
University of Hamburg
Department: Computer Science

Research Paper

Generate a Reproducible
Environment for Spack

By: Tim Rolff

Supervised by: Dr. Michael Kuhn

Contents
1 Introduction 2

2 What is Spack? 2
2.1 Basic Usage . 4
2.2 Package Creation . 5

3 Current Problems When Building Packages 6

4 Implementations 8
4.1 Basics . 8

4.1.1 Chroot . 8
4.1.2 Mount Bind . 9

4.2 Implementation Overview . 9
4.2.1 Spack Structure . 9
4.2.2 Utility Functions . 10
4.2.3 Spack Shutdown Hook 11
4.2.4 Command Line . 11

4.3 Whitelisting . 12
4.4 Distribution Package Manager 14
4.5 Systemimages . 16
4.6 Container System . 19
4.7 Virtual Machine . 21

5 Conclusion 22

1

1 Introduction
Managing or compiling software in an High-Performance-Computing (HPC)
environment is often a challenge. Therefore it is useful to provide software
which manages and abstracts these repetitive tasks. A great tool, which is
especially designed for the HPC environment, is Spack [Gam17b], [Gam16].
While Spack aims for simple usage and usability it has some flaws when it
comes to the management of jailed build environments. In this paper I want
to address this issue and propose / implement multiple solutions to solve this
problem.

2 What is Spack?
Before I go into details, I want to briefly introduce Spack [Gam15]. Spack
is designed as a package manager for High-Performance-Computing environ-
ments such as the Deutsches Klima Rechenzentrum (DKRZ) or the Livermore
Computing Center [Gam16]. While most HPC-Centers have their own tools
and software to manage their environment, many additional software de-
pends on libraries and specific compilers. Further to the dependencies of the
used software each user has different needs as well, as for example different
libraries or program versions and build systems. With these, there are also
often specific compilers for MPI or CUDA required, which also depend on the
users needs. Managing all these is quite a challenge, which often results in a
time consuming tasks to compile the newest software. This is where Spack
comes into place, Spack tries to abstract all libraries into simple packages
which contains the information about its build system and the dependencies
to build a specific package. Furthermore Spack manage the available compil-
ers, which can be used to compile the specific package. While Spack manage
the underlining build systems, it does not try to replace them (see figure 1).
This ensures that the user can use any build system, if it can be accessed by
command line or an API. The build systems, which are already supported
by Spack are Autotools1, CMake2 and Make3, as well as some other build
systems for R and Python (see [Gam17d]). Further Spack offers the function-
ality to support multiple packages of the same library with different compile
options and / or versions and / or compilers. While this can be also used
to reduce compiletime by reusing the already compiled packages. The main
benefit is to avoid a collision with a wrong linked library or program. This

1https://www.gnu.org/software/automake
2https://cmake.org
3https://www.gnu.org/software/make/

2

https ://www.gnu.org/software/automake
https://cmake.org
https://www.gnu.org/software/make/

Figure 1: The Spack hierarchy. On top is the Spack implementation, which
manages dependencies and build systems. Underneath are the typical build

systems. Source: [Gam16].

also results in reproducible builds, which might be important for some users,
especially in the case of scientific research.

While most package systems are already build into the operating system
(e.g. apt, pacman, yum for Linux distributions) or get shipped with other
programs (e.g. pip for python) Spack tries a different approach by being as
lightweight as possible. This allows the user to use Spack in the home direc-
tory without any special privileges. which is often the case, when installing
software with a regular package manager. Therefore it is only necessary to
clone Spack from its repository into the home directory via:

$ git clone https://github.com/LLNL/spack.git

This downloads all necessary files to run Spack itself, without installing it
into the typical Python environment by running setup.py. Although Spack
itself is independent from the Python environment, it is necessary to have
Python along with some tools such as a compiler, tar, bz, unzip etc. and libc
installed in order to run Spack and build packages with it.

3

https://github.com/LLNL/spack.git

2.1 Basic Usage

To install a package it is only necessary to run [Gam17b]:

$./spack install bash

This example compiles and installs the latest version of Bash, which is known
to Spack. Further the command ensures that the necessary dependencies
ncurses and readline get compiled before the compilation of Bash. It also
guarantees that these libraries get linked into the binary via an rpath or a
static library.

It may not be always sufficient to use the latest Bash version, therefore it is
also possible to run

$./spack install bash@4 .3

to install Bash as version 4.3. As mentioned before, Spack makes sure, that
both installed Bash versions can coexist. To ensure that there is no collision
between two packages of the same name, Spack assigns a hash to each con-
figuration. It then get their own installation directory. In addition to these
simple commands, there is the possibility to set the custom compiler by

$./spack install bash@4 .3 %gcc@7.2

or by setting additional compiler flags through

$./spack install bash@4 .3 cppflags =\"-O3\"

For other possibilities see [Gam17b] and especially [Gam17c].

