
Student Cluster Competition 2015

— Report —

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

Vorgelegt von: Lennart Braun, Jonas Gresens,
Jannek Squar,
Lars Thoms, Felix Wiedemann

Betreuer: Dr. Michael Kuhn, Anna Fuchs

Hamburg, den 10.1.2016

Abstract
The International Supercomputing Conference (ISC1) is an annual global conference and
exhibition for High Performance Computing. New and established companies in the High
Performance Computing field are able to present their products and discuss the needs of
their potential customers. Additionally, several workshops are held to communicate the
knowledge gained in research groups. One major event is the announcement of the new
TOP500 list of the 500 best performing supercomputers world-wide.

Another event at the ISC is the Student Cluster Competition (SCC) where student
teams from different universities from around the world come together and compete for
the best performing cluster system. This report summarizes the experiences of the team
from the University of Hamburg at the SCC of ISC’15.

1http://www.isc-events.com/isc15/

http://www.isc-events.com/isc15/

Contents

1 Introduction and Motivation 4
1.1 Task and Rules . 5
1.2 Bay . 5

2 System 6
2.1 Hardware Overview . 6
2.2 Power Consumption . 8
2.3 Power Capping . 9
2.4 Operating System . 10
2.5 Compiler . 12
2.6 Filesystem . 13
2.7 Modules . 21

3 Libraries 25
3.1 Math Libraries . 25
3.2 I/O Libraries . 33
3.3 MPI . 35

4 Benchmarks 41
4.1 HPL . 41
4.2 HPCC . 43
4.3 Graph500 . 51

5 Applications 53
5.1 PyFR . 53
5.2 Octopus . 60
5.3 LAMMPS . 64

Bibliography 68

List of Figures 69

List of Tables 70

List of Listings 71

A Additional Listings 72

3

1. Introduction and Motivation
In July 2015, the 4th HPCAC-ISC Student Cluster Competition1 during the ISC’15
Conference and Exhibition took place in Frankfurt.

(a) ISC 2015 (b) HPC Advisory
Council

It was the second time that a team of the University of Hamburg takes part in the
SCC. We were participating to gain experience, both technically and personally. We
wanted to prove and – of course – improve our skills and were looking forward to working
together as a team.

Figure 1.1.: Setup day in our bay

The Student Cluster Challenge was a very good opportunity to get to know the
international HPC scene, which is not easily possible for students. It was also a good
chance to compare our own methods with the other teams. Additionally, it was very
interesting to have the chance to work with this kind of hardware and resources, because
they are generally not easily accessible.

1http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition

4

http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition

1.1. Task and Rules
The 11 teams, each consisting of 6 undergraduate students from all over the world, built
a small prepared cluster in a real time competition. They tried to reach best performance
results with their systems under certain conditions. There were three categories of awards
to be given - three prizes for Overall Winners, the highest LINPACK performance and
the Fan Favorite prize.

The power budget was limited to 3 kW on one monitored PDU. Exceeding this budget
was penalized down to disqualification from the competition or parts of it. It was not
allowed to restart the system or its components and also to change any of them at any
time of the competition, save as otherwise permitted. The advisors were not allowed to
actively support the team during the day.

Three applications were published some months in advance as well as the used bench-
marks were known from the beginning of the competition. One addition application was
published on the immediately preceding day.

1.2. Bay
Author: Lars Thoms

Each team is allocated to a bay of 3 · 3 qm, which means efficient usage of space. All
six members with chairs, one table, routers, power strips, cables, nodes, and advertising
material have to be accommodated. As you see in Figure 1.2, we used the cardboard
packaging of our two rackmounts as a table for two nodes, a head node, both switches
(InfiniBand and Ethernet), and a netbook connected to a screen which displays our
current power consumption and CPU usage. Furthermore the DKRZ lent us a thermal
camera. We used it to show visitors the thermal emission of the nodes.

Figure 1.2.: Our bay

5

2. System

2.1. Hardware Overview
Author: Lars Thoms

At the Student Cluster Competition our hardware were sponsored by Bull (nodes and
Ethernet switch) and Mellanox (InfiniBand switch and cards). The final setup consists
of eight compute nodes, four per rackmount, and each one consists of:

• 2 Xeon E5-2680v3 (12 Cores, 2.5GHz)

• 128GB RAM (16 GB modules)

• 240GB (SAMSUNG MZ7WD240)

• Mellanox ConnectX®-4 VPI adapter card, EDR IB (100Gb/s) and Gigabit Ethernet,
single-port QSFP28, PCIe3.0 x16

(a) Two of our nodes (b) Front view of our eight nodes

Furthermore, we used a Mellanox Switch-IB(TM) based EDR InfiniBand 1U Switch
with 36 QSFP28 ports as an InfiniBand switch but we only needed eight of the 32 ports,
therefore the power consumption of this hardware was very high. Additionally, we had a
32 port Ethernet switch from Cisco (Cisco SG300-28).

As a head node (called microwave), we used small box which contained two Western
Digital Green 1TB as RAID 1, two Gigabit Ethernet slots, an Intel Atom quad core and
16GB RAM.

6

2.1.1. Thermal Emissions
Author: Lars Thoms

Additionally, we also monitored the thermal emissions of our nodes. We borrowed a
Janoptik VarioCAM from the DKRZ. The camera has two IP54 connectors (figure 2.1b
1) and a slot for an SD card (FAT formatted). First of all, we evaluated the temperature
of our nodes and calibrated the camera while we took photos (see figures 2.1a and
2.1b). After that we connected the power cord and a VGA to IP54 connector to display
emissions on a screen (figure 2.1a). It is important to change the color model on the
camera, otherwise you see a greenish image.

