Transparent I/O Optimization, Hierarchical-Storage Simulation, Earth-System-Data Middleware

Jakob Lüttgau

July 8, 2016

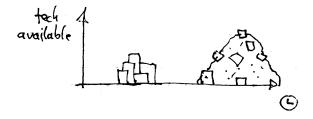
Overview

- 1. Transparent I/O Optimization
- 2. Hierarchical-Storage Simulation
- 3. Earth-System-Data Middleware

1. Transparent I/O Optimization

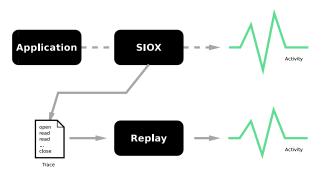
2. Hierarchical-Storage Simulation

3. Earth-System-Data Middleware

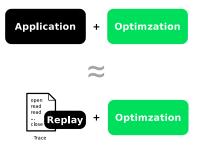

Motivation

The supercomputing langscape.

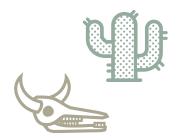
Mostly cluster systems. Quite complex.


 $Hardware \times Software \times Topologies \times \cdots$

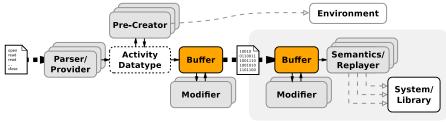
Combine to suit characteristics of applications! Unfortunately:


Trace replay to mimic applications

The trace preserves the characteristics.

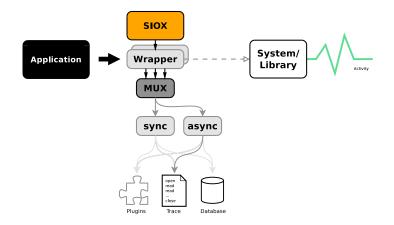

Analogousness

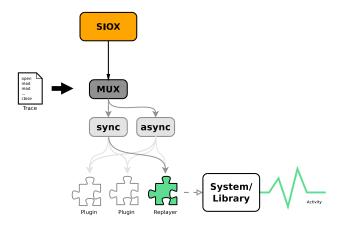
In many cases the following should be true.


Parallel Trace Replay

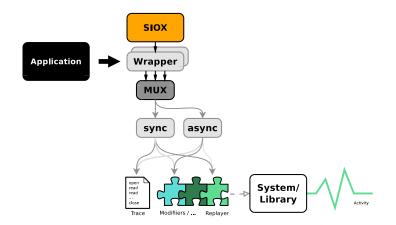
Not so many tools available.

Activity Pipeline

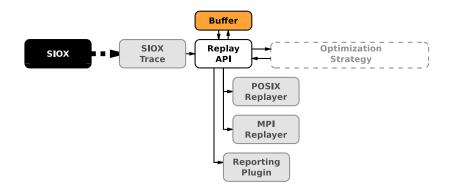

How many hoops does it take to adequately reproduce I/O on different systems? Prototype to establish good abstractions. Tools are all about convienience.


online (time is critical)

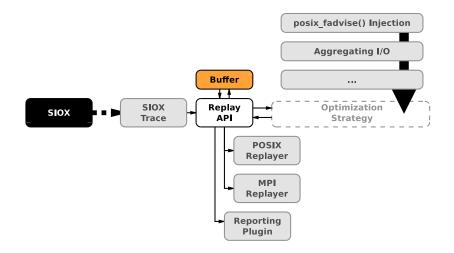
Introducing SIOX


Instrument applications to gain valuable insight. LD_PRELOAD=..

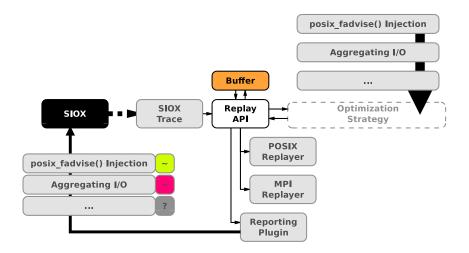
Replay with SIOX SIOX can also process traces.