4

2.2 Package Creation

Such as the most package systems, Spack offers the possibility to create
custom packages [Gam17b]. These could be configured, to fit the needs of
individual HPC environments. An example for such a package can be seen
in listing 1.

c l a s s Bash (AutotoolsPackage) :
u r l = " https : // f tp . gnu . org /gnu/bash/bash −4.4 . ta r . gz"

ve r s i on (’ 4 . 4 ’ , ’ 148888 a7c95ac23705559b6f477dfe25 ’)
v e r s i on (’ 4 . 3 ’ , ’ 81348932 d5da294953e15d4814c74dd1 ’)

depends_on (’ ncur se s ’)
depends_on (’ readl ine@5 . 0 : ’)

de f con f igure_args (s e l f) :
spec = s e l f . spec
re turn [

’LIBS=−lncursesw ’ , ’−−with−cu r s e s ’ ,
’−−enable−r e ad l i n e ’ ,
’−−with−i n s t a l l e d r e ad l i n e ={0} ’
. format (spec [’ r e a d l i n e ’] . p r e f i x) ,

]

Listing 1: Example for a simple package
which is shipped with the Spack package manager.

Source: https://github.com/LLNL/spack/blob/develop/var/spack/
repos/builtin/packages/bash/package.py, visited on 19.09.2017

A package file currently consist of a directory inside the Spack dictionary
structure and a Python file, which contains all necessary information to build
the package. For this given example, the basic package type is already de-
fined by the base class. Hence the example package is an Autotools package,
which already calls most of the required steps for the build process. In order
to download the given package the url is specified by the url parameter of the
class and the given version number. In most cases Spack tries to extrapolate
the new URL from the given one, by replacing the version number. But it is
also possible to specify the URL for each version independently. In addition
to the version number, the package also defines its dependencies by the de-
pends_on command which are used to create the dependency graph. In this
example the package requires some specific compile time arguments. They

5

https://github.com/LLNL/spack/blob/develop/var/spack/repos/builtin/packages/bash/package.py
https://github.com/LLNL/spack/blob/develop/var/spack/repos/builtin/packages/bash/package.py

can be specified within the configure_args function. This sets all the neces-
sary packages for the Bash build system, such as the installation directory of
the previous compiled readline.

In order to create a package with the necessary information to compile the
program, it is necessary to call

$./spack create url

which creates the necessary boilerplate code to write a custom package (see
[Gam17b] and especially [Gam17a] for more details).

3 Current Problems When Building Packages
Spack usually works without any difficulties when compiling a new program,
under the condition, that it does not depend on a already installed library.
It has some problems when a library is already installed with Spack and also
installed on the system with the distribution package manager. If the pack-
age can not be found by the compiler at the specified path, inside the Spack
directory, the compiler searches at other locations to find a similar library
with the same name. This may happen if the library file got deleted, without
deleting the directory, which contains the library, or by not using Spack unin-
stall. This then may result in a wrong linked library. This behavior leads to
an runtime error, if the library can not be found on the device which runs
the program. Even if the library can be found, the results of the program
may be wrong, because it might not result in the expected behavior. Hence
the expected result of a function from the library might be different, or does
not contain the necessary bug fix. At the least worst case, the program does
not compile at all or the used library is exactly the same. All the mentioned
cases also happen if the creator of a package forgot to define the correct de-
pendencies (see previous chapter). This may also result in the same problem,
that the package might compile only on a few systems, which happened to
have the specified dependency installed and fail on other systems.

This is not a directly fault of Spack, but rather a general usability feature
of the compiler such as the GCC. The feature allows the specification of a
library by its name without explicitly specify the location. In case of the
GCC, this command is specified through:

$ gcc -L/path/to/libraries/ ...

6

While this does not search through all files on the system, there are some
general locations built in the compiler, such as for the GCC [JM05]:

/usr/local/include
/usr/include
/usr/local/lib
/usr/lib

These may vary for different compiler versions and different operating sys-
tems. However the compiler is allowed to use the libraries in those paths.
Even if the compiler was compiled without any default paths, the user may set
custom paths with the environment variable LIBRARY_PATH4. There-
fore it is necessary to omit the default compiler search paths, to search in
locations which are not part of the default operating system libraries.

A way to achieve this, could be the modification of the compiler. But be-
cause there exist huge variety of different compilers for different architectures
and systems which are supported by Spack, it would require to change all
of them. In some cases it might not even be possible to rewrite parts of
the compiler. As for example for the Intel C++ Compiler, which is a closed
source commercial product. Therefore changing the compiler is not a feasible
solution to the problem.

Another way is jailing the compiler inside an deterministic and well known
environment such as a plain Linux distribution or a custom one. This has the
benefit, that the compiler always work in an minimal environment, without
knowledge about existing system or third party libraries. Additionally this
introduces another security layer to compile and run untrusted source code.

A lighter approach would be the partial visibility of only the necessary files
to the compiler. This would use the operating system of the host system
which should already provide all necessary system libraries. While the oppo-
site solution would be the usage of a virtual machine (VM) which simulates a
complete system with an environment. This would also enable using different
processor architectures.

4https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Environment-Variables.
html

7

https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Environment-Variables.html
https://gcc.gnu.org/onlinedocs/gcc-4.8.1/gcc/Environment-Variables.html

4 Implementations
In the following sections I want to address some possible solutions to the
problem, by presenting the implementation and the idea behind it, as well
as examine the pros and cons of each approach.