(a) Setup of the camera (b) IP54 connector

Interestingly, our nodes have never emit more than 45℃ – even under high load (figure
2.1b)! Presumably, our nodes from Bull have a good airflow.

(a) Side view of the nodes (b) Back view of the nodes

1http://catalogue.techno-test.com/products/images/780/580/81920/produits/VarioCAM_
HiRes_384/5-VarioCam_HiRes_inspect_384.jpg

7

http://catalogue.techno-test.com/products/images/780/580/81920/produits/VarioCAM_HiRes_384/5-VarioCam_HiRes_inspect_384.jpg
http://catalogue.techno-test.com/products/images/780/580/81920/produits/VarioCAM_HiRes_384/5-VarioCam_HiRes_inspect_384.jpg

2.2. Power Consumption
Author: Lars Thoms

The event organizer generated an overall graph which shows the power consumption
of every team over time (figure 2.1). But this graph was unusable for measuring our own
power consumption, because the sampling was too inaccurate and the resulting image
too small to see the exact values.

Figure 2.1.: Official power graph

Therefore we used a script to monitor the power consumption, plot the current energy
consumption, and notify us if we use more than 3000 Watts. The provided power strip
talks SNMP (Simple Network Management Protocol) and we operated with a sampling
rate of one request per second.

1 #!/bin/bash
2
3 while true; do
4 snmpwalk -v1 -c public 192.168.1.248

↪→ .1.3.6.1.4.1.318.1.1.26.4.3.1.5.1 | awk ’/ INTEGER :
↪→ [0 -9]+/{ print $4 }’ >> power_data

5 sleep 1
6 done

After generating the dataset with the power values we used GNU Plot to display a
graph (see 2.2). To ensure that GNU Plot continued rendering a looper is required.

1 set yrange [2500:3100]
2 set xrange [0:200]
3 set arrow from graph 0,first 3000 to graph 1,first 3000

↪→ nohead lc rgb "#ff0000" front
4 plot "< tail -200 power_data " using 0:(10 * $1) title

↪→ "Power [W]" with lines lt rgb "#0000 ff"

8

1 pause 0.5; replot; reread;

Figure 2.2.: Power consumption of different applications

2.3. Power Capping
Author: Felix Wiedemann

To stay below the 3000 Watt power budget we had to limit the power consumption
of our cluster. Fortunately, the Intel processors of our compute nodes can measure and
constrain the power consumption of the processor itself and the memory controller. This
feature is called Intel RAPL.
Since 3.13 Linux exposes an easy-to-use interface for power capping. To read the

current power limit we execute the following command on the head node:
1 dsh -a ’cat

↪→ /sys/class/ powercap /intel -rapl :?/ con* _1_power_limit_uw ’

The output of this command is the power consumption of each socket of all compute
nodes in Milliwatts.
We used the following script to set the power limit:

1 #!/bin/bash
2 set -e -o pipefail
3 trap "echo An error occured :(" ERR
4 if [[$# -eq 0]] || [[$1 -lt 60]] || [[$1 -gt 240]];

↪→ then
5 echo Usage:
6 echo " $0 <power -budget in Watts >"
7 echo Value must be between 80 and 240.
8 exit
9 fi

9

10 if [[$UID -ne 0]]; then
11 exec sudo $0 "$@"
12 fi
13 dsh -a echo $(($1 *1000000)) ’| tee

↪→ /sys/class/ powercap /intel -rapl :?/ con* _1_power_limit_uw ’

2.4. Operating System
Author: Felix Wiedemann

Like our predecessor team we went through a process of evaluating which operating
system should to be used. This is an important decision for the cluster setup. Virtually
every supercomputer in the TOP500 uses GNU/Linux because Linux is a high performant
OS kernel and Free Software, and therefore very suitable for this task. As our whole
team has had experience with Linux we had only to choose the Linux distribution. On
the one hand we could use a generic Linux distribution, on the other hand we could use
one specialized for HPC. To simplify the decision we preselected Ubuntu2 and Qlustar3.

Setting up a cluster is a much more complex task than installing some software for a
desktop computer as the following facts show. Our cluster consists of nine computers
divided into two roles: One head node and eight compute nodes. Typically only the
head node has a locally installed OS; compute nodes are booted via network with PXE4.
We are using InfiniBand as a fast interconnection between the compute nodes which, of
course, needs software support. Often custom libraries have to be built and installed,
for example MPI and BLAS. If we had chosen Ubuntu we would have to setup all these
things by ourself. In contrast Qlustar comes with “batteries included” for the things
mentioned above. As we have never worked with Qlustar before but it seemed to ease
the initial setup we decided it is worth a try – just like our predecessor team.

2.4.1. Qlustar
Qlustar is a Ubuntu derivative which is specialized for HPC.
It features a handy installer and a GUI application called QluMan which greatly

simplifies the administration of the cluster. With QluMan virtually every option of the
cluster can configured: disk setup of the compute nodes, Slurm options, the contents
of the base images for the nodes, filesystem structure, and so on. QluMan was built
for much larger clusters than ours, so it features a hierarchically structure and offers
abstractions such as config sets. Therefore QluMan seems very complex at first, but it is
also quite powerful.
Another speciality of Qlustar is the image generation for the compute nodes. With

Qlustar we can simply select a set of features we like to have on the compute nodes and

2http://www.ubuntu.com
3https://qlustar.com/
4https://en.wikipedia.org/wiki/Preboot_Execution_Environment

10

http://www.ubuntu.com
https://qlustar.com/
https://en.wikipedia.org/wiki/Preboot_Execution_Environment

Figure 2.3.: QluMan config sets window

Qlustar generates an image for that which exactly fits our needs.

