
I/O analysis of climate applications

Arne Beer, MN 6489196, Frank Röder, MN 6526113

Introduction

About the paper and our goals

In this paper we analyze and present the strengths and weaknesses of different
data structures required by some carefully picked climate and weather prediction
models. Further we investigate the bare minimum of data required by those
models. Another important aspect we will elaborate is the pre- and post-
processing of data and the precise moment it occurs.

In the following sections we will elucidate some models and the process on how
to set them up as well as running sample cases. At the end there will be a section
about the overall life cycle of data.

Getting started

With intent of getting an overview about the richness of climate applications and
their land, ice, weather and ocean modulation, we took an in-depth look at some
models. The main goal was to find a model with proper documentation and a
license which allowed us to use it for our research and benchmarking purposes.
Most model investigated by us were too old for our objective. In many cases
there were practically no documentation, let alone active support or new releases.
The next obvious step was to get an good overview of up to date and easy to
handle models which are still supported. For this purpose we put a spreadsheet
together from which we could choose the most promising ones. We came across
some good looking models, but despite a good first impression, most of them are
shipped with broken scripts, bad documentation or a hidden provision, which
forbids us to use them. After a long trial and error period of testing new models,
we finally decided to stick to two models, which will be addressed later in this
paper.

1



IFS - Integrated Forecasting System

About IFS

IFS has been chosen to be the first model for our research. IFS is a Model created
and used by the European Center for Medium-range Weather Forecast (ECMWF).
The purpose of this model is to create weather predictions by analyzing a huge
amount of data. This data can be a variety of different physical bulks. (ECMWF
2016)

ECMWF offers a semi open-source version of their model for research institu-
tions, which is called OpenIFS. The source code of this model can be obtained
by requesting a license for the institution one is working for. They provide a
good documentation about their model, which covers instruction for building,
running simulations as well as very detailed information about the mathematics
and techniques used in their model. After some research and two weeks passing
by, we discovered a passage in their license, which forbids “Commercial and
benchmarking use of OpenIFS models”. As our original research goal is some
kind of benchmarking we were forced to stop and switch to another model. We
still recommend to use this model in a research or academic context, as there is
plenty of documentation and a big user base.

Further progress

After the license incident with IFS we had to look for other open source models
we could use for our research. We looked at many models in the following we
will list some of the most promising:

• WRF(The Weather Research & Forcasting Model)

• CFS(Climate Forecast System)

• GDAS (Global Data Assimilation System)

• GFS (Global Forecast System)

• GEFS(Global Ensemble Forecast System)

• CM2.X (CM2 Global Coupled Climate Models)

• GISS GCM ModelE

• CESM (Community Earth System Model)

• MITgcm (M.I.T. General Circulation Model News and Information)

• GEOSCI (Geoscientific Model Development)

• Hector v1.0

2



• MAGICC/SCENGEN (Model for the Assessment of Greenhouse-gas In-
ducted Climate Change A Regional Climate SCENario GENerator)

• Metview

• COSMO(Consortium For Small Scale Modeling)

• SAGA (System for Automated Geoscientific Analyses)

• MPI-ESM

• ECOHAM

The lookup for new models took about two weeks. Most of the models mentioned
above had serious flaws which forbid us to use them in our research. Many of
them have stopped being maintained many years ago. In some cases there was
no license provided with no available support for clarifying legal questions. In
other cases it was only possible to obtain a license for our specific research goal
by buying it or it was even completely forbidden to use it for benchmarking
purposes, as with OpenIFS.

Eventually we decided to focus our work on Community Earth System Model
(CESM ) and Ecosystem model Hamburg Version 5 (ECOHAM5). Further we
decided to take a look at AWIPS2 a tool for displaying processed weather forecast
with a very good server for handling data called EDEX .

