
University of Hamburg
Department: Computer Science

Essay

Reproducibility

By: Tim Rolff

Supervised by: Dr. Michael Kuhn



1 Introduction
Reproducible science affects everyone, this is one of the reasons why repro-
ducibility is a supporting pillar of science. As for example medical treatment
is based on research, and a recent study of Bayer stated, that only 6 of 53
studies about cancer could be reproduced by them [BE12]. Therefore it is
necessary to provide results which could be used as a reliable and reproducible
source. Since computers became available for most scientists and researchers,
it raises the question if they are reliable enough to support facts and theories.
Because empirical science rely on the idea that every observation which have
been made could be made again, given the tools. As these tools get more dif-
ficult and harder to use it is also more challenging to achieve correct results.
This may be one of the reasons why some scientists considered science in a
“Replication Crisis” around 2010 [Sch14]. Another reason for this could be
the often interchangeably used concepts of reproducibility and replicability
which are often not defined precisely and therefore depends heavily on the
research field and the authors.

In this paper I try to give an overview over the field of reproducible science
including - but not limited to - the context of reproducibility in computer
science and especially in computer simulations.

2 Background

2.1 What is Reproducibility / Replicatibility

Before starting deeper into the topic, I want to give a brief overview what
reproducibility is. First of all it is extremely hard to get the definition by
looking it up, as for example the Oxford dictionary gives the following defini-
tion: “Able to be reproduced or copied.”1 for the word “reproducible”, where
the word “replicate” is defined as “Make an exact copy of”2. One might ar-
gue that the word “exact” states the difference between being reproducible
and replicatable, but in my view the term “copy” indicates that scientific
experiments are identical to each other. If that’s the case, each experiment
is nevertheless a replica of each other and therefore not reproducible by defi-
nition, because a copy is always an exact replication. But arguing with word
definitions is always cumbersome, therefore an often used argumentation is
made by J. T. Leek and R. D. Peng [LP15] which define reproducibility as:

1https://en.oxforddictionaries.com/definition/reproducible
2https://en.oxforddictionaries.com/definition/replicate

1

https://en.oxforddictionaries.com/definition/reproducible
https://en.oxforddictionaries.com/definition/replicate


“We define reproducibility as the ability to recompute data ana-
lytic results given an observed data set and knowledge of the data
analysis pipeline.”

— J. T. Leek and R. D. Peng, [LP15]

While this definition is very common and a similar definition has been made
by [Son07], it has some problems. First of all this definition of reproducibil-
ity might result in wrong results, if the data set was measured wrong or got
cherrypicked for specific data. This might therefore result in the same wrong
recomputed results as the original publication. Consequently having a repro-
ducible experiment with this definition does not imply a correct conclusion.
In another paper R. D. Peng defines reproducibility for publications in com-
puter science, in which he defines multiple levels of reproducibility (see figure
1).

Figure 1: Definition of reproducibility by R. D. Peng [Pen11]

This special definition suffers the same problems as the previous definition
and extend it for publications which include source code. The consequence is
that the source can be just recompiled or the program which is shipped can
be run again with different data. This has the problem, that it may not show
any bug or error in the code and therefore does not contribute to reproducible
research. But it is arguable that the source code should be checked before
running the code again or should have been rewritten to avoid the same errors
as the original source code, then this could be also possible with a publication
and the data only, which again does not avoid wrong data. Another approach
to define reproducibility has been made by C. Drummond [Dru09] where he
stated, that his definition of reproducibility is, that the conclusion of a single
experiment can be verified with a different experiment. This results in the
fact that another researcher doesn’t need to use the same experiment to come
to the same conclusion as the original author of a paper. He also extends the
definition to different levels of reproducibility, where an experiment, which
is more different from the original one, is more valuable than one which does

2



simply use the same tools. He also states, that replication is the weakest form
of reproducibility, because it aims to copy the original experiment exactly
with all it flaws.