Installation

The installation of Qlustar is pretty straightforward.
After downloading the disk image, flashing it to a USB drive, and booting it the text

installer shows up. The installer does not ask many questions a desktop OS would do
but more specific ones for the HPC context. At first we have to setup the disks to use.
Here, we set up a RAID 1 consisting of two disks. Afterwards Qlustar asks for the
network setup – both Ethernet and InfiniBand, which must be in different IP subnets.
The installer also asks for IPMI setup and whether to start OpenSM or not. In the end
we can choose which software should be installed. Here we chose to install Slurm as
task scheduler. After answering all the questions Qlustar is installing and will eventually
reboot.
At the first boot we have to login as root and run qlustar-initial-config which

continues with the initialization of the cluster. Here, we have to give the cluster a name.
Then we enter some admin passwords for Nagios, QluMan, and Slurm. After that the
cluster has to be rebooted again and is ready for action.

Advantages and Disadvantages of Using Qlustar

Qlustar offers an easy installer and enables us to concentrate on more important topics
than setting up the base system for the cluster. It offers many tools and packages which
come in handy for HPC systems. With QluMan we can easily modify settings of the

11

cluster system. Also, Qlustar has reasonable defaults set for cluster computing.
The main downside of Qlustar is that it is a whole new system with which we had to

become acquainted. Additionally, QluMan is a quite complex piece of software. Some
base concepts of Qlustar are obscure and rather outdated: The authentication via network
is handled with NIS which is legacy software and has been replaced by LDAP on most
systems a long time ago. The image generation is also obsolete as it makes use of initrd
which has been superseded by initramfs in 2005. These two features are hard debug
if it comes to problems because they are out of date since ten years and therefore the
information about them on the internet is becoming rare. Generally, Qlustar is harder
to debug for us because we are not acquainted with Qlustar as good as with Ubuntu for
example.

2.5. Compiler
Author: Felix Wiedemann

There are three widely-used compilers that we can use: Intel ICC, Clang, and GCC.
Unfortunately, Clang (mainline) did not support OpenMP as of SCC 15 so that Clang
was not usable for at least some applications and benchmarks. We quickly chose to
prefer GCC over ICC and Clang because of the following reasons: GCC is the most
widely-used compiler today and there are no huge differences in performance between the
three candidates. Due to the intensive use of BLAS libraries in the given applications
and benchmarks the performance optimization of the compilers would only give a minor
speed boost anyway. Probably, the most important aspect for our decision was that GCC
was well-known in our group as nearly all of us are using GNU/Linux whose standard
compiler is GCC and therefore we already got to know GCC. We used the most recent
version of GCC which is 5.1. We provide an installation script in the repository. As
GCC 5 uses C11 as standard some programs which are written in older standards did
not compile. For those programs we had to use the compiler option -std=c90. Apart
from that the only other compiler option we are using for compilation is -O2.

12

2.6. Filesystem
Author: Lars Thoms

Generally, the compute nodes do not need a disk or a filesystem. The compute nodes
boot via PXE and all necessary data is mounted via NFS. But it can be useful to have a
disk based /tmp or similar.

Figure 2.4.: QluMan disk config

QluMan contains a utility called Disk Configs (figure 2.4). It takes care of partitioning
the disks on the nodes. Theoretically, the following configuration is valid, but it did not
work for us at the SCC.

1 disk_config sda
2
3 primary swap 10G swap sw
4 primary / scratch 50G xfs rw
5 primary /var 50G xfs rw , noatime
6 primary /tmp 50G xfs rw ,noatime ,nosuid ,nodev

After saving the config into Disk Configs you have to reboot your nodes and one of
Qlustar’s init-scripts starts partitioning. In fact, this process caused a problem and
the nodes remained offline and there was no direct method for trouble shooting. At
least we set it back to the default ZFS configuration with a 500GB vdev mounted at
/dev/SYSTEM/pupo.

Furthermore, copying files from eight compute nodes to the head node via Gigabit
Ethernet is not reasonable, because it is quite slow. If an HPC application uses much IO
we need something with very low latency and high bandwidth. Thats why we needed a
distributed filesystem which uses the much faster InfiniBand connection instead of the
Gigabit Ethernet.
First of all, we tried to use OrangeFS. But there was a problem in combination with

HDF5, hence we switched over to BeeGFS.

13

2.6.1. OrangeFS
Author: Lars Thoms

OrangeFS is a parallel network filesystem which is a special form of a distributed
filesystem. It uses TCP/IP or InfiniBand to communicate. Before 2011 it was known as
Parallel Virtual File System.

This filesystem also offers interfaces for POSIX-IO system calls and MPI-IO libraries
like MVAPICH2 and the newest version supports storing metadata to SSDs.

Figure 2.5.: How OrangeFS works5

As you can see in the figure OrangeFS consists of IO and metadata servers. It make
sense to use the metadata servers on very fast storage devices like SSDs. In our setup it
is sufficient to have an IO server on all nodes and one metadata server.
As all of our applications used MPI-IO we did not focus to mount it as a POSIX

filesystem.

5http://docs.orangefs.com/v_2_9/New_How_OFS_Works.png

14

How to Build

1 #!/ bin/bash
2 prefix="/tmp/ testbuild "
3
4 # Compile software
5 CFLAGS=-std=gnu89 ./ configure --prefix=" $prefix "

↪→ --enable -shared
6 make -j $(nproc)
7
8 # Installation
9 mkdir -p " $prefix "
10 make install

How to Run

We tested our settings on two nodes from Wissenschaftliches Rechnen over TCP, because
InfiniBand was not available. Both nodes are IO servers, but only pupo1 was a metadata
server.