Unidata - AWIPS2

AWIPS2 contains tools for weather forecast displaying and analysis. This open-
source Java application consists of EDEX a data server and CAVE the client for
data analysis and rendering. (“AWIPS II Infrastructure” 2016) Cite : “AWIPS
II is a Java application consisting of a data display client CAVE which runs on
Red Hat/CentOS Linux and OS X and a backend data server EDEX which only
runs on Linux” (Unidata 2016)

EDEX (Environmental Data EXchange )

EDEX is the server for AWIPS2 which is mainly used for preparing the data
needed by CAVE. The EDEX server is a compound of different components:
(“Awips System Architecture Documentation” 2016)

The first source for data is the Local Data Manager (LDM ). This is a piece of
software which shares data with computers in other networks. The Internet Data
Distribution (IDD) provides the LDM with data from the Unidata community.
The LDM can handle different kinds of data, for instance National Weather
Service data streams, radar data, satellite images or grid data from numerical
forecast models. The data can be directly obtained from the source or by a LDM

3



Figure 1: AWIPS2 System

that communicates with another LDM. When the LDM receives data inside
the EDEX, a message about availability of new data is being send to the Qipd
process, the Apache Queue Processor Interface Daemon, which distributes
it to all other components of the EDEX server. The messages from Qipd will
also contain a file header for EDEX to know which decoder should be used for
the specific data.

After that EDEX can decode the data to make it ready for additional processing
or signal CAVE that it is available for displaying. All of those messages are sent
via the edexBridge. The default ingest server will handle all the data which are
different to grib messages and is in general just responsible for the ingest of data.
GRIB fully spelled General Regularly-distributed Information in Binary
form is a data format by the WMO (World Meteorological Organization) and
used for encoding results of weather models. The data is written in a binary
shape into a table format. It is optimized for store and transfer data. The
PostgreSQL database or Postgres in short is another relevant part for the
storage of data in EDEX. It handles the metadata of the already decoded data.
Postgres itself is a relational database management system which reads and store
all EDEX metadata. The database size is not limited and can handle 32 TB of
database table capacity.

HDF5 fully spelled Hierarchical Data Format (v.5) is the main format used in
AWIPS2 to store processed grids, images, etc. . Nowadays it is very similar to

4



netCDF, which is supported by Unidata. HDF5 can handle many different types
of data in a single file, for instance data of multiple radars.

The Python Process Isolated Enhanced Storage PyPIES has been just
created for AWIPS2 and is used for the writes and reads of data in HDF5 files.
PyPIES is very similar in functionality compared to Postgres. It is a custom
database abstraction layer, which processes any requests related to the HDF5
file system. The intention for this layer was to isolate the EDEX from the HDF5
processes.

CAVE (Common AWIPS Visualization Environment)

CAVE is the second part of AWIPS2. It is a tool for data visualization and
rendering. Normally it is installed on a separated workstation apart from the
other AWIPS2 parts.
Cite: “CAVE contains of a number of different data display configurations called
perspectives. Perspectives used in operational forecasting environments include
D2D (Display Two-Dimensional), GFE (Graphical Forecast Editor), and NCP
(National Centers Perspective). (“Awips System Architecture Documentation”
2016)

Figure 2: CAVE Example

5



Installation

For the installation of AWIPS2 UniData provides a Github repository https:
//github.com/Unidata/awips2 and two install scripts installCave.sh and
installEDEX.sh. Those install scripts use yum as a package manager and
are designed for usage on CentOS, Fedora and Red Hat. To make it compatible
for the DKRZ cluster there is more that needs to be done. As stated before
AWIPS2 is normally installed with the help of the package manager YUM and
AWIPS2 requires a directory at root location “/awips2/”. There are about 2000
lines of code where “/awips2/” is hard-coded, so switching directories is not an
option.

To build a version for our purpose it would be the best to have an EDEX on the
cluster which is providing our local CAVE with data for visualization. Because
of time constraints we were forced to move our focus away from AWIPS2 and
get back to climate models.

