly easier to write MPI programs, as
it automates a lot of work that has to be done manually when working with
MPT in other languages. For example, it is not necessary to call MPIInit() and
MPI.Finalize() when working with mpidpy.

Still, the documentation of the mpidpy package is rather insufficient, specifically
when dealing with advanced topics, such as one-sided communications. Hence, it
often takes quite a lot of research to understand the way an MPI function works
in Python and it often involves reading the documentation of other MPI libraries.

15

This consumes a lot of time and adds yet another hurdle to the rather complex
nature of the MPI framework.

Nevertheless, mpidpy offers a lot and it is strongly recommended to take a closer
look at the package and how it can maybe be utilized for existing or upcoming
projects.

References

Blaise, B. (2019). Introduction to parallel computing. Retrieved 2019-06-01, from
https://computing.llnl.gov/tutorials/parallel_comp

Dalcin, L. (2019). Mpi for python. Retrieved 2019-06-01, from https://mpidpy
.readthedocs.io/en/stable/index.html

Eijkhout, V., Chow, E., & van de Geijn, R. (2014). Introduction to high performance
scientific computing. Retrieved from http://pages.tacc.utexas.edu/
~eijkhout/Articles/EijkhoutIntroToHPC.pdf

GWDG. (2019). Mpijpy. Retrieved 2019-06-01, from https://info.gwdg.de/
wiki/doku.php?id=wiki:hpc:mpidpy

Kendall, L. (2019). A comprehensive mpi tutorial resource. Retrieved 2019-06-01,
from https://mpitutorial.com

Mehta, H. K. (2015). Mastering python scientific computing. Packt Publishing
Limited. Retrieved from https://subscription.packtpub.com/book/big
_data_and_business_intelligence/9781783288823

MPI Forum. (2015). Mpi: A message-passing interface standard. Message Passing
Interface Forum. Retrieved from https://www.mpi-forum.org/docs/

Nguyen, L. Q. (2014). Mpi one-sided communication. Retrieved 2019-
06-19, from https://software.intel.com/en-us/blogs/2014/08/06/one
-sided-communication

Oracle. (2019). Processes and threads. Retrieved 2019-08-25, from
https://docs.oracle.com/javase/tutorial/essential/concurrency/
procthread.html

TIOBE. (2019). TIOBE Index for August 2019. Retrieved 2010-08-16, from
https://www.tiobe.com/tiobe-index/

16

https://computing.llnl.gov/tutorials/parallel_comp
https://mpi4py.readthedocs.io/en/stable/index.html
https://mpi4py.readthedocs.io/en/stable/index.html
http://pages.tacc.utexas.edu/~eijkhout/Articles/EijkhoutIntroToHPC.pdf
http://pages.tacc.utexas.edu/~eijkhout/Articles/EijkhoutIntroToHPC.pdf
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:mpi4py
https://info.gwdg.de/wiki/doku.php?id=wiki:hpc:mpi4py
https://mpitutorial.com
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783288823
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781783288823
https://www.mpi-forum.org/docs/
https://software.intel.com/en-us/blogs/2014/08/06/one-sided-communication
https://software.intel.com/en-us/blogs/2014/08/06/one-sided-communication
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html
https://www.tiobe.com/tiobe-index/

	Introduction
	Fundamental Concepts of MPI
	Distributed Memory Model
	MPI in Python
	Groups and Communicators

	Communication Types
	Point-To-Point Communications
	Blocking and Non-Blocking Communications
	Message Probing
	Deadlocks

	Collective Communications
	Collective Send Operations
	Collective Receive Operations
	Other Collective Communications

	One-Sided Communication

	Discussion and Conclusion
	References