First of all you have create a config file and then start the IO and metadata server on
each node and bind it to an TCP/IP port: we chose 4711.

1 #!/ bin/bash
2 start_pvfs ()
3 {
4 pvfs2 - genconfig --quiet --protocol tcp --ioservers

↪→ "pupo1 ,pupo2" \
5 --metaservers "pupo1" --tcpport 4711 --storage

↪→ "/tmp/pvfs -${USER}" \
6 --logfile "/tmp/pvfs -${USER }. log" --fsname pvfs -fs

↪→ "${HOME }/ pvfs.conf"
7 echo "tcp :// pupo1 :4711/ pvfs -fs /pvfs pvfs2

↪→ defaults ,noauto 0 0" > "${HOME }/ pvfs2tab "
8 sync
9 sleep 60
10 for server in pupo1 pupo2; do
11 ssh ${server} mkdir "/tmp/pvfs -${USER}"
12 done
13 for server in pupo1 pupo2; do
14 ssh ${server} "$(which pvfs2 -server)" -f -a

↪→ "${server}" "${HOME }/ pvfs.conf"
15 done
16 for server in pupo1 pupo2; do

15

17 ssh ${server} "$(which pvfs2 -server)" -a
↪→ "${server}" "${HOME }/ pvfs.conf"

18 done
19 pvfs2 -ping -m /pvfs
20 }
21 stop_pvfs ()
22 {
23 echo ’Stopping servers ... ’
24 for server in pupo1 pupo2; do
25 ssh ${server} killall --verbose pvfs2 -server
26 done
27 for server in pupo1 pupo2; do
28 ssh ${server} rm -f "/tmp/pvfs -${USER }. log"
29 ssh ${server} rm -rf "/tmp/pvfs -${USER}"
30 done
31 echo ’Removing configuration ... ’
32 rm -f "${HOME }/ pvfs2tab "
33 rm -f "${HOME }/ pvfs.conf"
34 }

Problems with HDF5

There were some strange problems in combination with OrangeFS and HDF5. (see
section 3.2.1)

16

2.6.2. BeeGFS
Author: Lars Thoms/Felix Wiedemann

Like OrangeFS BeeGFS is a distributed filesystem. It was developed by Frauenhofer
ITWM and is as well known by its old name FhGFS. There are also IO and metadata
servers, but the data is striped similar to a RAID and this advantage offers parallel
read/write access.

Figure 2.6.: How BeeGFS works6

Due to time limitations (changing from OrangeFS to BeeGFS because of HDF5-
problems) we simply followed the instructions from the developer of Qlustar without
optimizing (see next paragraphs).

Select BeeGFS mgmt Option upon Installation

Check that it is running on the head-node
$ /etc/init.d/beegfs-mgmtd status

6"An introduction to BeeGFS" by Jan Heichler from November 2014 – v1.0, page 6

17

Setting up a BeeGFS Server Node

1. Create a Qlustar image with the required modules
In QluMan, create an image (named for example StorNode) that contains the
module beegfs-<version>-server (current version 2014.01). If you want to mount
the BeeGFS filesystem also on the storage nodes additionally include the beegfs-
<version>-client module. On compute nodes that do not run any BeeGFS meta/s-
torage targets, only the beegfs-<version>-client module is required.

2. Create a boot config with this image and include it in a config set
Create a new boot config (named for example StorNode) and select the just created
image.

3. Create a config set that includes this boot config
Create a new config set (named for example StorNode) and add the just created
boot config (StorNode).

4. Create a disk config for the storage nodes
Create a new disk config (named for example StorNode) to define the ZFS setup.

Examples Make a BeeGFS FS from the local disks of the compute nodes. A single
SSD in the compute nodes is used for a meta and storage target. Copy the definitions of
the default boot config and add bmeta bstor as follows.

1 ZFS = var , scratch , bmeta , bstor
2 [bmeta]
3 zpool = SYS
4 mountpoint = /beegfs/meta
5 compress = lz4
6 [bstor]
7 zpool = SYS
8 mountpoint = /beegfs/stor
9 compress = lz4

5. Add the new disk config to the config set (StorNode)

6. Create a new host template with the above definitions
Create a new host template (named for example StorNode) and select the just
created config set StorNode. Use (or create) a sensible generic/hardware property
set matching the properties of the storage nodes

7. Register and boot the storage nodes
Register the storage nodes like any other nodes and assign the just created host
template (StorNode) to them. Reboot them.

18

Setting up BeeGFS meta and storage Target on the Storage Nodes

On each storage node perform the following steps (We assume that the above disk config
’StorNode’ is initialized on each node):

1 $ df -h | grep beegfs
2 SYS/bmeta 1002T 0 1002T 0%

↪→ /beegfs/meta
3 SYS/bstor 1002T 0 1002T 0%

↪→ /beegfs/stor

We also assume that the servers are named as sn-1, sn-2, . . . such that $HOSTNAME##*-
is the storage node number.

Create Metadata Server Instance

Initialize the meta target

1 $ beegfs -setup -meta -p /beegfs/meta -s ${ HOSTNAME##*-} -m
↪→ beosrv -c$

2 Preparing storage directory : /beegfs/meta
3 * Creating format.conf file ...
4 * Creating server numeric ID file: /beegfs/meta/ nodeNumID
5 Updating config file:

↪→ /etc/beegfs/meta/ available / default .conf
6 * Setting management host: beosrv -c
7 * Setting storage directory in config file ...
8 * Disabling usage of uninitialized storage directory in

↪→ config file ...
9 * Setting usage of extended attributes to: true
10 All done.