CESM - Community Earth System Model

About CESM

CESM itself consists of six geophysical models: ocean, land, land ice, sea ice,
river and atmosphere . The CESM project is founded and supported by U.S.
climate researchers and for the biggest part by the National Science Foundation
(NSF). If there are different models in use, a so called coupler handles the time
progression and overall management between the coupled models through se-
quences of communication. The scientific development is conducted by the CESM
working group twice a year. For more information related to the development its
recommended to visit the website http://www.cesm.ucar.edu. Additionally
the CESM developers claim that it can be run out-of-the-box. “Bit-for-bit
reproducibility” cannot be guaranteed, because of using different compilers and
system versions.

The following CESM sections are referring to the userguide (Development-Team
2014).

Requirements

In the following we list some preconditions directly from the CESM documenta-
tion.

• UNIX style operating system such as CNL, AIX and Linux

• csh, sh, and perl scripting languages

6

https://github.com/Unidata/awips2
https://github.com/Unidata/awips2
http://www.cesm.ucar.edu


• subversion client version 1.4.2 or greater

• Fortran (2003 recommended, 90 required) and C compilers. pgi, intel, and
xlf are recommended compilers. (gfortran gcc-Version 4.8 on the cluster)

• MPI (although CESM does not absolutely require it for running on one
processor)

• NetCDF 4.2.0 or newer. (Version 7.3 & 4.2)

• ESMF 5.2.0 or newer (optional).

• pnetcdf 1.2.0 is required and 1.3.1 is recommended (optional)

• Trilinos may be required for certain configurations X

• LAPACKm or a vendor supplied equivalent may also be required for some
configurations. (Version 3.0)

• CMake 2.8.6 or newer is required for configurations that include CISM.
(Version 2.8.12.2 on the cluster)

Installation

• Open source

• Download at CCMS(Click here):

– Username: guestuser

– Password: friendly

• Version 1.2.1

• Available with svn:

svn co

https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_1
cesm1_2_1 –username guestuser –password friendly

• We recommend to create an entry in your ~/.subversion/servers config
for later svn usage with scripts:

[groups]
cesm = svn-ccsm-inputdata.cgd.ucar.edu

[cesm]
username = guestuser
store-passwords = yes

Most parts of the CESM software project are open source. However three
libraries are published by the Los Almos National Laboratory, who licensed their

7

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x290.html#download_ccsm_code


software as free to use as long as it isn’t used in a commercial context. Affected
libraries are POP, SCRI and CICE (For link to license click here).

Input Data Set

Setup

There is actually a set of input data which can be downloaded and configured
for CESM. It can be made available through another subversion input data
repository using the same user name as used in the installation above.
The dataset is around 1 TB big and should not be downloaded entirely. The
download is regulated on demand, which means if CESM needs the particular
data it will be downloaded and checked automatically by CESM itself. The data
should be on a device with a fast connection to the actual computing device.
The data will be downloaded into the $DIN_LOC_ROOT folder, which has to be
set in the env_run.xml in the “Build Setup” step later on. Multiple users can
use the same $DIN_LOC_ROOT directory and it should thereby be configured as
group writable.
The input data can be downloaded manually as well as using the
check_input_data script. The script triggers a partial download of the
svn input data repository and allows to exactly specify the data that should
be downloaded. This script is called during the setup_case step as well. If
the specified data is not found in $DIN_LOC_ROOT it will automatically be
downloaded by the script.
If one likes to download the input manually it should be done before building
CESM. In addition it is also possible to download the data via svn subcommands
direct, but it is much better to use the check_input_data script as it secures
to download only the required data.
If the machine is supported by CESM, there should be a preset in
ccsm_utils/Machines. Otherwise there is the possibility to make it
run on generic machines with the variable -mach userdefined as argument for
the ./scripts/create_newcase script and further configuration afterwards.

CESM Creating And Configure A New Case

Prerequisites

perl-switch and csh is needed for the further project setup.

Create a new case

Cases are created with a resolution and configurations fitting to the machine it
should be executed at. To create a case execute ./scripts/create_newcase

8

http://www.cesm.ucar.edu/management/UofCAcopyright.ccsm3.html


with the respective parameters. This is a command for a user defined machine
with the B1850CN input data set:

# Parameters are respectively:
# Case name and directory location
# Machine name
# Component set name
# Resolution
/create_newcase -case ./test1 \

-mach userdefined \
-compset B1850CN \
-res f45_g37

In the original repository many errors occur due to deprecated syntax and buggy
setup code. We recommend to use our updated version of the code. The text
Successfully created the case should appear on your screen. If problems
with create_newcase occur, one should try one of the examples listed in the
error message.