While this definition has the ability to have different experiments which
come to the same conclusion, it however has also some problems. What if
no other experiment is known to support the conclusion of the first exper-
iment or would be to costly in time or money to prove the results. Then
it is less reproducible by the definition of Drummond and is therefore has
not same the value as an different experiment which supports the first one.
This might be true for experiments which rely on source code only and ac-
cordingly could just be run again on another computer. This clearly doesn’t
offer any value because as argued before, the source code might have bugs
or other errors which are not considered and hence lead to the same or an-
other wrong conclusion of the first experiment. But in a more traditional
experiment, as in physics or chemistry, there is always the possibility that
the measurement utility might have been defect or used incorrectly. As for
example in the of the “faster than light neutrinos” experiment, where a loose
cable and a slightly faster CPU clock3 resulted in wrong published results.
So having another team rebuild the experiment with different tools should
give other results if the first experiment was not executed correctly. Because
it is unlikely that the same error made be twice, except if the experiment or
the theory behind it is wrong. If that’s the case it is clearly necessary to have
a supporting or contradicting experiment which show other results, but this
leads then to the question which experiment was wrong. Additionally having
two experiments, which came to the same conclusion does not indicate that
one experiment is correct and reproducible because a false experiment could
imply a true conclusion (a⇒ b).

For the rest of this paper I want to define replicatibility as reproducing an
experiment as an exact copy of on existing one, which results in the same
(wrong) results and conclusions. While I want to define reproducibility as
a mixture of both papers, where it is necessary to have code and data as a
reference as in [Pen11] and [LP15] on the original approach to the specific
problem. This should avoid getting a completely different experiment, which
is not related to the original one, but not rely on them to be able to rewrite
or rebuild the experiment for ground up without using the exact same tools,
to avoid the same errors which could have been made by the original authors.
Even further it would be ideal to reproduce the same results as C. Drum-

3https://en.wikipedia.org/wiki/Faster-than-light_neutrino_anomaly
last visited at 02.08.2017

3

https://en.wikipedia.org/wiki/Faster-than-light_neutrino_anomaly


mond [Dru09] stated by an different experiment if it is possible to support /
contradict the reproducibility of conclusions of the original experiment but
this doesn’t make a reproduction of the same experiment with different tools
less valuable if the theory behind the experiment is well supported by other
facts and experiments. Because these experiments might show some errors in
the original measurements and therefore guarantee the reproducibility of an
specific experiment. The results can therefore be used to support / contradict
the reproducibility of conclusions of a theory.

3 Reproducibility in Simulations
While a typical experiment rely heavily on measuring tools to collect data
for a conclusion, the line between simulations and traditional experiments
is not that sharp anymore with the influence of computers in science such
as in physics with e.g. the CERN experiment, where a computer system se-
lects which data should be recorded, because the amount of data is to large
to store4. While other experiments generate data which can be compared
to the real world such as weather / climate simulations. Having such addi-
tional components introduce another layer of uncertainty where errors can
happen. Additionally there is a difference between run- and compile- time
reproducibility, which I want to address in the following sections.

3.1 Runtime (Ir-) Reproducibility

By using a computer as an additional layer for an experiment or as an sim-
ulation device and because there is a variety of effects which can result in
irreproducibility, such as floating-point errors, non-deterministic algorithms,
hardware defects / effects and unknown internals of the hardware itself or
the physical influence on these devices as for example by quantum effects, it
is challenging to achieve a reproducible program. In this section a want to
address these effects which happen mostly at runtime.

3.1.1 Floating-Point Calculation

First of all, a floating-point calculation, which is calculated accordingly to
the IEEE 754 standard, is deterministic on the same machine in the context,
that it returns the same value for the same input and under the condition,
that the calculation happens only in one thread. But because many modern
simulations rely heavily on the use of multiple processors, this determinism

4https://home.cern/about/computing/processing-what-record

4

https://home.cern/about/computing/processing-what-record


is not always given, such as in the following case which K. Diethelm describes
in [Die12]. Lets consider we have an program which runs on four cores, each
of these cores compute a calculation and return the computed value to the
first core which then calculates the sum of all results:

1012
core 1

+−1012
core 2

+ 10−8

core 3
+ 10−8

core 4
= 2 · 10−8

While this results in the correct value now lets consider that the order in
which the cores finished is the following:

1012
core 1

+ 10−8

core 3︸ ︷︷ ︸
1012

+−1012
core 2

+ 10−8

core 4
= 10−8

Because the floating-point accuracy is not high enough to calculate 1012+10−8

correctly, the value get truncated. This leads to a wrong result, which differs
from the first value by 50%. As this example show it is fairly simple to get a
irreproducible program, without engage a specific use-case or a design strat-
egy. As a solution, it is possible to use one of many algorithms which aims
to make floating-point calculations reproducible, such as “Correct Rounding
and a Hybrid Approach to Exact Floating-Point Summation” [ZH09] which
has the drawback, that it needs an additional array and computing time. Al-
ternatively other approaches can be used such as interval arithmetic where
the result is guaranteed to be in between the given upper and lower bound,
uncertainty quantification, fixed-point arithmetic or by simply using a higher
accuracy through specific libraries, as for example GMP and MPFR.