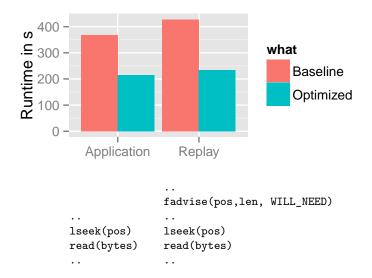
Runtime Optimizations using SIOX Stack plugins to automatically optimize I/O


Virtual Lab

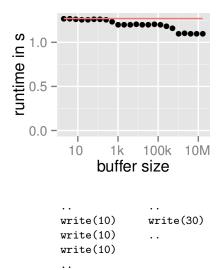
Stack plugins in different ways to craft new tools.


Virtual Lab (2)

Provide plugins that automatically apply optimizations to traces.


Virtual Lab (3)

Have reporting plugins to propagate results back to optimization engine.


Evaluation: POSIX fadvise injection

Find successive lseek() read() patterns and timely inject fadvise().

Evaluation: Coalescing

Merge adjacent read() or write() operations. Show that optimization works by sampling parameter space for optimum.

1. Transparent I/O Optimization

2. Hierarchical-Storage Simulation

3. Earth-System-Data Middleware

Motivation

Long-term storage and upcoming challenges for exascale supercomputers. Why long-term storage?

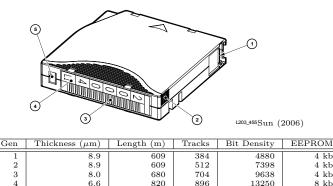
- ▶ Preservation of human knowledge
- ▶ Preservation of cultural goods (arts, literature, music, movies, etc.)
- ▶ Archival of organizational data (e.g., raw movie footage)
- ▶ Preservation of personal documents and photos
- ▶ Compliance with legal requirements

Challenges for scientific users (e.g., DKRZ, CERN):

- ► Supercomputers highly parallel
- ▶ Produce data faster than can be stored persistently
- ▶ Producing insight was expensive and results should be preserved
- \blacktriangleright Deep storage hierarchies to balance cost and performance
- ▶ Scientific users already approaching exascale storage systems
- ▶ Innovation mostly dependent on vendors

History of Magnetic Tape Storage

1890s	Valdemar Poulsen invents Magnetic Wire Recording . Only limited use through the 1920s and 1930s, but popular from 1946 to 1954. One hour of audio recording required about 2200m of thin wire (0.10 to 0.15 mm).		
1928	Fritz Pfleumer uses ferric oxide (Fe_2O_3) as a recording medium. The approach is improved by AEG and reel-to-reel tape recorder for tapes produced by BASF is released. The method was kept secret during World War II.		
1947	John Bardeen, Walter Brattain and William Schockley invent the Transistor		
1950	Reel-to-Reel recording and playback devices become affordable enabled by transistors.		
1951	Data storage UNIVAC I (UNIVersal Automatic Computer I) 128 chars per inch, written on 8 tracks		
1952	IBM introduces the first magnetic data storage devices often referred to as 7 $Track$.		
1962	Phillips invents Compact Cassete for audio recordings, though it was also sometimes used for data storage.		
(1956)	Focus on tape from here on, as other media such as floppies and diskettes are beyond the scope of the section.		
1959	Toshiba introduces helical scan as tape draw speed determines the maximum recordable fre- quency. The signal may not get imprinted which was a problem for video recording. Sony later pushed this technology further forward.		
1980s	Introduction of automated robotic tape libraries by Sun with the Brand StorageTek. Tape is suddenly accessible within tens of seconds instead of hours or days. The term <i>nearline storage</i> gains traction to describe such systems.		
1990s	Linear Tape Open (LTO) Consortium is founded. LTO is todays most wide-spread format.		