In case create_newcase breaks while calling one of the mkbatch.* scripts, you
probably need to install CShell, as those scripts are written for #!/bin/csh.

The result of create_newcase is a directory .../cesm/scripts/<YourCase>
with a bunch of directories or filenames to be explained:

README.case - This files will contain tracked problems
and changes at runtime

CaseStatus - A File containing a history of operations
done in the actual case

BuildConf/ - The files in this directory are scripts
for generating component
name lists and utility libraries. They should
never be edited.

SourceMods/ - This directory is for modified source code
LockedFiles/ - It contains copies of files that should not

be changed, xml are locked until the clean
operation is executed

Tools/ - A directory which contains support scripts.
They should never be edited.

env_mach_specific - machine-specific variables for
building/running are set here

env_case.xml - Case specific variables like the root
and models are set(cannot be changed, have
to re-run create_newcase for changes)

env_build.xml - Contains the build settings, resolution and
configuration options

env_mach_pers.xml - Sets the machine processor layout
env_run.xml - Contains run-time settings

9



cesm_setup - Script for set up
$CASE.$MACH.build - Script for building components,

executables and utility libraries
$CASE.$MACH.clean_build - Remove all object files

and libraries
$CASE.$MACH.l_archive - Script for long-term archiving of

output (only if it is available on the machine)
xmlchange - Utility to change values in other .xml files
preview_namelists - Utility to see the component name lists
check_input_data - Check for input datasets
check_production_test - Creates a test of the owners case

Setup case

Once a case has been created by the previous command, the setup has to be
completed. To achieve this, the cesm_setup script in the case directory needs to
be executed. Settings for this specific case are specified in env_mach_pes.xml.
The documentation states that this file should only be manipulated by using the
xmlchange script. As we want to use our own machine, we need to create a user
defined machine for this test case.

Values that need to be set:

• MAX_TASKS_PER_NODE in env_mach_pes.xml

• OS in env_build.xml

• MPILIB in env_build.xml

• COMPILER in env_build.xml

• EXEROOT in env_build.xml

• RUNDIR in env_run.xml

• DIN_LOC_ROOT in env_run.xml

There is an example configuration in scripts/example_config. This configura-
tion expects a folder in root /cesm and /cesm/inputdata, but if you don’t have
root access at your location, those variables can be easily changed (EXEROOT,
RUNDIR, DIN_LOC_ROOT).

Build case

To build a case, the $CASENAME.build script needs to be executed. In case
you chose the gnu compiler in your settings, make sure you have gmake in-
stalled and create a symlink from gmake to make. If any previous builds failed,
$CASENAME.clean_build needs to be executed.

10



Getting data

If you don’t want to download input data manually, jump to the Quickstart chap-
ter. The data download script lies directly in cesm1_2_1/scripts/yourcase
you created one step back. To download input data to a specific data directory
execute this with an adjusted path.

export DIN_LOC_ROOT='/Path/to/input/data/dir'
mkdir -p $DIN_LOC_ROOT

./check_input_data -inputdata $DIN_LOC_ROOT
-export -datalistdir $DIN_LOC_ROOT

Now it also should be possible to check if the required data is present with follow
command:

check_input_data -inputdata $DIN_LOC_ROOT -check

To download missing data from the server use:

check_input_data -inputdata $DIN_LOC_ROOT -export

Booth commands need to be run inside the $CASEROOT

Build the Case

cd ~/cesm/EXAMPLE_CASE
./cesm_setup
./EXAMPLE_CASE.build

Quickstart

This QuickStart (Development-Team 2014) should give an brief overview about
the work flow of CESM , especially if there already is a version ported to the local
target machine. If that is not the case, start with the more detailed description
above.