Start the meta server
$ /etc/init.d/beegfs-meta start

Check meta status

1 $ /etc/init.d/beegfs -meta status
2 $ less /var/log/beegfs/beegfs -meta.log

Create Storage Server Instance

Initialize storage target

19

1 $ beegfs -setup - storage -p /beegfs/stor -s ${ HOSTNAME##*-}
↪→ -i ${HOSTNAME ##* -}01 -m beosrv -c

2 Preparing storage target directory : /beegfs/ storage
3 * Creating format.conf file ...
4 * Creating chunks directory ...
5 * Creating mirror directory ...
6 * Creating target numeric ID file:

↪→ /beegfs/ storage / targetNumID
7 * Creating server numeric ID file:

↪→ /beegfs/ storage / nodeNumID
8 Updating config file:

↪→ /etc/beegfs/ storage / available / default .conf
9 * Setting management host: beosrv -c
10 * Appending to target directory list in config file ...
11 * Disabling usage of uninitialized storage targets in

↪→ config file ...
12 All done.

Start storage server
$ /etc/init.d/beegfs-storage start

Check the storage status

1 $ /etc/init.d/beegfs - storage status
2 $ less /var/log/beegfs/beegfs - storage .log

Register the Config Files on the Head Node for Automatic Start on Boot

Retrieve the config files from the first storage node (they are all identical):

1 $ mkdir -p
↪→ /etc/ qlustar /common/image -files/beegfs /{meta , storage }

2 $ scp sn -1:/ etc/beegfs/meta/ available / default .conf \
3 /etc/ qlustar /common/image -files/beegfs/meta/ default .conf
4 $ scp sn -1:/ etc/beegfs/ storage / available / default .conf \
5 /etc/ qlustar /common/image -files/beegfs/ storage / default .conf
6 \\\\
7 Generate the Qlustar destination files :\\
8 \begin{ lstlisting }[language =Bash]
9 $ cat <<EOF >

↪→ /etc/ qlustar /common/image -files/ destinations .beegfs -server

20

10 beegfs/meta/ default .conf /etc/beegfs/meta/ available
↪→ root:root 644

11 beegfs/ storage / default .conf /etc/beegfs/ storage / available
↪→ root:root 644

12 EOF
13 $ cat <<EOF >

↪→ /etc/ qlustar /common/image -files/ destinations .beegfs -client
14 # Link source target
15 ../ available / default .conf /etc/beegfs/client/ enabled
16 EOF
17 $ cat <<EOF > /etc/ qlustar /common/image -files/ softgroups
18 [DEFAULT]
19
20 beegfs -server: sn -[1 -4]
21 beegfs -client: beo -20[1 -4] login -c
22 EOF

In /etc/qlustar/common/image-files/softgroups, the nodes are assigned to their
BeegFS role. Change the node names there according to your naming scheme. With these
configurations in place, BeeGFS server and clients should start/mount automatically.
The default client mount point is /beegfs/client/default.

2.7. Modules
Author: Lennart Braun

2.7.1. Motivation
For evaluation of software configurations it is often required to have more than one
configuration of a program installed at the same time. A configuration is a set of
properties of the installed program. It can include the program version, the compiler
used to generate machine instructions, the libraries linked to, and options given at
compile time. Additionally, the installed software should be available to all users. The
repeated installation of a software package under the same filesystem prefix would result
in conflicts.
The chosen solution is to install every configuration under a different prefix. This

installation is also called a module. We use the Environment Modules7 package to load
module by setting environment variables. For example the bin directory of a module
containing executables gets prepended to PATH.

7http://modules.sourceforge.net/

21

http://modules.sourceforge.net/

2.7.2. Directory Structure
To obtain a more clearly arranged directory structure, the modules are placed into
subdirectories according to their dependencies and versions.

We have four basic components evaluated with implementations by different vendors.
The most basic components required by every application are a compiler and an MPI
implementation. Furthermore there are different mathematical libraries implementing
fast fourier transformation (FFT) algorithms and basic linear algebra subprograms
(BLAS). The dependencies among these components are considered when the path to a
package is constructed. Other dependencies, for example the GNU Scientific Library, are
ignored for the sake of simplicity.

In the software directories (e. g. gcc/5) there are two types of subdirectories. The first
one is a release directory. It is named after a specific release with the given major version.
These directories are used as a prefix for the actual installation of the corresponding
version. Consider the GCC directories as an example: gcc/5/5.1.0/{bin, include,
lib, ...}. Second for each software package that depends on all the major packages
noted in the path, there is a directory containing that packages own directory structure:
gcc/5/{mvapich2, openmpi, openblas, python, ...}.

Figure 2.7 (on page 23) shows an excerpt of the directory tree. It can be noticed that
there are two directories named openblas in different parts of the tree. The directory
/gcc/5/openblas/0.2 contains the OpenBLAS version 0.2.14 compiled with GCC, which
depends only on the compiler. Whereas /gcc/5/openmpi/1.8/openblas/0.2 contains
other software that was built with OpenBLAS, OpenMPI and GCC. These dependencies
and the corresponding version numbers are exactly the nodes on the path to the root
node.

2.7.3. Installation Script
For each module we wrote an installation script to make the process automatable and
easy reproducible. In order to unify the installation a template was provided (listing 2.1
on page 24). If written correctly an installation script can be run from an untarred source
code archive, e. g. as .../lammps-15May15/src$./lammps-15May15.sh gcc openmpi
fftw none. This call would install LAMMPS with GCC, OpenMPI and FFTW. A
BLAS implementation is not required.
In the installation script the author specifies the name and the major and minor

versions. Then the flags for the secondary dependencies are set. Some subroutines
are imported from the template_common.sh file. These are used to load all required
modules based on the given parameters and flags. Furthermore the information is used
to build strings containing the paths below which the installation and the modulefile live.
Afterwards the application specific instructions to compile and install the package

(e. g. ./configure, make, make install) are defined. Finally a modulefile is created,
so that the installed module can be loaded with the command module load. When this
modulefile is loaded, all specified as dependencies are loaded as well. If required it is
possible to append something to generated modulefile.