LTO Tape Format

 $\mathbf{5}$

6

7

Linear Tape Open - Standards are beneficial for customers and vendors.

▶ LTO-6: 0.011 USD/GB native, 0.005 USD/GB compressed, (2.5 to 6 TB)

846

846

960

1280

2176

3584

15142

15143

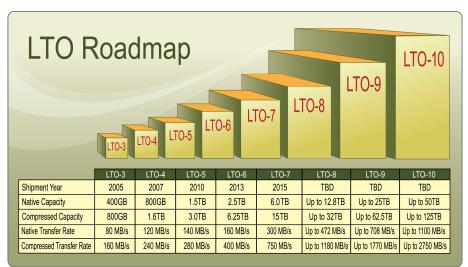
NA

8 kb

16 kb

16 kb

6.4


6.1

5.6

▶ LTO-7: 0.028 USD/GB native, 0.012 USD/GB compressed, (6 to 15 TB)

Linear Tape Open (2)

LTO release strategy: Backwards-compatibility; New generation every 2-3 years.

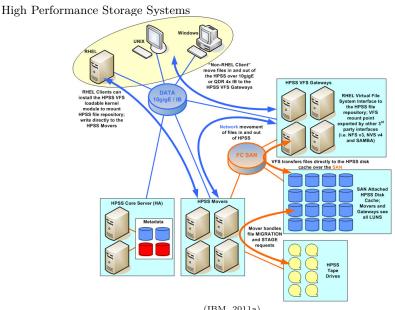
(Spectralogic, 2016a)

Automated Tape Libraries

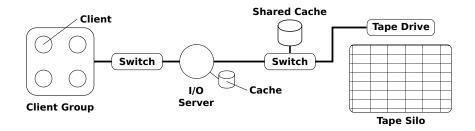
Archives; Data reduction and compression; Encryption; Self-describing tape formats;

IBM TS3500 Library Complex (IBM, 2011b)

TFinity Library Complex (Spectralogic, 2016b)

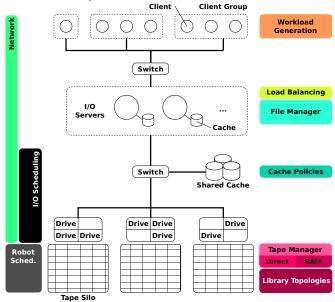


StorageTek SL8500 Library Complex (Oracle, 2015)


Scalar i6000 Library Complex (Quantum, 2015)

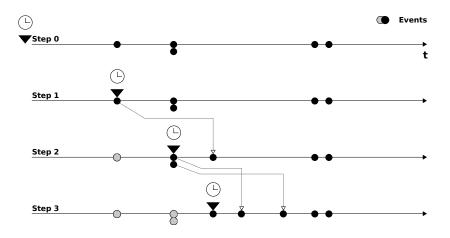
HPSS

A simple model to get started

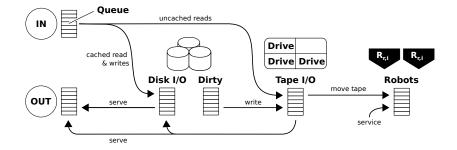

Introduction of the most important components.

- 1. Multiple *clients* which may issue requests to read and write data
- 2. An I/O Server to receive and handle the requests
- 3. Different *cache levels*, to speed up access for recently touched files
- 4. Automated tape silos and tape drives to access the archive

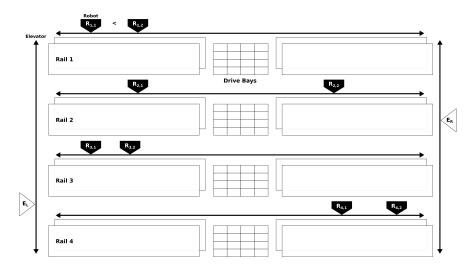
Model Overview


Hardware and software components in a combined overview.