4.1 Basics

4.1.1 Chroot

The idea behind the chroot command is to change the root directory of a
process to a new path. This ensures that the specified path contains all child
nodes and additionally it makes sure that it is the highest path node in the
file tree (see [Ker17a] and especially [Ker17b]). This allows for jailing the
compiler inside a generated chroot environment to restrict it to files, which
are also inside the jail. A positive aspect of the chroot command is its exis-
tence since glibc 2.2.2 (see [Ker17b] and https://ftp.gnu.org/gnu/libc/).
This implies, that it should be fairly common inside a modern Linux envi-
ronment. In contrast to the common availability of chroot, it introduces a
huge restriction. The usage of chroot is restricted only to users which have
the CAP_SYS_CHROOT capability. This capability requires administrator
rights on some systems, as for example on Debian systems5. To workaround
this restriction it is possible to unshare (see [Ker17a] and especially [Ker17j])
the process before calling chroot, but this is only possible on Linux kernels
with version 2.6.16 or newer.

While the chroot command is not considered to be unbreakable, because
it is possible to leave the environment by moving files outside, it is secure if
all files stay inside the jail [Ker17b]. This allows to compile untrusted source
code or programs inside a static jail which does not require moving files in-
or outside.

On a more recent system, which builds upon the new systemd init daemon,
it might be reasonable to use the newly introduced systemd-nspawn (see
[Ker17a] and especially [Ker17i]). This command supports more advanced
features, such as the support for running a different operating system inside
a container. It also offers the possibility to select between different file types,
such as an system images or a dictionary with all system files. Addition-
ally it can initiate the init binary as an lightweight alternative for a virtual
machine.

5https://wiki.debian.org/chroot

8

https://ftp.gnu.org/gnu/libc/
https://wiki.debian.org/chroot

4.1.2 Mount Bind

As mentioned before, when using chroot it is usually not possible to access
files outside the jail. While this is the expected behavior, it introduces some
problems, when dealing with devices files, which should be defined inside the
/dev directory. These files are required for special functions such as random
and urandom (see [Ker17a] and especially [Ker17h]) which are required for
multiple applications or other system services. Therefore in order to create
a fully usable environment it is necessary to access these devices. Beside the
need for devices, it is also necessary to allow the jail the connection to the
network. This allows Spack to download the required packages which are
defined in the URL parameter (see chapter 2.2). Additionally some applica-
tions, which are part of Spack need access to these in order to work correctly.
As a solution to this problem it is possible to remount parts of the file tree
into another child node (see [Ker17a] and especially [Ker17d]). This can be
realized via the

$ mount --bind

command. It allows the bound directory to be visible inside the chroot jail
and enables the support to read and write into the files, which are contained
inside the directory. As with chroot the mount command requires a capa-
bility. In the case of mount this is even more restrictive, because it requires
the CAP_SYS_ADMIN capability. This capability, as the name implies,
is directly defined as administrator rights and therefore results in a huge
restriction for non administrator users.

4.2 Implementation Overview

4.2.1 Spack Structure

To extend Spack it is necessary to understand its structure. Fortunately
Spack has a very clean design, which aims for easy extensibility. In a coarse
view Spack consists out of two main parts, the implementation and a list of
packages. To extend Spack, it is only necessary to extend the implementation
part. Consequently I will only focus on the implementation which is inside
the lib/spack/spack path of the Spack directory structure. This directory
contains the list of all available commands (inside the cmd/ directory) as
well as the entry point for the main Spack implementation (__init__.py).

9

4.2.2 Utility Functions

Because Spack already handles the most implementation details, it is only
necessary to create a utility script which provide all necessary functions.
With these functions it is then possible to jail Spack and to write user in-
terface commands. Ideally the utility script should provides the commands
to construct or destroy an environment. Hence it would be useful to provide
the following functions:

def build_chroot_environment(dir)

This should handle the generation of the jail or VM for a specific directory.
It should be called before isolate the environment. Further it should handle
the calls to mount bind or copy all needed files in order to generate the en-
vironment.

def remove_chroot_environment(dir)

Command to destroy the environment without removing it. This should
unmount all mounted files in order to avoid data loss in the case that the
environment should be totally removed.

def isolate_environment ()

The isolate command should create the chroot jail and handle the calls to
the virtual machine / container system. Furthermore it should call the Spack
implementation inside the constructed jail. It should also execute the com-
mands which are specified in the command line with the jailed Spack imple-
mentation. After the construction of the environment, it should be only nec-
essary to call this function in order to create the jail. If not all requirements
are fulfilled, the function should handle the calls to generate the environment
by calling build_chroot_environment.

While these functions should be implemented in all featured implementa-
tions, they may vary from one implementation to another to fulfill some
special needs.

10

4.2.3 Spack Shutdown Hook

Along with the utility script it is necessary to create a hook inside the entry
point, to catch the calling arguments of the program. This allows Spack
to redirect them to the jailed environment. After the arguments got redi-
rected, the hook should ensure that the main distribution does not execute
the given command. This can be easily prevented by stopping Spack, after
the command got executed inside the jail. See listing 2 for the implementa-
tion details.

check sys.argv [1] against isolate allow the call to
isolate --remove -environment without
being trapped inside a chroot jail
if isolate and sys.argv [1] != ’isolate ’:

check if spack is inside the isolated environment
if spack_root != "/home/spack":

if that is not the case create the jail
with the helper function
isolate_environment ()

exit the main process because
it was not intend to be called
sys.exit (0)

Listing 2: Example how to shutdown the environment after calling the
Spack instance inside the jail.