22

/

icc

. . .

gcc

5

5.1.0

bin,lib,. . .

openblas

0.2

0.2.14

bin,lib,. . .

openmpi

1.8

1.8.5

bin,lib,. . .

fftw

2.1

. . .

3.3

. . .

openblas

0.2

hpcc

. . .

hpl

. . .

pyfr

. . .

. . .

. . .

. . .

Figure 2.7.: Module directory tree

23

Listing 2.1: Install template
1 #!/ bin/bash
2 # usage: sh path_to_script .sh compiler mpi fft blas
3 # compiler in {gcc , icc , none}
4 # mpi in {openmpi , mvapich2 -2.0 , mvapich2 -2.1 ,

↪→ intel -mpi , none}
5 # fft in {fftw , mkl , none}
6 # blas in {openblas , atlas , mkl , none}
7
8 name="foo"
9 version="1.0"

10 release="1.0.1"
11
12 # requirements : aptitude install package0 package1
13 # other modules : (set to true if required)
14 orangefs="false"
15 hdf5="false"
16 netcdf="false"
17 netcdf_fortan="false"
18 gsl="false"
19 libxc="false"
20 python="false" # {false , python2 , python3 }
21
22 set -e
23 source "$(dirname ${BASH_SOURCE [0]})/install_common.sh"
24 load_modules $1 $2 $3 $4
25 prefix="$(build_prefix)"
26 path="$(build_path)"
27
28 ## compile software
29 # ./ configure --prefix = $prefix
30 # make -j $(nproc)
31
32 ## installation
33 # mkdir -p $prefix
34 # make install
35
36 ## create modulefile
37 modulefile="$(build_modulefile_name)"
38 create_modulefile "$modulefile" "$prefix"
39 # append something to modulefile if required :
40 # echo "foo bar" >> " $modulefile "

24

3. Libraries

3.1. Math Libraries
Author: Jannek Squar

3.1.1. Overview
Needless to say, our primary objective was to win the Student Cluster Competition. To
achieve this, choosing the right mathematics libraries was an important issue. This is
due to the fact, that we had little influence on the hardware we were provided by our
sponsor Bull. In addition for a long time the applications for benchmarking on the SCC
were kept secret, one was even first announced on the competition itself (Graph500).
As a result we had focused on exploring possible combination of math libraries in the
beginning, to evaluate them as soon as the final hardware was delivered.

The next section (Available Libraries) is an overview of available math libraries from
which we picked the best fitting ones. Some applications from chapter 5 and benchmarks
from chapter 4 need implementations from a selection of LAPACK, BLAS, and FFT.

LAPACK: Linear Algebra PACKage is a development from LINPACK and contains
algorithms for numerical linear algebra. It is mainly used for „systems of simul-
taneous linear equations, least-squares solutions of linear systems of equations,
eigenvalue problems, and singular value problems “1. LAPACK’s basic algebra has
been outsourced in BLAS, so every LAPACK implementation also needs a BLAS
implementation - for this reason some LAPACK implementations already contain
a BLAS implementation.

BLAS: Basic Linear Algebra Subprograms provides basic vector and matrix operations
like addition and multiplication. As LAPACK always relies on BLAS and BLAS
contains the most basic operation it is important to choose a high-performance
implementation. [ABB+99, p. 154]

FFT: Fast Fourier Transform contains algorithms for making an Fourier analysis.

For every category there exists a wide variety of implementations which all have their
points. After some research we chose a selection of the most promising implementations
which we first benchmarked on our given cluster (see section 3.1.3) to get a first impression
of their suitability. As soon as the final hardware had arrived we migrated them to it

1http://www.netlib.org/lapack/

25

and expanded our testing to determine the implementations with best performance (see
section 3.1.4 and section 3.1.5).

3.1.2. Available Libraries
First of all we did some research for listing suitable implementations of the math libraries.
Since there has already been a team from the university of Hamburg in the previous
year, which participated in the SCC 2014, we began looking through their field report
[FLN+14, Ch. 4]. Next we read through many available benchmarks, which had been
executed with different libraries and hardware: [Wit08]. We could just have used a
reference implementations from [net], but these are not well tuned. Especially for the
BLAS implementation it is advised to choose one with good performance. Nevertheless
we include the reference implementations in our list for the purpose of comparison.

LAPACK Implementations

List of implementations to be considered:

• Netlib LAPACK 3.5.0: 2 First released in the year 1992 and relatively up-to-date
(last stable release November 2013) this is the reference implementation, which
works well for quick starting.

• Intel MKL (Intel Math Kernel Library) 11.2.3: 3 Part of the Intel Parallel Studio
XE/System Studio we were provided with a temporary key for it. MKL is easy to
use, the automated installation of Intel Parallel Studio XE provides the required
library files, no further action is required. Enhanced performance on Intel cores is
expected.

• ACML (AMD Core Math Library): 4 We did not spend much time on evaluating
this implementation because we assumed, that it would achieve high performance
rather on AMD cores than on the Intel cores we use.

In the end we decided to use Netlib LAPACK for the reason that a well tuned
BLAS implementation is crucial for high performance. Therefore we chose the common
LAPACK implementation from Netlib to focus our efforts on testing different BLAS
implementations.