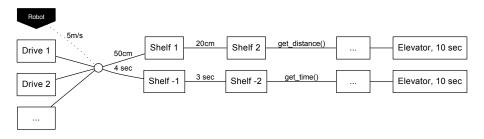
Jakob Lüttgau


Discrete Event Simulation

Only require calculations when the state of the system changes.


Scheduling and Request Queues

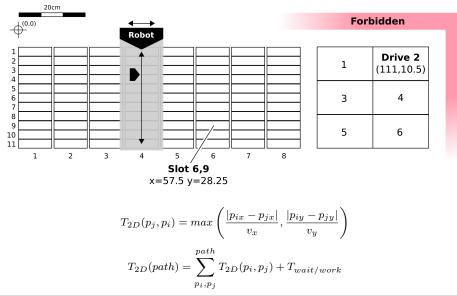
Chaining specialized request queues makes resource allocation manageable.


Robot Scheduling

Example: How a single SL8500 library maybe seen by a scheduling component.

Graph-Based Topology Model

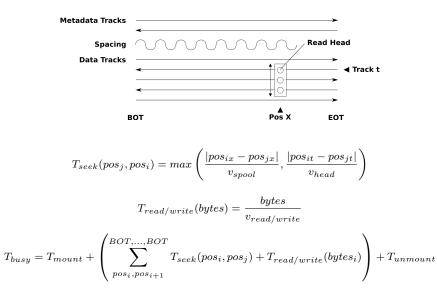
Component connecticity graphs with distance or time panalties.

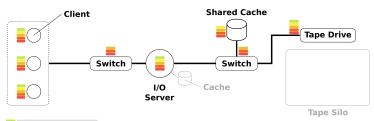


$$\operatorname{get_time}(e_{v_i,v_j} \text{ or } v) := \begin{cases} t & \text{ if } e_{v_i,v_j} \text{ or } v \text{ have time } t \text{ set} \\ \frac{\operatorname{get_distance}(v_i,v_j)}{v_{robot}} & \text{ if } e \text{ but no time is set} \\ 0 & \text{ otherwise} \end{cases}$$

$$T_G(v_i, v_j) = \sum_{v_i, v_j}^{\text{shortest_path}(v_0, v_1)} \text{get_time}(v_i) + \text{get_time}(e_{v_i, v_j})$$

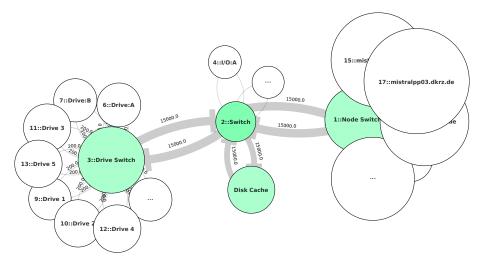
2D Topology Model


Flat library projections and tape receive times. Optional with easing.

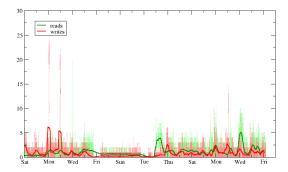

Jakob Lüttgau

Serpentine Tape Model

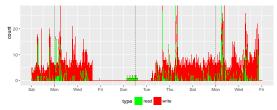
Estimating spool and seek times for tape access.


PDU/Package-based Network Model

Protocol Buffers

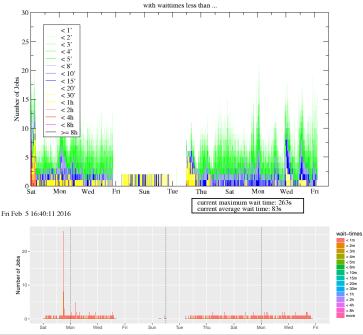

	Layer	Protocol data unit	Function / Example
	7 Application		
	6 Presentation	Data	CSS, HTML, Javascript
Host layers	5 Session		FTP, NFS, HTTP, HTTPS, RPC, SMTP
	4 Transport	Segment (TCP) / Datagram (UDP)	TCP, UDP, SSH, NetBIOS
	³ Network	Packet	IPv4, IPv6, ICMP
Media lavers	² Data link	Frame	IEEE 802.2, L2TP, MAC, PPP
	¹ Physical	Bit	Ethernet, SCSI, USB, ISDN, DSL