The hook, as shown in listing 2, is directly implemented inside the __init__.py
file after the general initialization. This avoids the execution of the given
command by the unjailed Spack instance.

4.2.4 Command Line

Spack comes already with an command called bootstrap.

$./spack bootstrap

But this command is restricted to clone a new repository of Spack into a new
directory, along with some parameters to specify a git branch. Therefore
it may be useful to extend the command, to execute the desired behavior.
Because this command is already occupied, it should be easier to create a
new command to avoid the confusion of users. Hence the implementation
should provide functions to generate and destroy the jail. As well as create
a shell inside the client, to support advanced commands such as

11

$./spack isolate --build -environment path

to create a new jail at the specified path. The isolate parameter then allows
to keep the old implementation without interference with the bootstrap com-
mand.

Additionally it may be useful to provide a command line interface to de-
stroy the generated environment via

$./spack isolate --remove -environment

to clean up all mounted files or remove the virtual machine.

$./spack isolate --cli

To create a local shell inside the generated environment.

This should provide all necessary functions in order to work with the new
feature.

4.3 Whitelisting
Pros Cons

• Easy to implement

• Total control over all files

• Require administrator rights

• Each necessary file must be
whitelisted

• Reuses the files of the host
operating system

The simplest approach to generate a jailed environment is by blend out all
files, which are not part of the necessary system files. This also includes
files, which are required to compile a simple program. Additionally to the
system files there might be the need to keep the basic system utilities or some
programs which are required to run Spack (for example Python).

Branch features/bootstrap-whitelisting

12

Figure 2: General overview, how to jail Spack in a chroot environment.
Spack Logo taken from https://computation.llnl.gov/sites/default/

files/public/styles/project_logo/adaptive-image/public/
spack-logo-220-LLNL.png?itok=yFLw1dWN.

This can be done by listing all files within a whitelist, for the specified sys-
tem. While this is a time consuming task, it still has its benefits. As for
example to specify the exact files, which should be used by the compiler.
Another advantage is the simple implementation, where it is only necessary
to mount bind all the whitelisted files to a specified directory. After the
binding process it is then necessary to create the chroot environment. The
only required extra work is to copy an implementation of Spack into the
generated environment, before the generation of the jail. This allows passing
the program arguments to a Spack instance inside the jail, without rewriting
the entire Spack implementation or writing a client. The generation of a
Spack instance can be also simplified, by calling Spack from the shell imple-
mentation, inside the jail. The shell itself get called from the outside Spack
instance (see figure 2). But it has also its cons, as mentioned before, it is
necessary to list all require files to call the compiler, this would include the
binutils, Python, perl, all system includes and a compiler. Additionally to
the includes, another requirement for the user is to acquire administrator
rights to create the jail.

13

https://computation.llnl.gov/sites/default/files/public/styles/project_logo/adaptive-image/public/spack-logo-220-LLNL.png?itok=yFLw1dWN
https://computation.llnl.gov/sites/default/files/public/styles/project_logo/adaptive-image/public/spack-logo-220-LLNL.png?itok=yFLw1dWN
https://computation.llnl.gov/sites/default/files/public/styles/project_logo/adaptive-image/public/spack-logo-220-LLNL.png?itok=yFLw1dWN

4.4 Distribution Package Manager
Pros Cons

• Easy to implement

• Total control over all pack-
ages

• Dependencies get resolved
automatically

• Require administrator rights

• No control over which
files get included into the
whitelist, without a blacklist

• Reuses the files of the host
operating system

• Depends on the package
manager of the host system

A way to avoid the tedious work of the whitelist generation, is by using
the package manager of the distribution to generate the whitelist. Because
the development distribution uses the dpkg package manager, the implemen-
tation focused on it. But it should also be possible to switch to another
package manager, such as yum or pacman. This reduces the whitelist to a
list, which contains only the name packages, which are required to run Spack
and compile a program with a compiler.

To find all dependencies, it is necessary to list all available packages on the
host system by executing:

$ dpkg -l

(see [Ker17a] and especially [Ker17c]). This list all packages which are cur-
rently installed. It lists the short name, a long name, the architecture and a
description of the package (see table 1).

ii vim-runtime 2:7.4.1689-3ubuntu1.2 all Vi IMproved - Runtime files
ii wget 1.17.1-1ubuntu1.2 amd64 retrieves files from the web
ii xauth 1:1.0.9-1ubuntu2 amd64 X authentication utility
ii xfsprogs 4.3.0+nmu1ubuntu1 amd64 Utilities for managing the XFS filesystem
ii xz-utils 5.1.1alpha+20120614-2u amd64 XZ-format compression utilities
ii zlib1g:amd64 1:1.2.8.dfsg-2ubuntu4. amd64 compression library - runtime

Table 1: Example output of dpkg -l

Therefore it is necessary to check the list against the whitelist; To identify if
the required package is installed. If all packages are available, it is mandatory

Branch features/bootstrap-packagesystem

14

to find all dependencies of each package through:

$ apt -cache depends

(see [Ker17a] and especially [Nie17a]). This results in a list of dependencies
and recommendations, as well as conflicts (see table 2).