BLAS Implementations

Some LAPACK implementations already contain a BLAS implementation. In this case
their description can be found in the previous paragraph.
List of implementations to be considered:

2www.netlib.org
3https://software.intel.com/en-us/intel-mkl
4http://developer.amd.com/tools-and-sdks/archive/amd-core-math-library-acml/

26

• Netlib BLAS 3.5.0 see above

• ATLAS 3.10.2 (Automatically Tuned Linear Algebra Software):5 The big advan-
tage of this implementation is its ability of automatic tuning. While installing
ATLAS on the cluster it automatically tries different install configurations and runs
tests whose runtimes are compared. Thus ATLAS chooses the configuration whose
test ran fastest. Because of the amount of possible configurations installing ATLAS
takes a lot more time compared to the other BLAS implementations (about 10
hours on our test cluster). Because of this and [PyF15] (ATLAS excelled relating
to performance if used with PyFR in section 5.1) ATLAS was on our short list.

• GotoBLAS:6 This implementation is outdated, its last stable version was released
in 2010 and is not considered as a high-performance BLAS implementation for our
modern cluster hardware.

• OpenBLAS 0.2.14: 7 Other than GotoBLAS, this implementation is still being
maintained. Similar to ATLAS this implementation is being optimized depending
on the basis of the hardware. Because of this and many benchmarks in which
OpenBLAS showed very good performance, this implementation was also on our
shortlist.

• Intel MKL see above

• ACML see above

After working through the available sources we chose this BLAS implementations for
further benchmarking: ATLAS, OpenBLAS, and Intel MKL.

FFT Implementations

Because it seemed that not much had changed relating to FFT implementations, we
relied on the results from [FLN+14, ch.4] and chose FFTW 3.3.4.

3.1.3. Initial Testing
As long as the final hardware was not available we executed benchmarks on our cluster to
get an impression which BLAS implementation could give satisfying results. In addition
we tested the runtime results with MVAPICH 2.1 and OpenMPI 1.8.4. Because at that
time the fine-tuning of HPL was still ongoing, we used PyFR with input euler_vortex_-
2d.msh 8. Also some changes were made at the configuration file euler_vortex_2d.ini:

5http://math-atlas.sourceforge.net/
6https://www.tacc.utexas.edu/research-development/tacc-software/gotoblas2
7http://www.openblas.net/
8example file is part of the installation, http://www.pyfr.org/user_guide.php

27

1 [...]
2 [backend -openmp]
3 cc = gcc
4 cblas = <BLAS >
5 cblas -type = <serial/parallel >
6 [...]
7 times = range (0.0 , 0.05 , 2)
8 [...]

Different run configurations regarding distribution srun -N x -n y -c z and taskbind-
ing srun cpu_bind=. . . were also part of this tests9.

• MVAPICH 2.1, -N 1 -n 48

ID BLAS cblas-type cpu_bind time [min.]
a libopenblas.so serial default 02:41
b cores 02:39
c thread 02:40
d socket 11:34
e parallel default 02:40
f cores 02:40
g thread 02:38
h socket 09:59
i libmkl_rt.so serial default 02:56
j parallel 02:57
k libsatlas.so serial default 02:51
l parallel default 02:50
m libtatlas.so serial default 20:54
n parallel default NA

Table 3.1.: Initial benchmarks with MVAPICH

• OpenMPI 1.8.4, -N 1 -n 8 -c 6

9The last run seemed to take more time than the serial run, so it was canceled

28

ID BLAS cblas-type cpu_bind time [min.]
a libopenblas.so serial default 03:04
b cores 03:05
c threads 03:07
d socket 03:07
e parallel default 05:34
f cores 05:35
g threads 05:34
h socket 05:34
i libmkl_rt.so serial default 03:47

cores 03:47
threads 03:47
socket 03:46

j parallel default 04:30
k libsatlas.so serial default 03:00
l parallel default 07:09
m libtatlas.so serial default ∼ 45:00
n parallel default ∼ 30:00

Table 3.2.: Initial benchmarks with OpenMPI

Figure 3.1.: Initial Benchmarks with MVAPICH and OpenMPI (Table 3.1 and 3.2)

29

3.1.4. Benchmarks on Final Hardware
When the final hardware finally arrived we used the remaining time until the competition
to run the benchmarks with PyFR10 with our preselected math libraries to choose the
final configuration.
At the time of this final benchmarks there were still some problems with our im-

plementation of MVAPICH2, therefore we used OpenMPI to select our final BLAS
implementation. 11

Benchmarks for selecting the cblas-type, cpu_bind and BLAS implementation for best
performance:12

ID BLAS cblas-type mpirun cpu_bind time [min.]
a openblas serial -N 8 -n 192 cores 05:05
b -N 8 -n 384 default 04:46
c mkl -N 8 -n 192 cores 05:31
d -N 8 -n 192 default 05:31
e -N 8 -n 384 default 04:59
f satlas -N 8 -n 192 cores 07:33
g -N 8 -n 384 default 06:51
h openblas parallel -N 8 -n 192 cores 05:51
i -N 8 -n 384 default 04:47
j mkl -N 8 -n 192 cores 36:19
k -N 8 -n 192 default ∝ 35:00
l -N 8 -n 384 default 04:57
m satlas -N 8 -n 192 cores 07:29
n -N 8 -n 384 default 06:50

Table 3.3.: Benchmarks of BLAS-libraries

10At the moment of this final testing version 1.0 was available. Quick comparisons showed that there
was no relevant difference between version 0.8 and version 1.0 regarding the runtime - so there was
no need to rerun the initial tests, our selection of libraries persisted. Detailed description of PyFR
in section 5.1

11When MVAPICH2 was ready for action we reran some small tests to ensure that the subsequent
benchmarks with OpenMPI were comparable to it.