3.1.2 Non-Deterministic Algorithms

Another source of irreproducibility might be the use of a non deterministic
algorithm, as for example if the simulation get driven by some stochastic
process or other random processes. But this is not restricted to random
processes in the first place, a program might be get irreproducible by changing
some algorithms. One might argue, that changing an algorithm is always non
deterministic, but I also want to point out, that even changing a formula can
result in an non deterministic algorithm. Take for example the formula a ·b+
a ·c it might be better to rewrite this as a · (b+c) to simply gain performance
or achieve better readability. This happens to be a non deterministic floating-
point transformation where

a · (b+ c) 6= a · b+ a · c

5



is not guaranteed to give the same result5. In this case it might be reasonable
to avoid using different algorithms, by properly assigning a new version num-
ber to the program and avoid using different versioned programs. It might
also the case that the real implementation of an algorithm is unknown, be-
cause it wasn’t described properly in the publication as for example if the
original publication uses an stable sorting algorithm, the reimplementation
might be an unstable one, which therefore result in wrong results. These kind
of irreproducibilties can be avoided by documenting the used algorithms cor-
rectly or publish the source code simultaneously with the paper.

3.1.3 Hardware and Environment Effects / Defects

Even if the program itself is perfectly written and avoids irreproducible be-
havior it might be the case, that the results are irreproducible. This can be
caused by defect hardware or by hardware which happens to have a hardware
bug, such as the famous Pentium-FDIV-Bug, the Intel Skylake and Kaby-
Lake Hyperthreading or the Ryzen FMA3 bug. While such huge bugs are
very rare, there a several minor bugs, which are not fixed yet and which
might not have been taken into account while running the simulation. As
for example in the Kaby Lake architecture6. While it is mostly impossible
to fix those errors without fixing the microcode or redesign the CPU, these
errors can often be avoided, by carefully writing a workaround or using a
newer compiler which is aware of those bugs. In addition to the hardware
bugs there might be bugs caused by quantum sized effects. As for example
in memory, where bits might get flipped by magnetic or electrical influence.
While this can be prevented using ECC-memory there are other effects such
as leakage of electrons in the semiconductor where an electron tunnel through
a transistor and might cause an unwanted switch of the circuit, which could
result in irreproducible behavior and can’t be prevented easily.

Equally to the just discussed hardware effects / defects there a several in-
fluences on a program, by its runtime environment, such as bugs in used
programs or the operating system. These can influence for example the score
of a benchmark or the runtime of a simulation. Because most software rely
on the operating system for file input/output or drivers for network it might
be the case. By changing these the program might give irreproducible results,
as for an example in a benchmark or a runtime measurement. It could also
be the case that the topology of a network, or the load of a system, could

5https://gcc.gnu.org/wiki/FloatingPointMath
6https://www.intel.com/content/dam/www/public/us/en/documents/

specification-updates/7th-gen-core-family-spec-update.pdf

6

https://gcc.gnu.org/wiki/FloatingPointMath
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/7th-gen-core-family-spec-update.pdf


influence these. Especially in the case of a runtime measurement. Even if
that is not the case, it is possible that the used tools are not reproducible, or
the original paper used another version of a tool, that happen to introduce
a irreproduibility over multiple version and therefore don’t ensure the same
outcome. It is also possible to go further and argue that the system was in-
fluenced by / infected with malicious software or a background process such
as anti-virus system which interacts with the program in a way, that changes
data and therefore result in irreproducible behavior.

3.2 Compiletime (Ir-) Reproduciblity

Another process which causes another layer of uncertainty is the compilation
of the source code. Therefore many attempts have been made to support a
reproducible build for a specific program, in order to achieve a deterministic
environment. One of the main reason to have a reproducible build environ-
ment, is to improve the debugging system. Because if the program code is
guaranteed to be deterministic, it is possible to reproduce an error on an-
other system, but also to check for bit-reproducibility. As for example in
the ICON model (see [Rei15] for more details). Additionally having a deter-
ministic build also provides a way to compute a hash for an executable to
confirm its identity. In order to achieve a reproducible build, it is necessary
to overcome multiple problems as described in [Lun15] (see list 1).