wget
Depends : l i b c 6
Depends : l i b i dn11
Depends : l i b p c r e 3
Depends : l i b s s l 1 . 0 . 0
Depends : l i buu id1
Depends : z l i b 1 g
Con f l i c t s : <wget−s s l >
Recommends : ca−c e r t i f i c a t e s

Table 2: Example output of apt-cache depends wget

This list can then be used to generate the chroot jail as in the whitelist
approach (see chapter 4.3). While this method reduces the amount of work
to generate the whitelist, it is still required to manage a smaller version of it.
Therefore it allows fine control about the packages, which should be included
into the generated whitelist. At the same time, by introducing the whitelist
on a package level, it results in the loss of control at the file level. This
can be prevented with a blacklist, which may result in the same amount of
work as with the whitelist approach. Further this control does not resolve
the problems of the whitelist implementation, as for example the required
administrator rights or the reusage of the host files. Additionally it results
in a huge amount of files, which need to be bound. Hence these files may not
be required to compile a program or run Spack. This may result in a long
time to bootstrap the environment, because every single file must be bound
by a single mount bind call. Therefore the implementation does not result in
any advantages over the whitelist approach other than the reduced whitelist.

15

4.5 Systemimages
Pros Cons

• Control over installed pack-
ages

• Simple usage, by using an
already generated distribu-
tions

• Only one file to mount
required, which can be
mounted permanently in
fstab

• No administrator rights re-
quired

• Some distributions require a
extensive preconfiguration

• Currently only work with tar
files

Another way to avoid the usage of the host system files and the generation of
a whitelist is by using an existing distribution. This allows for the creation
of a distribution with all required packages, through existing programs such
as mkosi6. Alternatively it is possible to use a preexisting configuration from
the distributor of the distribution or by using an OpenStack image7. While
some distribution require a extensive preconfiguration, such as Arch Linux,
most distributions should work out of the box.

A restriction to use a system image of a Linux distribution, is to provide
a standard compatible dictionary structure by providing the /dev, /sys and
/proc (see [Wir04] especially chapter 3) directories and the resolv.conf file.
This also applies to the host system as well. If that is the case, it is only
necessary to copy all required files to the assigned location and mount bind
the /dev, /sys and /proc directory, to provide all required devices in the
jail. Further it is required to copy the /etc/resolv.conf to provide the name
lookup system for the jail as well. Another minor restriction of the current
implementation is the constraint to provide the system files as a tar file.
Using tar allows to provide the least common denominator for all possible
systems, as a result it should be available on each system. Because there

Branch features/bootstrap-systemimages
Branch features/bootstrap-final

6https://github.com/systemd/mkosi
7https://docs.openstack.org/image-guide/obtain-images.html

16

https://github.com/systemd/mkosi
https://docs.openstack.org/image-guide/obtain-images.html

a only a few files, which are required to mount, they are ideally for writ-
ing them into the fstab file. This allows to keep the created environment
permanently even after restarting the system without acquire administrator
privileges. Another approach to solve the mount bind privilege problem is
by creating a daemon (see [Pro05]), which has the right to bind /dev, /sys
and /proc to the desired location. This has the advantage to be available for
all users without the need to be an administrator. Additionally the daemon
have to be created only once by the administrator or the startup process
before the usage of Spack. This allows to track all mount bind calls to avoid
mounting or unmounting a directory twice. This approach may also be use-
ful for the previous implementations, but it also introduces some security
vulnerabilities. Because the whitelist approach could mount any file on the
host, the daemon must support this behavior. Thereby allowing every user
to call the daemon to bind any specified folder to another location. This
minimizes the system security, because it allows jailed users to get out of the
jail by creating a mount point to the root directory of the host. By restricting
the daemon to mount the /dev, /sys and /proc directories, it minimizes this
security problem.

While this only prevents the capability problem of mount, this does not
solve the demand for administrator rights of the chroot command. Fortu-
nately the Linux version 3.8 introduces the command unshare (see [Ker17a]
and especially [Ker17j]). Unshare allows to fork the namespaces of the root
process to a child process. Notably it allows to unshare the network, mount
and process id namespaces. Thereby it allows to fork another shell which
has root rights inside its own user namespace. This enables the possibility
to acquired root rights inside its own namespace. With this right it is then
possible to run the chroot command without the need to be a real root user.

Additionally to the method of unsharing a namespace and create the mount
points through a daemon, it is possible to use the namespace system directly.
Because unshare prevents the execution of setuid and setgid [Ker17j] it is not
possible to drop privileges. This happens to be a problem, when using some
applications which try to remap the user id. As for example tar, when de-
compressing a tarball. Because unshare only allows to be root inside the
generated namespace or keep the current user. Therefore, when generating
the chroot environment through unshare, it is necessary to map the gener-
ated user as root, to gain the necessary privileges CAP_SYS_ADMIN and
CAP_SYS_CHROOT. But after the generation of the chroot environment
the privileges should be dropped. While this is not possible with unshare, it
could be achieved by using namespaces [Ker17f], [Ker17k], [Ker17g], [Ker17e],

17

Figure 3: Example for the pid namespace. The parent sees the whole tree,
while the child has only access to its own namespace. The process ids also

get mapped automatically inside the child namespace.
Source: [Rid17]

[Rid17] directly. This approach is actually very similar to using a container
system. When using this system it separates the resource from the root
namespace (as show in figure 3 and 4). When using a namespace, the child is
only allowed to view the resources in its own namespace. This allows to gen-
erate a user namespace with the necessary capabilities. Therefore it allows
to run chroot and mount bind while being user. To achieve this, it is neces-
sary to clone the current process with root rights inside its newly generated
namespace. When calling clone it is possible to assign the cloned process a
new namespace for the user id [Ker17k], process id [Ker17g], network, etc.
After this step, it is important to mount a temporary file system (tmpfs) as
the new root file system for the process, while keeping the user filesystem
in a sub directory. Through the generation of another directory inside this
tmpfs root directory, it is then possible to mount bind the files in the actual
user directory to the newly generated directory.