Network Topology used for Evaluation



A familier face: Workload Trace for Verification

HPSS read/write activity


Fri Feb 5 16:40:07 2016

PFTP activity

Jobs in HPSS Stagequeue

Jakob Lüttgau

Research Topics

1. Transparent I/O Optimization

2. Hierarchical-Storage Simulation

3. Earth-System-Data Middleware

OK

FSiWACE

ESiWACE stands for Centre of Excellence in Simulation of Weather and Climate in Europe

We are a new initiative of the OHPC ecosystem in Europe and we Earth System modelling (ENES) @http://enes.org representing the European climate modelling community and the world leading European Centre for Medium-Range Weather Forecasts Ohttp://www.ecmwf.int

Our goal is to substantially improve efficiency and productivity of numerical weather and climate simulation on high-performance

UPCOMING EVENTS

Solutions in Earth System Modelling and on Meta-Data Generation during Experiments

Sep 26, 2016 - Sep 28, 2016 - Lisbon (Portugal)

Search Site

TWITTER @ESIWACE



Steven_VdB80 : RT @Eudat_eu: Keep in mind the guiding principles for data management: make data F.A.I.R. #DMP #einfrastructures

Jul 07, 2016 04:19 PM

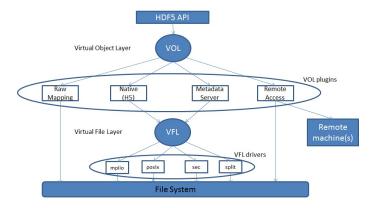
STFC, DKRZ, ECMWF, CMCC, SEAGATE

WP4 Exploitability

Model Systems and Use-Cases

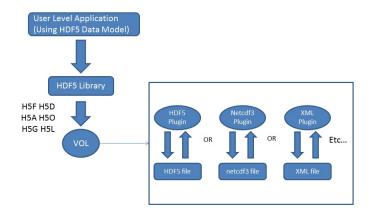
- ▶ Better understand how to handle high volumes earth system data and how to exploit storage hardware
- ► Convergence of weather and climate HPC Workflows

Earth-System-Data Middleware

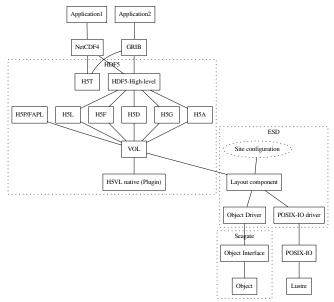

- ► Disk Storage Layout for ESD, overcome limitations of current formats and APIs
- ▶ New interface for data-concious storage (beyond bytestreams)
- ► Account for more heterogenous disk storage environments Tape access strategies
 - ▶ New tape access strategies
 - ▶ Improve bandwidth and redundancy (e.g. RAIT)

Semantic Mapping between climate and weather formats

- ► GRIB (primalary used in weather, e.g. satellite images)
- ▶ netCDF (popular within climate community)


New in HDF5: VOL

Virtual Object Layer

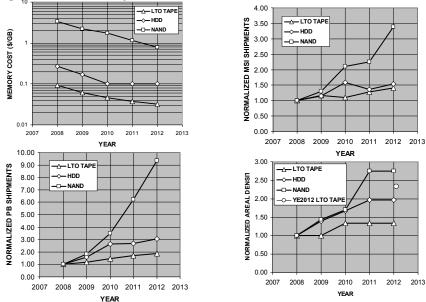


New in HDF5: VOL

Virtual Object Layer

Questions?