There are a couple of definitions which have to be kept in mind:

$COMPSET refers to the components set
$RES refers to the model resolution
$MACH refers to the target machine
$CCSMROOT refers to the _CESM_ root directory
$CASE refers to the case name
$CASEROOT refers to the full pathname of the root directory

where the case ($CASE) will be created
$EXEROOT refers to the executable directory

($EXEROOT is normally __not__ the same as $CASEROOT)
$RUNDIR refers to the directory where _CESM_ actually runs.

11



This is normally set to $EXEROOT/run.
(changing $EXEROOT does not change $RUNDIR
as these are independent variables)

In the first step you need to download(Click here) CESM and select a ma-
chine, a component set and a resolution from the list displayed after using this
commands:

> cd $CCSMROOT/scripts
> create_newcase -list

There is a list of CESM supported components like sets(Click here), reso-
lution(Click here) and machines(Click here). Remember, that the -list
will always provide a list of supported component sets for the local CESM version.
The first letters of the -compset option will indicate which kind of model is
used. To create a case the command create_newcase is used. It creates a case
directory containing the scripts and XML files to set up the configurations for
resolution, component set and machine requested. The create_newcase has
some arguments as condition and some additional options for generic machines.
For more information create_newcase -h should help. In case that a supported
machine is in use ($MACH) type the following words:

>create_newcase -case $CASEROOT \
-mach $MACH \
-compset $COMPSET \
-res $RES

When using the machine setting userdefined it is required to edit the resulting
xml files and fill them with the informations needed for the target machine. The
create_newcase -list command will also show all available machines for the
local version. For running a new target machine use the section above.

To setup the case run script be sure to use the cesm_setup command which
creates a CASEROOT/CASE.run script with user_nl_xxx files, while the xxx
tell us something about the case configuration. But before running cesm_setup
there is the env_mach_pes.xml file in $CASEROOT to be modified for the
experiment.

> cd $CASEROOT

After this the env_mach_pes.xml can be modified with the xmlchange com-
mand. Take a look at xmlchange -h for detailed information. Then the
cesm_setup can be initiated.

> ./cesm_setup

With the optional build modifications in mind (env_mach_pes.xml) the build
script can be startet:

> $CASE.build

12

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/x290.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/compsets.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/grid.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/grid.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/machines.html


To run the case and maybe setting the variable $DOUT_S in env_mach_pes.xml
to false the job can be submitted to the batch queue:

> $CASE.submit

After the job finished you can review all the following directories and files like:

1. $RUNDIR
* the directory set in the `env_build.xml` file
* the location where the _CESM_ was run with log files for

every part
2. $CASEROOT/logs

* if the run was successful the log files have been copied
into this directory
3. $CASEROOT

* here should a standard out or error file
4. CASEROOT/CaseDocs

* a list a case names is copied to this directory
5. CASEROOT/timing

* here are timing files which are representing the
performance of the model

6. $DOUTS_S_ROOT/$CASE
* This directory is an archive depending on the setting

done above, while it is true there is a log and history

Conclusion

We managed to fix the build scripts to create and setup a case. In the step of
compiling the code we encountered a few errors, but we were able to compile
two models. After that another error occurred during compilation of the pio
module. CESM ships with a parallel IO library, which practically is a set of
interfaces for netcdf, parallel netcdf or binary IO. We chose to use pnetcdf for
our build. After installing the required libraries and setting the proper paths
and variables, as described in their documentation, the build still failed and
required a configuration file for pio. There is no further information about this
configuration file in their documentation. After writing their support without
response, we were forced to stop using CESM.

After all CESM still looks like a promising model, but it has many flaws. Their
build scripts aren’t generic. Nearly 6 weeks were spent to understand the code
and fix old syntax or hard-coded paths. If there were better documentation
about the setup and compilation for CESM we could’ve probably used it, as we
were really close to compiling it.