18

Figure 4: Example for the mount namespaces. The parent has access to the
actual disk, while the child has only access to its own namespace.

Source: [Rid17]

This allows to mount bind all necessary files. After these steps are done, it
is important to chroot the cloned child process to the generated directory,
which contains the mount points. Therefore the process can only see the files
which are mounted inside the tmpfs. Then it is possible to drop all privileges,
to become non root. This allows to keep the current user and group id inside
the jail and therefore to execute the Spack instance as the current user.

4.6 Container System

With the recent up rise of container systems such as Docker8, LinuX Con-
tainer (LXC)9 or Rkt10, the Linux environment introduced different methods
to run a program in an predefined environment, without the need to virtual-
ize them through a virtual machine. Unfortunately the current state of the

Branch features/bootstrap-container
8https://www.docker.com/
9https://linuxcontainers.org/lxc/introduction/

10https://github.com/rkt/rkt

19

https://www.docker.com/
https://linuxcontainers.org/lxc/introduction/
https://github.com/rkt/rkt

container systems is not that stable.

The reason to use a container system to run Spack, is the simplified architec-
ture without the need for an virtual machine. This is possible by using the
newly introduces Linux namespaces. These allow to unshare some parts of a
child process (see the explanation about unshare in the previous chapter 4.5).
They also have the benefit to support a better isolation of an arbitrary pro-
cess, without the loss of performance.

The philosophy of the Rkt project is to mark a used container as garbage. All
garbage collected containers get then destroyed (see https://coreos.com/
rkt/docs/latest/devel/pod-lifecycle.html for more details). While
this philosophy has its benefits, it interferes with the goal to use the container
as a storage for Spack. Because if Spack got installed inside the container
and was used to build the required programs, it is impossible to reuse these
programs after the container got garbage collected. Therefore Rkt is not a
fitting solution.

An alternative solution could be Docker, but because the development team
currently switches to a community / enterprise model (at the time of this
work), it is currently impossible to track which features get included into the
community edition in future releases.

Another tool to support container systems could be the LXC project, which
is also part of the base of Docker. This allows to create containers via
namespaces and through an advanced chroot implementation. Unfortunately
it requires administrator privileges to run or create a container. While
this can be prevented by changing the configuration of LXC (see https://
linuxcontainers.org/lxc/getting-started/), it restricts the container.
Thereby when using an unprivileged container, LXC is not allowed to mount
filesystems, create device nodes or do any user / group id operation which
is not mapped by the system (see https://linuxcontainers.org/lxc/
getting-started/).

Because of the restrictions in all container implementations, it is currently
not possible to create an implementation within a container, which aligns
perfectly with Spack.

20

https://coreos.com/rkt/docs/latest/devel/pod-lifecycle.html
https://coreos.com/rkt/docs/latest/devel/pod-lifecycle.html
https://linuxcontainers.org/lxc/getting-started/
https://linuxcontainers.org/lxc/getting-started/
https://linuxcontainers.org/lxc/getting-started/
https://linuxcontainers.org/lxc/getting-started/

4.7 Virtual Machine
Pros Cons

• Allows every distribution
which supports Spack

• Multiple architectures possi-
ble

• Easy installation with virt-
install through an ISO file

• No administrator rights re-
quired

• Access from any system pos-
sible, because of an ssh client

• Slower than the other ap-
proaches

• Needs an ssh server on the
virtual machine for commu-
nication between the two
Spack instances

• Compiled binaries must run
inside the virtual machine

• Introduces additional depen-
dencies like libvirt, Qemu,
virtinst

• Requires additional disk
space to simulate the hard
drive

The most flexible solution in terms of the support for different architectures
and operating systems is a virtual machine. Because there is a huge variety
of virtual machines available, it might be reasonable to use libvirt11 as an
abstraction layer. Along with virt-install12 it allows easily to create a virtual
machine by specifying the operating system through [Nie17b].

$ virt -install --virt -type=kvm --ram =512mb \
--vcpu=1 --crom=ubuntu.iso

The benefit of this approach is the simplified implementation, which only
consist out of a wrapper for the tools. Therefore it is only necessary to create
the virtual environment through the given tools. Additionally it is important
to install an ssh client on the client system. This allows the communication
between the host and the client without any additional software, even over the
system boundary. The downside of this implementation is the introduction of
a hypervisor, which results in a small loss of performance. While this might
be acceptable with modern systems, it is a huge obstacle when it comes to
HPC. Because Spack relies on rpaths to run the selected application it is not

Branch features/bootstrap-vm
11https://libvirt.org/
12https://linux.die.net/man/1/virt-install

21

https://libvirt.org/
https://linux.die.net/man/1/virt-install

possible to copy the compiled programs to the host system without mimicking
the directory structure of the client system. Therefore it is necessary to run
the compiled binary inside the virtual machine, which is problematic if the
binary should perform on multiple clusters as fast as possible. If the host
hardware does not support virtualization, the performance of the system
might be even to slow to compile a program. Another requirement for the
virtual machine is the need to have storage to simulate the hard drive. This
usually is larger than the operating system itself and its size depend on the
users need.