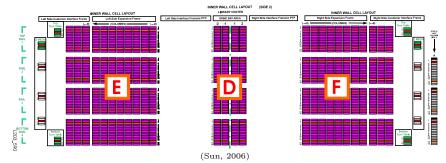
Appendix


- 4. Library Management
- 5. Concurrency
- 6. Runtime and Memory Requirements
- 7. Misc

Bibliography I

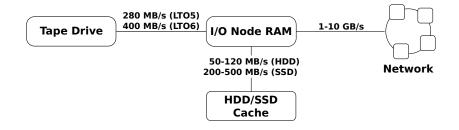
- Fontana, R. E., Decad, G. M., and Hetzler, S. R. (2013). The Impact of Areal Density and Millions of Square Inches (MSI) of Produced Memory on Petabyte Shipments of TAPE, NAND Flash, and HDD Storage Class Memories. Proceedings of the 29th IEEE Symposium on Massive Storage Systems and Technologies.
- IBM (2011a). High Performance Storage System. Technical report.
- IBM (2011b). IBM System Storage TS3500 Tape Library Connector and TS1140 Tape Drive support for the IBM TS3500 Tape Library. pages 1–15.
- Oracle (2015). StorageTek SL8500 Modular Library System User's Guide.
- Quantum (2015). Quantum Scalar i6000 Datasheet.
- Spectralogic (2016a). LTO Roadmap. https://www.spectralogic.com/features/lto-7/. [Online; accessed 2016-01-24].
- Spectralogic (2016b). Spectralogic TFinity Enterprise Performance. https://www.spectralogic.com/products/spectra-tfinity/tfinity-features-enterprise-performance/. [Online; accessed 2016-02-12].
- Sun (2006). StorageTek StreamLine SL8500 User Guide. (96154).

Future of Tape

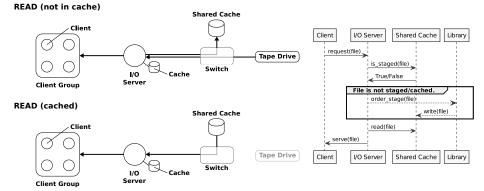

Is tape obsolete? Probably not for another decade or two. (Fontana et al., 2013)

Jakob Lüttgau

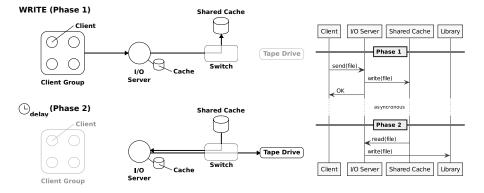
Outer and Inner Wall Cell Layout Map


		0	DIER MALL GELL LA					
	OUTER WALL CELL LAYOUT	TYPICAL ROW #			OUTER WALL CELL LAYOUT			
Loft Side Customer Interface Frame	Left Side Expansion Frame	Left Side Interface Frame/w PTP	DRIVE BAY AREA	Right Side Interface Frame/w PTP	Right Side Expansion Frame	Right Side Customer Interface Frame A&D		
PLAY BROAKS 90 DATA CELLS (9)	(COLUNNS) (9)	4 7 4 5 4 7 2 1 1 2		3 4 5 8 7 8	(9) (COLUMNS)	(9) PLAT GROUND NO CHILA SELLA		
TOP RAL L		r nyanya selit. O						
RAIL 2 L	B	10 Starvavu -						
		r n vera and 0						

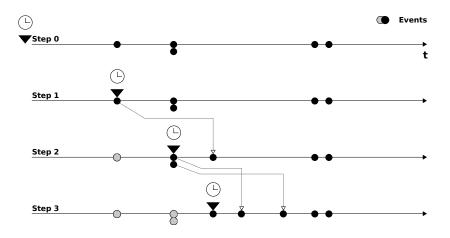
Research Topics


Network Model Granularity

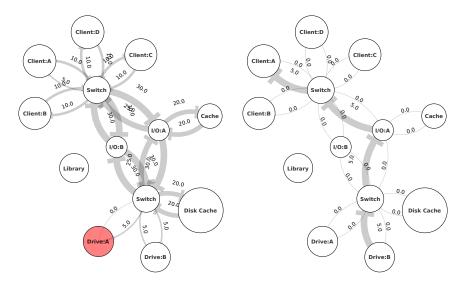
Tape Drive and HDD/SSD throughput are limiting factors.