• Timestamps / Timezone

• Local

• File- order / paths

• UUID (Universally Unique Identifier)

• CPU-specific compilation

• Version information

• Environmental variables

• Compiler search paths

List 1: Common problems in a reproducible build according to [Lun15]

It is fairly obvious that timestamp / timezone, locals and version informa-
tion which get compiled into the executable can’t result in a reproducible

7



build. Because it is impossible to get the same starting time / date of the
original building process without manipulating the system clock. Therefore
by compiling them into an executable, it results in a different binary for dif-
ferent users at different conditions at compiletime. This is also the case for
environmental variables such as the system name or special paths to libraries
and programs. Those get then compiled into the final executable and result
in different linked libraries and include directories.

Another common problem for reproducible builds is the compilation for a
specific processor architectures, these can cause the generation of different
instructions even for the same platform. While this can be prevented using
the lowest instruction set for a platform that need to be supported, it is not
possible for different processor architectures, such as x86 in contrast to x86-
64 or ARMv8. Having such a restriction it may not always be achievable to
create a reproducible build across different architectures, because it might be
necessary to optimize the program for a specific platform to reduce runtime
or memory consumption. But it should be noted, that for a specific architec-
ture it should produce a reproducible build to achieve at least a reproducible
build for the given architecture in order to get an overall reproduciblity.

Additionally to the CPU-specific compilation there are processes which re-
sults in a non reproducible build by default, as for example with Address
Space Layout Randomization (ASLR) or older compilers such as the gcc-
3.3.1 with the -fbranch-probabilities compiletime argument set7. When this
argument is set, it calculates the branch properbilty with the help of a ran-
dom number which is not deterministic and therefore lead to different com-
piler outputs. It is also to consider, that compilers are just software and
consequently have bugs, which might cause different binary outputs, for a
compilation process. This also applies to the other used software as men-
tioned previously. Also to mention is that some compilers, including the
gcc, search in specific paths if they could not find a specified library, which
can lead to a wrong linked executable, if there happen to be the required
library in the compiler search path. While this isn’t problematic for a build,
which does not require to be reproducible, it can result in a non reproducible
build, because there are a number of difficulties which arise with this. First
if the requested library is binary compatible to older / newer libraries and
couldn’t be found, the compiler can just link an older / newer library which
then result in a wrong version. Second, even if the library version is the
same, it could be that it was linked with or without some extensions or with

7https://gcc.gnu.org/onlinedocs/gcc-3.3.1/gcc/Optimize-Options.html

8

https://gcc.gnu.org/onlinedocs/gcc-3.3.1/gcc/Optimize-Options.html


CPU-specific instructions which also conclude in a irreproducible build as
mentioned earlier. Luckily the wrong environmental variables and compiler
search paths can be prevented by using a proper tool which sets the environ-
mental variables before calling the compiler and jails them in a reproducible
environment. A possibility for this might be a virtual machine or a container
to avoid wrong search paths.

4 Best Practices
After listing these problems, which can cause an irreproducible build, I want
to introduce some best practices as proposed by the National Research Coun-
cil (US) Committee on Responsibilities of Authorship in the Biological Sci-
ences [Cec03] and extended by Stodden et al. [SM14]. These can prevent
some of the most common errors, which can occur in any kind of publication.
First of all, [Cec03] state that everything which is related to a publication,
should be published, to ensure that the publication can be rebuild from
scratch. This includes the original measured data with measuring errors.
The used algorithms, with there specification and the expected output for
a given input, as well as the used programs, instruments and an instruction
how the instruments got calibrated. Additionally the data and the source
code should be documented extensively to avoid ambiguities between the
publication and the data / source code. This includes a proper description,
what the function should return for its input space and what happens in case
of an error or wrong input data. If possible the source code should include
some tests, which ensure the correct functionality of the functions and can
be used as a reference how to use these.

