
Key Points of make by Capes in [Cap16]
• Introduction: Make allows us to specify what depends on what and how to

update things that are out of date

• Makefiles:
– Use # for comments in Makefiles.
– Write rules as target: dependencies.
– Specify update actions in a tab-indented block under the rule.
– Use .PHONY to mark targets that don’t correspond to files.

• Automatic Variables:
– Use $@ to refer to the target of the current rule.
– Use $ˆ to refer to the dependencies of the current rule.
– Use $< to refer to the first dependency of the current rule.

• Dependencies on Data and Code:
– Make results depend on processing scripts as well as data files.
– Dependencies are transitive: if A depends on B and B depends on C, a change

to C will indirectly trigger an update to A.

• Pattern Rules:
– Use the wildcard % as a placeholder in targets and dependencies.
– Use the special variable $* to refer to matching sets of files in actions.

• Variables:
– Define variables by assigning values to names.
– Reference variables using $(...).

• Functions:
– Make is actually a small programming language with many built-in functions.
– Use wildcard function to get lists of files matching a pattern.
– Use patsubst function to rewrite file names.

• Self-Documenting Makefiles: Document Makefiles by adding specially-formatted
comments and a target to extract and format them.

• Conclusion: Makefiles save time by automating repetitive work, and save thinking
by documenting how to reproduce results.

1

Basic structure and some examples

Listing 1: Makefile
1 target: dependency1 dependency2 ...
2 action1 (start line with TAB!)
3 action2
4 ...

Listing 2: Makefile2
1 %.o: %.c
2 # %: wildcard as placeholder
3 # gcc is the used compiler
4 # - Wall: print all warnings
5 # -O2, -O3: optimization levels
6 # -g: produce debug information for gdb
7 # -c: compilation only (no linking)
8 # $<: the first dependency of the current rule
9
10 gcc -Wall -O3 -g -c $<

Listing 3: Makefile3
1 # Makefile to compile one executable per source
2
3 CC = gcc
4 CFLAGS = -std=c99 -g -Wall -Wextra
5
6 # Pattern substitution (from , to, source -list):
7 # for each *.c file from the source -list , a *.x executable

↪→ is build
8 all: $(patsubst %.c, %.x, $(wildcard *.c))
9
10 %.x: %.o
11 $(CC) ${CFLAGS} -o $@ $<
12
13 # $@ - name of the executable
14 # $< - first item in the depedency list (the .o file)
15
16 clean:
17 rm -f *.x
18 rm -f *.o
19 rm -f *~

2

Listing 4: Makefile4 by [Mer16]
1 CC = gcc
2 CFLAGS = -g -Wall
3 OUTPUT = my_prog
4 OBJFILES = lib.o prog.o
5
6 $(OUTPUT): $(OBJFILES)
7 $(CC) $(CFLAGS) $(OBJFILES) -o my_prog
8
9 %.o: %.c
10 # $<: dependency (%.c)
11 # $@: target (%.o)
12 $(CC) $(CFLAGS) -c $< -o $@
13
14 clean:
15 rm *.o $(OUTPUT)

3

Implicit Rules [SMS14, p.116 f]
List of some of the more common variables used as names of programs in built-in
rules:

• CC: Program for compiling C programs; default ‘cc’.

• CXX: Program for compiling C ++ programs; default ‘g++’.

• CPP: Program for running the C preprocessor, with results to standard output;
default ‘$(CC) -E’.

List of variables whose values are additional arguments for the programs above.
The default values for all of these is the empty string, unless otherwise noted.

• ASFLAGS: Extra flags to give to the assembler (when explicitly invoked on a ‘.s’
or ‘.S’file).

• CFLAGS: Extra flags to give to the C compiler.

• CXXFLAGS: Extra flags to give to the C++ compiler.

• LDFLAGS: Extra flags to give to compilers when they are supposed to invoke the
linker, ‘ld’, such as -L. Libraries (-lfoo) should be added to the LDLIBS variable
instead.

• LDLIBS: Library flags or names given to compilers when they are supposed to
invoke the linker, ‘ld’.LOADLIBES is a deprecated (but still supported) alternative
to LDLIBS. Non-library linker flags, such as -L, should go in the LDFLAGS
variable.

4

Bibliography
[Cap16] Gerard Capes. Automation and make. http://swcarpentry.github.io/

make-novice/, October 2016. (last accessed: 2016-10-21).

[Mer16] Karmi Merimovitch. Introduction to the programm make. http://
tzvimelamed.com/lab/pdf/OS-Lab-03-Make.pdf, October 2016. (last ac-
cessed: 2016-10-21).

[SMS14] Richard M Stallman, Roland McGrath, and Paul D Smith. Gnu make manual.
Free Software Foundation, 3, 2014.

5

http://swcarpentry.github.io/make-novice/
http://swcarpentry.github.io/make-novice/
http://tzvimelamed.com/lab/pdf/OS-Lab-03-Make.pdf
http://tzvimelamed.com/lab/pdf/OS-Lab-03-Make.pdf

	Bibliography