Handling **READ** Requests

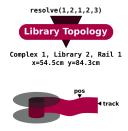
Staging of recently accessed files for reads.


Handling WRITE Requests

Two-Phase write with delayed persistence on tape.


Discrete Event Simulation

Only require calculations when the state of the system changes.

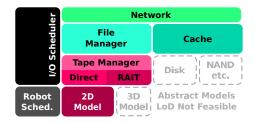

Network Model (Implementation)

Example: The network with one busy drive. Max-flow used to estimate throughput.

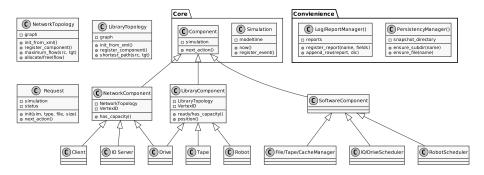
Library Organisation and Management File and tape management.

File	Size	Position	Таре		Таре	Slot
file1	3134	pos,track	012345L1		012345L1	1,1,1,18, 9
file2	6483	45,447	LT0834L5		264653L4	3,1,3, 7, 5
file3	39485	1623,187	274344L4	\square	274344L4	1,4,2,-6,12
file4	38474	2245,184	274344L4	$ \rightarrow $	267753L4	2,2,4, 3, 5
file5	345	3749, 47	LT0834L5		LT0834L5	1,3,3, 7, 1
				-	CLN004CU	2,3,1,-7, 8
					CLN031CU	1,2,1, 2, 3

Concurrency

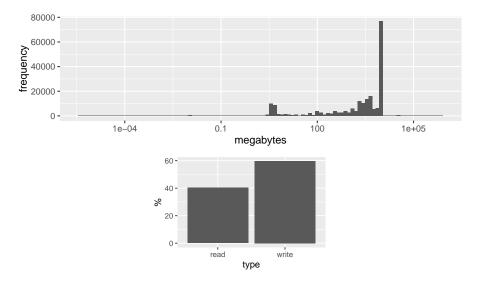

I/O scheduling and strong vs. weak ordering semantics

Incoming requests in order:	write(file1)	write	e(file5)	write(file3)	write(file2)	write(fi	le1)	write(file4)	write(file6)	
									ī	ime
Bundled requests:	а	b	С			File	Таре	e Pos		
	file1	file3	,≁ file5	:		file1	а	3		
	, ► file1	file2	► file4			file2	b	4		
	`► file6	:	:			file3	b	2		
	:					file4	с	3		
						file5	с	5		
Reordered requests:	а	b	С			file6	а	1		
	file6	file2	file4	:						
	file1	file3	file5							

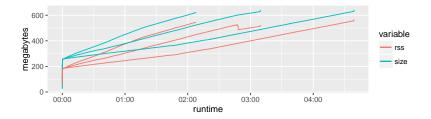

O_i = read(D), O_j = read(D). Maybe handled concurrently.
O_i = read(D), O_j = write(D). Can not be handled concurrently.
O_i = write(D), O_j = read(D). Can not be handled concurrently.
O_i = write(D), O_j = write(D). Can not be handled concurrently.

Tape System Software Stack

A similar stack should also allow to run a real tape system.



Components and Classes UML Class Diagram


Workload Trace (2)

Request size and request type distributions

Runtime and Memory Consumption

Only request data is immediately written to disk. Some other data accumulates.

4. Library Management

5. Concurrency

6. Runtime and Memory Requirements

7. Misc