When releasing data, it is important to have it as open as possible, to al-
low other researchers to work on it and check for reproducibiltiy. With a
commercial or closed data set this might not be possible at all or only to
few other researches, which therefore makes the publication less valuable.
The same applies to the source code, a publication which doesn’t include the
source code or uses a proprietary program, can’t be check against program-
ming or logical errors, and is therefore not as valuable as an publication with
open source code. This doesn’t imply that the source code should be avail-
able for everyone. In fact it could still be proprietary and / or commercially
distributed for other projects, but this shouldn’t be the case for other non
commercial research projects. As a way to achieve this, a dual licensing of
the source code / data and / or signing a non-disclosure agreement to avoid
that the original data / source code gets publicly available, approach can be

9



used. Also if the data or the source code is from a third party, it should be
cited correctly to avoid plagiarism and to ensure that the data was not mod-
ified. While Stodden et al. don’t forbid modification in general, it should at
least be noted what data / source code has changed. This can be simplified
with a source control tool to make this a simple process, where others can
skip through the changes on the data / source code. An often overseen re-
quirement for the data is to have a stable infrastructure, which can serve the
data set over many years. It might take some time before other researchers
want to reproduce the results or use the measured data for other research
projects. Therefore having a good infrastructure is necessary to avoid the
loss of valuable research data.

While it may not be always possible, to achieve a reproducible program,
because this process might be to time / memory consuming in runtime as
well as in development or simply to expensive, there is another common
problem which arise with this. These problem got addressed by [Die12] and
arise more often as research software get more available, which results in that
these type of software get often used by users without that kind of an com-
puter science background. Because many users without a computer science
background have the expectation, that the program is infallible or that for
a given input the program should return the same output. If this is not the
case, it is then an often made assumption, that the program has a bug. It
is therefore important to provide a simplified insight to the program with its
data and source code, which allows users to understand the kind of problems,
which occur with an irreprodcible program. This has also the advantage that
errors in the publication can be found by potentially more people, especially
in an interdisciplinary publication.

If the publication is not reproducible, this does not mean that it can’t be
used for research in general. [Die12] suggest for example that the results can
be used as an approximation of the real value and to support a theory. Al-
ternatively the program can be run multiple times and then get evaluated by
standard statistical methods such as calculating the minimum / maximum,
the mean value and the standard deviation, etc..

5 Conclusion
While it is not always possible to achieve reproducibility for a program it
should be the gold standard for publications in general. Because they can
affect everyone and many modern achievements such as weather / clima pre-
diction or medicine rely on having reproducible research, as well as other

10



researchers which build their publications on existing ones. In addition to
the initially described problem, that 47 of 53 studies couldn’t be reproduced
[BE12], there is a discrepancy between the definition of reproducibility be-
tween different research fields or even research groups. These need to change
to a unambiguous clear definition on which all agree. This avoids that repro-
ducible research is considered to be replicatable research by other research
fields / groups and the other way around.

References
[BE12] C. Glenn Begley and Lee M. Ellis. “Drug development: Raise stan-

dards for preclinical cancer research”. eng. In: Nature 483 (7391
2012). Journal Article, pp. 531–533. issn: 0028-0836. doi: 10 .
1038/483531a. eprint: 22460880 (cit. on pp. 1, 11).

[Cec03] Thomas R. Cech. Sharing Publication-Related Data and Materi-
als. Ed. by Sciences, National Research Council Committee on Re-
sponsibilities of Authorship in the Biological. 2003. doi: \url{10.
17226/10613} (cit. on p. 9).

[Die12] Kai Diethelm. “The Limits of Reproducibility in Numerical Simula-
tion”. In: Computing in Science & Engineering 14 (1 2012), pp. 64–
72. issn: 1521-9615. doi: 10.1109/MCSE.2011.21. (Visited on
06/07/2017) (cit. on pp. 5, 10).

[Dru09] Chris Drummond. Replicability is not Reproducibility: Nor is it
Good Science. 2009. url: http://www.csi.uottawa.ca/~cdrummon/
pubs/ICMLws09.pdf (visited on 05/22/2017) (cit. on pp. 2, 4).

[LP15] Jeffrey T. Leek and Roger D. Peng. “Opinion: Reproducible re-
search can still be wrong: Adopting a prevention approach”. In:
Proceedings of the National Academy of Sciences 112 (6 2015). aAs-
sociate Professor of Biostatistics and Oncology and jtleek@jhu.edu
bAssociate Professor of Biostatistics, Johns Hopkins University,
Baltimore, MD, pp. 1645–1646. issn: 1091-6490. doi: 10.1073/
pnas.1421412111. url: http://www.pnas.org/content/112/6/
1645.full (cit. on pp. 1–3).

[Lun15] Lunar. How to make your software build reproducibly. Provide a
verifiable path from source to binary. 2015. url: https://reproducible.
alioth.debian.org/presentations/2015-08-13-CCCamp15-
outline.pdf (visited on 06/09/2017) (cit. on p. 7).