13



ECOHAM5

About

ECOHAM5 (ECOsystem Model Hamburg Version 5) is a physical-geological-
biochemical model for different levels of ocean depth in which different elements
react with each other. This version takes advantage of parallelism through
interprocess communication. The physic behind this model is based on the
hydrodynamic model called HAMSOM. In comparison to older ECOHAM5
versions this one has a better generic approach to cope with different grid
resolutions. The information in this section were taken from the “ECOHAM5
user guide” (Fabian Große last updated: November 27, 2015).

Source Code

Not freely available in the internet.

Compile ECOHAM5

To compile ECOHAM5 for a testcase, there is the following script to be run in
different ways:

./CompileJob-cluster.sh TEST 0 // for just the compiling

./CompileJob-cluster.sh TEST 1
// for compiling and make it ready to run

./CompileJob-cluster.sh TEST 2 // compiling and run the model

In our case TEST is the data input. If an error occurs and you don’t have the
permission to run sbatch on a specified partitions, it is necessary to make
modification in the RunJob.TEST located in the folder of the declared input.
The wrk directory will contain most of the output generated by the case. The
directory /Input inside the /wrk folder contain all the input used for the case.
There are .dat .header and .direct files which are providing the application
with all data needed. To visualize the newly created case there is a folder
named /res.TEST with a subdirectory /TEST.1977.00 in which you can find the
netCFD data file TEST_3D.nc. For our purpose we used ncview and ncdump
to analyze the generated output.

Using ncview

Ncview is very easy to start once you know where the .nc file of your choice is.
For help beyond our purpose in this paper, we recommend to have a look at

14



their homepage http://cirrus.ucsd.edu/. . . .

Figure 2 shows Europa and the wind speed colored by a scale. There are a
bunch of settings which can manipulate the view at the data. An example of
the resulting insight can be seen in Figure 2.

Using ncdump

Ncdump has a different approach of reviewing data, by converting a netCDF
data file in to a better readable text format for humans. A result of ncdump
can be seen in Figure 3.

Figure 3: ECOHAM5 with ncdump

15

http://cirrus.ucsd.edu/~pierce/software/ncview/index.html


Figure 4: Visualization of ECOHAM5 output data in ncview visual browser

Life cycle of data

General

Through the whole process of running a simulation there are different types of
data at certain points. The complexity and the information can differ. The
data which is fed into the program at the beginning won’t be the same which is
visualized by a color on the climate overview. (University 2016)

The life cycle could be divided into the parts shown in Figure 4 (“The Data
Lifecycle” 2016) and can differ from institution to institution:

1. creating data

2. processing data (pre- and post-processing included)

3. analyzing data

4. preserving data

5. giving access to data

6. re-using data

16



Figure 5: Data life cycle

17



Creating the data

Creating the data could also be referred to as the design of the research. The
choices made during this step will be crucial, because it will have an huge
impact on the processing as well as at the overall structure of the application.
Which kind of data management, formats or storage should be used are just
some examples of questions which needs to be answered for a proper design.
If there are already similar existing simulations, their data could be re-used
for the current step. In case there is no similar simulation, new data needs to
be collected by research and experiments. Running simulations and capturing
metadata are important parts of this process.

Processing data

This step will contain the digitization, transcribing and translation of data
into a useful figure. It also is about the vetting of validate and clean data.
Anonymizing data could also be part of processing. Sometimes there is pre- and
post-processing besides the general processing. Pre-processing will prepare the
particular data before a certain step. In this step all unneeded information will
be dismissed to save time and storage capacity. After this there might be the
post-processing. This process includes the treatment of data to make it usable
for following steps. For example the data should be described and explained to
make it easy to read for other people. As a last step it is necessary to take a
look at the storage of the data.

Analyzing of data

It is hard to get any valuable information out of pure data, especially if there
are thousands of values and rows. Therefore we need methods to interpret them.
Derivation of data during calculation of the output of the research and making
publications is another part. Now main calculations of the data are done, the
data have to be prepared for preservation.

Preserving of data

Preservation of data is about looking for the best formats and best media on
which it should be backed up and stored. Also creation of meta data and
documentation is important for the final archiving.

Giving access to data

Because research is done mostly by public institutes there is the demand of
sharing and distributing the data and knowledge. Considering a mechanism for

18



access control and determine copyrights might also be very useful.