5 Conclusion
While the best fitting implementation depends on the needs of the user, it is
clear that the whitelisting approaches have no benefit over the system image
approach. Therefore the best choice is between the system image (see chapter
4.5) or the virtual machine implementation (see chapter 4.7). Because Spack
is designed for the HPC environment, it might be more suitable to use the sys-
tem image approach. This allows the choice of the operating system without
losing performance. As a fallback it might be possible to run the environ-
ment inside a virtual machine, to support a different architecture than the
host system. As for now each implementation has its own branch. Therefore
it is not possible to combine the system image with the virtual machine im-
plementation, but this might change in the future. The implementations can
be found at https://github.com/TheTimmy/spack.git under the branch
prefix specified in the footnote of each implementation chapter.

22

https://github.com/TheTimmy/spack.git

References
[Gam15] Todd Gamblin, Matthew LeGendre, Michael R. Collette, Gregory

L. Lee, Adam Moody, Bronis R. de Supinski, and Scott Futral.
“The Spack Package Manager: Bringing Order to HPC Software
Chaos”. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC
’15. Austin, Texas: ACM, 2015, 40:1–40:12. isbn: 978-1-4503-
3723-6. doi: 10.1145/2807591.2807623. url: http://doi.
acm.org/10.1145/2807591.2807623 (cit. on p. 2).

[Gam16] Todd Gamblin, Gregory Becker, Greg Lee, Matt Legendre, Mas-
similiano Culpo, Benedikt Hegner, and Elizabeth Fischer. “Man-
aging HPC Software Complexity with Spack”. In: (2016). url:
http://llnl.github.io/spack/files/Spack-SC16-Tutorial.
pdf (cit. on pp. 2, 3).

[Gam17a] Todd Gamblin. “Packaging Guide”. In: (2017). url: http://
spack.readthedocs.io/en/latest/packaging_guide.html
(visited on 09/23/2017) (cit. on p. 6).

[Gam17b] Todd Gamblin. “Spack”. In: (2017). url: http://spack.readthedocs.
io/en/latest/ (visited on 09/23/2017) (cit. on pp. 2, 4–6).

[Gam17c] Todd Gamblin. “spack install”. In: (2017). url: http://spack.
readthedocs.io/en/latest/basic_usage.html#cmd-spack-
install (visited on 09/23/2017) (cit. on p. 4).

[Gam17d] Todd Gamblin. “spack.build_systems package”. In: (2017). url:
http://spack.readthedocs.io/en/latest/spack.build_
systems.html (visited on 09/23/2017) (cit. on p. 2).

[JM05] Gough Brian J. and Stallman Richard M. “An Introduction to
GCC - for the GNU compilers gcc and g++”. In: (2005). issn:
ISBN 0954161793. url: http://www.network-theory.co.uk/
docs/gccintro/gccintro_21.html (visited on 09/23/2017)
(cit. on p. 7).

[Ker17a] Michael et al. Kerrisk. “The Linux man-pages project”. In: (2017).
url: https://www.kernel.org/doc/man-pages/ (visited on
09/23/2017) (cit. on pp. 8, 9, 14, 15, 17).

[Ker17b] Michael et al. Kerrisk. “The Linux man-pages project, CHROOT(2)”.
In: (2017). url: http://man7.org/linux/man-pages/man2/
chroot.2.html (visited on 09/23/2017) (cit. on p. 8).

23

http://dx.doi.org/10.1145/2807591.2807623
http://doi.acm.org/10.1145/2807591.2807623
http://doi.acm.org/10.1145/2807591.2807623
http://llnl.github.io/spack/files/Spack-SC16-Tutorial.pdf
http://llnl.github.io/spack/files/Spack-SC16-Tutorial.pdf
http://spack.readthedocs.io/en/latest/packaging_guide.html
http://spack.readthedocs.io/en/latest/packaging_guide.html
http://spack.readthedocs.io/en/latest/
http://spack.readthedocs.io/en/latest/
http://spack.readthedocs.io/en/latest/basic_usage.html#cmd-spack-install
http://spack.readthedocs.io/en/latest/basic_usage.html#cmd-spack-install
http://spack.readthedocs.io/en/latest/basic_usage.html#cmd-spack-install
http://spack.readthedocs.io/en/latest/spack.build_systems.html
http://spack.readthedocs.io/en/latest/spack.build_systems.html
http://www.network-theory.co.uk/docs/gccintro/gccintro_21.html
http://www.network-theory.co.uk/docs/gccintro/gccintro_21.html
https://www.kernel.org/doc/man-pages/
http://man7.org/linux/man-pages/man2/chroot.2.html
http://man7.org/linux/man-pages/man2/chroot.2.html

[Ker17c] Michael et al. Kerrisk. “The Linux man-pages project, dpkg(1)”.
In: (2017). url: http://man7.org/linux/man-pages/man1/
dpkg.1.html (visited on 09/23/2017) (cit. on p. 14).