11

http://dx.doi.org/10.1038/483531a
http://dx.doi.org/10.1038/483531a
22460880
http://dx.doi.org/\url{10.17226/10613}
http://dx.doi.org/\url{10.17226/10613}
http://dx.doi.org/10.1109/MCSE.2011.21
http://www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
http://www.csi.uottawa.ca/~cdrummon/pubs/ICMLws09.pdf
http://dx.doi.org/10.1073/pnas.1421412111
http://dx.doi.org/10.1073/pnas.1421412111
http://www.pnas.org/content/112/6/1645.full
http://www.pnas.org/content/112/6/1645.full
https://reproducible.alioth.debian.org/presentations/2015-08-13-CCCamp15-outline.pdf
https://reproducible.alioth.debian.org/presentations/2015-08-13-CCCamp15-outline.pdf
https://reproducible.alioth.debian.org/presentations/2015-08-13-CCCamp15-outline.pdf


[Pen11] Roger D. Peng. “Reproducible Research in Computational Science”.
eng. In: Science (New York, N.y.) 334 (6060 2011). Journal Article,
pp. 1226–1227. issn: 1095-9203. doi: 10.1126/science.1213847.
eprint: 22144613 (cit. on pp. 2, 3).

[Rei15] D. Reinert, G. Zängl, Prill F., A. Fernandez del Rio, R. Potthast,
D. Rieger, Schröter, J., Förstner, J., C. Walter, R. Ruhnke, and Vo-
gel B. Working with the ICON Model. Practical Exercises for NWP
Model and ICON-ART. 2015. url: https://www.earthsystemcog.
org/site_media/projects/dcmip-2016/ICON_tutorial.pdf
(visited on 06/18/2017) (cit. on p. 7).

[Sch14] Jonathan W. Schooler. “Metascience could rescue the ‘replication
crisis’”. In: Nature News 515 (7525 2014), p. 9. doi: 10.1038/
515009a (cit. on p. 1).

[SM14] Victoria Stodden and Sheila Miguez. “Best Practices for Computa-
tional Science: Software Infrastructure and Environments for Re-
producible and Extensible Research”. en. In: Journal of Open Re-
search Software 2 (1 2014). vcs@stodden.net Columbia University
shekay@gmail.com. issn: 2049-9647. doi: 10.5334/jors.ay. url:
https://openresearchsoftware.metajnl.com/articles/10.
5334/jors.ay/ (cit. on p. 9).

[Son07] Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Ben-
gio, Leon Bottou, Geoffrey Holmes, Yann LeCun, Klaus-Robert
Müller, Fernando Pereira, Carl Edward Rasmussen, Gunnar Rätsch,
Bernhard Schölkopf, Alexander Smola, Pascal Vincent, Jason We-
ston, and Robert Williamson. “The Need for Open Source Soft-
ware in Machine Learning”. In: Journal of Machine Learning Re-
search 8 (Oct 2007), pp. 2443–2466. issn: ISSN 1533-7928. url:
http : / / www . jmlr . org / papers / volume8 / sonnenburg07a /
sonnenburg07a.pdf (cit. on p. 2).

[ZH09] Yong-Kang Zhu and Wayne B. Hayes. “Correct Rounding and a
Hybrid Approach to Exact Floating-Point Summation”. In: SIAM
Journal on Scientific Computing 31 (4 2009), pp. 2981–3001. issn:
1064-8275. doi: 10.1137/070710020 (cit. on p. 5).

12

http://dx.doi.org/10.1126/science.1213847
22144613
https://www.earthsystemcog.org/site_media/projects/dcmip-2016/ICON_tutorial.pdf
https://www.earthsystemcog.org/site_media/projects/dcmip-2016/ICON_tutorial.pdf
http://dx.doi.org/10.1038/515009a
http://dx.doi.org/10.1038/515009a
http://dx.doi.org/10.5334/jors.ay
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.ay/
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.ay/
http://www.jmlr.org/papers/volume8/sonnenburg07a/sonnenburg07a.pdf
http://www.jmlr.org/papers/volume8/sonnenburg07a/sonnenburg07a.pdf
http://dx.doi.org/10.1137/070710020

	Introduction
	Background
	What is Reproducibility / Replicatibility

	Reproducibility in Simulations
	Runtime (Ir-) Reproducibility
	Floating-Point Calculation
	Non-Deterministic Algorithms
	Hardware and Environment Effects / Defects

	Compiletime (Ir-) Reproduciblity

	Best Practices
	Conclusion