Re-using data

Research in the future could also be based on the work which was done in the
past. Teaching and publications may be good examples for re-using.

Summary

With the growth of data in simulations and the constant rapid improvement of
processing power, it is very essential for research establishments to maintain a
proper storage technology. The data and knowledge are the key and the only
thing those institutes are working for. Therefore data and knowledge needs the
right treatment.

Conclusion

This project was about the analysis of input and output of climate applications.
We made our way through running models provided by our supervisors and
some we found in the internet which seemed suitable for our purpose. We faced
bad documentations and insufficient scripts for making such a model run. At
the end we didn’t manage to run most of them at different levels of progress.
ECOHAM5 was the only one which worked on the fly Apart of that it didn’t
kept us away from documenting our respective progress on the models as well as
analyzing the life cycle of data in general.

References

“AWIPS II Infrastructure.” 2016. http://www.unidata.ucar.edu/software/
awips2/images/awips2_coms.png.

“Awips System Architecture Documentation.” 2016. https://docs.google.com/
document/d/1ggqsioNSwVC6XzJL7oJs1vPkUPzXeaCwz25tMtqikzE/edit.

Development-Team, CESM1.2. 2014. “Cesm Documentation.” http://www.
cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html.

ECMWF. 2016. “OpenIFS documentation.” https://software.ecmwf.int/wiki/
display/OIFS/About+OpenIFS.

Fabian Große, Hermann Lenhart, Markus Kreus. last updated: November 27,

19

http://www.unidata.ucar.edu/software/awips2/images/awips2_coms.png
http://www.unidata.ucar.edu/software/awips2/images/awips2_coms.png
https://docs.google.com/document/d/1ggqsioNSwVC6XzJL7oJs1vPkUPzXeaCwz25tMtqikzE/edit
https://docs.google.com/document/d/1ggqsioNSwVC6XzJL7oJs1vPkUPzXeaCwz25tMtqikzE/edit
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html
https://software.ecmwf.int/wiki/display/OIFS/About+OpenIFS
https://software.ecmwf.int/wiki/display/OIFS/About+OpenIFS


2015. “ECOHAM5 user guide.” handed via mail.

“The Data Lifecycle.” 2016. http://www.lancaster.ac.uk/media/lancaster-university/
content-assets/images/library/other/DataLifecycle.png.

Unidata. 2016. “Unidata AWIPS II, Softwarepage.” https://www.unidata.ucar.
edu/software/awips2/.

University, Lancaster. 2016. “The Data Lifecycle.” http://www.lancaster.ac.uk/
library/rdm/what-is-rdm/plan/data-lifecycle/.

20

http://www.lancaster.ac.uk/media/lancaster-university/content-assets/images/library/other/DataLifecycle.png
http://www.lancaster.ac.uk/media/lancaster-university/content-assets/images/library/other/DataLifecycle.png
https://www.unidata.ucar.edu/software/awips2/
https://www.unidata.ucar.edu/software/awips2/
http://www.lancaster.ac.uk/library/rdm/what-is-rdm/plan/data-lifecycle/
http://www.lancaster.ac.uk/library/rdm/what-is-rdm/plan/data-lifecycle/

	Introduction
	About the paper and our goals
	Getting started

	IFS - Integrated Forecasting System
	About IFS

	Further progress
	Unidata - AWIPS2
	EDEX (Environmental Data EXchange )
	CAVE (Common AWIPS Visualization Environment)
	Installation

	CESM - Community Earth System Model
	About CESM
	Requirements
	Installation
	Input Data Set
	Setup

	CESM Creating And Configure A New Case
	Prerequisites
	Create a new case
	Setup case
	Build case
	Getting data
	Build the Case

	Quickstart
	Conclusion

	ECOHAM5
	About
	Source Code
	Compile ECOHAM5
	Using ncview
	Using ncdump


	Life cycle of data
	General
	Creating the data
	Processing data
	Analyzing of data
	Preserving of data
	Giving access to data
	Re-using data

	Summary

	Conclusion
	References