[Ker17d] Michael et al. Kerrisk. “The Linux man-pages project, MOUNT(2)”.
In: (2017). url: http://man7.org/linux/man-pages/man2/
mount.2.html (visited on 09/23/2017) (cit. on p. 9).

[Ker17e] Michael et al. Kerrisk. “The Linux man-pages project, MOUNT_NAMESPACES(7)”.
In: (2017). url: http://man7.org/linux/man-pages/man7/
mount_namespaces.7.html (visited on 09/23/2017) (cit. on
p. 17).

[Ker17f] Michael et al. Kerrisk. “The Linux man-pages project, NAMES-
PACES(7)”. In: (2017). url: http://man7.org/linux/man-
pages/man7/namespaces.7.html (visited on 09/23/2017) (cit.
on p. 17).

[Ker17g] Michael et al. Kerrisk. “The Linux man-pages project, PID_NAMESPACES(7)”.
In: (2017). url: http://man7.org/linux/man-pages/man7/
pid_namespaces.7.html (visited on 09/23/2017) (cit. on pp. 17,
18).

[Ker17h] Michael et al. Kerrisk. “The Linux man-pages project, RAN-
DOM(4)”. In: (2017). url: http://man7.org/linux/man-
pages/man4/random.4.html (visited on 09/23/2017) (cit. on
p. 9).

[Ker17i] Michael et al. Kerrisk. “The Linux man-pages project, SYSTEMD-
NSPAWN(1)”. In: (2017). url: http://man7.org/linux/man-
pages/man1/systemd-nspawn.1.html (visited on 09/23/2017)
(cit. on p. 8).

[Ker17j] Michael et al. Kerrisk. “The Linux man-pages project, UNSHARE(1)”.
In: (2017). url: http://man7.org/linux/man-pages/man1/
unshare.1.html (visited on 09/23/2017) (cit. on pp. 8, 17).

[Ker17k] Michael et al. Kerrisk. “The Linux man-pages project, USER_NAMESPACES(7)”.
In: (2017). url: http://man7.org/linux/man-pages/man7/
user _ namespaces . 7 . html (visited on 09/23/2017) (cit. on
pp. 17, 18).

[Nie17a] Gustavo et al. Niemeyer. “apt-cache(8) - Linux man page”. In:
(2017). url: https://linux.die.net/man/8/apt- cache
(visited on 09/23/2017) (cit. on p. 15).

24

http://man7.org/linux/man-pages/man1/dpkg.1.html
http://man7.org/linux/man-pages/man1/dpkg.1.html
http://man7.org/linux/man-pages/man2/mount.2.html
http://man7.org/linux/man-pages/man2/mount.2.html
http://man7.org/linux/man-pages/man7/mount_namespaces.7.html
http://man7.org/linux/man-pages/man7/mount_namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man7/pid_namespaces.7.html
http://man7.org/linux/man-pages/man4/random.4.html
http://man7.org/linux/man-pages/man4/random.4.html
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html
http://man7.org/linux/man-pages/man1/systemd-nspawn.1.html
http://man7.org/linux/man-pages/man1/unshare.1.html
http://man7.org/linux/man-pages/man1/unshare.1.html
http://man7.org/linux/man-pages/man7/user_namespaces.7.html
http://man7.org/linux/man-pages/man7/user_namespaces.7.html
https://linux.die.net/man/8/apt-cache

[Nie17b] Gustavo et al. Niemeyer. “virt-install(1) - Linux man page”. In:
(2017). url: https://linux.die.net/man/1/virt-install
(visited on 09/23/2017) (cit. on p. 21).

[Pro05] The Linux Information Project. “Daemon Definition”. In: (2005).
url: http://www.linfo.org/daemon.html (visited on 09/23/2017)
(cit. on p. 17).

[Rid17] Mahmud Ridwan. “Separation Anxiety: A Tutorial for Isolating
Your System with Linux Namespaces”. In: (2017). url: https:
//www.toptal.com/linux/separation-anxiety-isolating-
your-system-with-linux-namespaces (visited on 09/23/2017)
(cit. on pp. 18, 19).

[Wir04] Lars Wirzenius, Joanna Oja, Stephen Stafford, and Alex Weeks.
“The Linux System Administrator’s Guide”. In: (2004). url:
http://www.tldp.org/LDP/sag/html/index.html (visited
on 09/23/2017) (cit. on p. 16).

25

https://linux.die.net/man/1/virt-install
http://www.linfo.org/daemon.html
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
https://www.toptal.com/linux/separation-anxiety-isolating-your-system-with-linux-namespaces
http://www.tldp.org/LDP/sag/html/index.html

	Introduction
	What is Spack?
	Basic Usage
	Package Creation

	Current Problems When Building Packages
	Implementations
	Basics
	Chroot
	Mount Bind

	Implementation Overview
	Spack Structure
	Utility Functions
	Spack Shutdown Hook
	Command Line

	Whitelisting
	Distribution Package Manager
	Systemimages
	Container System
	Virtual Machine

	Conclusion