12with OpenMPI 1.8.4 and additional compiler flag –hint=multithread.

30

Figure 3.2.: Benchmark of BLAS-libaries (Table 3.3)

In the end we differed the benchmark configuration relating to the number of nodes to
analyze how well PyFR was scaling with the chosen BLAS-library.

MPI BLAS cblas-type mpirun cpu_bind time [min.]
OpenMPI OpenBLAS serial -N 8 -n 384 default 04:48

-N 7 -n 336 07:25
-N 6 -n 288 06:34
-N 5 -n 240 07:54
-N 4 -n 192 09:35
-N 3 -n 144 12:46
-N 2 -n 96 18:12
-N 1 -n 48 34:01

Table 3.4.: Test of scalability of OpenBLAS

31

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

48 96 144 192 240 288 336 384
 50

 60

 70

 80

 90

 100

T
im

e
 [
s
]

E
ff
iz

ie
n
z
 [

%
]

Number of processes

Scaling with OpenMPI and OpenBLAS

Benchmark
Effizienz

Figure 3.3.: Test of scalability of OpenBLAS (Table 3.4)

As shown in table 3.4 and figure 3.3 the scalability turned well: With increasing
number of spawned processes the efficiency of speedup was near to 100% in the beginning
but then decreased to about 88%.13 However, we suppose that this behavior is attributed
to the chosen example file; a bigger example file should have resulted in a better trend of
efficiency.

3.1.5. Conclusion
Although ATLAS was our favorite right from the start we had to realize over the course
of the benchmarks that it was not able to compete with OpenBLAS and MKL. This
impression was also confirmed by [GG], where benchmarks showed the advantage in
performance of Intel MKL and GotoBLAS (OpenBLAS is a fork of GotoBLAS) over
Atlas 14. In addition to its easy installation the crucial factor for our final choice of imple-
mentations were the results from the benchmarks shown in table 3.3: it became apparent
that OpenBLAS outperformed the other libraries. Furthermore this benchmark showed
best performance relating to PyFR with cblas-type=serial and cpu_bind=default.
By comparing the number of spawned processes we decided to spawn one MPI process
for every core.15

13We do not know why the efficiency clearly worsened for -N 7 -n 336, but this behavior turned out
to be reproducible, so could not be ascribed to any temporary cause.

14But it should be noted that the paper was written by Kazushige Goto, creator of GotoBLAS
15For the sake of a clear view we set this test series aside.

32

3.2. I/O Libraries
Author: Lennart Braun

3.2.1. HDF5
The Hierarchical Data Format 5 is a file format for storing large amounts of data in a
structured way. The HDF5 Library16 can be compiled with MPI support as Parallel
HDF5 (PHDF5). It makes use of the MPI-IO API for parallel I/O, which becomes more
and more important in HPC.

Installation

The installation follows the classic ./configure, make, make install scheme. We set
the following flags:

--enable-parallel Builds Parallel HDF5.

--enable-fortran Builds the Fortran interface.

--enable-production Switches compiler optimizations on.

--enable-shared Builds shared object.

--with-zlib Uses the zlib library.

./configure --help gives a complete list about possible options.

Tests

There is the make check command which builds and runs tests on the compiled library.
The environment variable HDF5_PARAPREFIX defines the working directory used in the
parallel I/O tests. RUNPARALLEL contains the command which should be used to execute
MPI programs. While running the tests, we found what appeared to be a bug in
OrangeFS. A test writes some data to a contiguous buffer. But different values are read
in the verification procedure.

3.2.2. NetCDF
NetCDF17 is another library for reading and writing scientific data. It is an optional
dependency of the Octopus program but was not used during the competition.
There are different NetCDF releases for multiple programming languages. We built

the C and the Fortran versions. The latter one depends on the former, so that one has
to be installed first. Both depend on HDF5.

16https://www.hdfgroup.org/HDF5/
17https://www.unidata.ucar.edu/software/netcdf/

33

https://www.hdfgroup.org/HDF5/
https://www.unidata.ucar.edu/software/netcdf/

Listing 3.1: Excerpt of the HDF5 install script
1 # compile software
2 export CC=mpicc
3 export FC= mpifort
4 export RUNPARALLEL ="srun -n $(nproc)"
5 # export HDF5_PARAPREFIX=pvfs2:/pvfs
6 export CFLAGS="-O2"
7 flags="--enable - parallel --enable - fortran --with -zlib"
8 flags +=" --enable - production --enable -shared"
9 ./ configure --prefix=" $prefix " $flags
10 make -j $(nproc)
11 # make check
12
13 # installation
14 mkdir -p " $prefix "
15 make install
16 # make check -install

Listing 3.2: Excerpt of the NetCDF install script
1 ...
2 hdf5="true"
3 ...
4
5 # compile software
6 export CC=mpicc
7 export CFLAGS="-O2"
8 export H5DIR=" $install_root / $compiler_path / $mpi_path \
9 /hdf5 /1.8/1.8.14 "
10 export CPPFLAGS =" $CPPFLAGS -I${H5DIR }/ include "
11 export LDFLAGS =" $LDFLAGS -L${H5DIR }/ lib"
12 export LIBS="-ldl"
13 ./ configure --prefix=" $prefix " --disable -shared

↪→ --enable -parallel -tests
14 make -j $(nproc)
15
16 # installation
17 mkdir -p $prefix
18 make install

34

Listing 3.3: Excerpt of the NetCDF Fortran install script
1 ...
2 hdf5="true"
3 netcdf="true"
4 ...
5
6 # compile software
7 export CC=mpicc
8 export FC=mpif90
9 export F77=mpif77
10 export CFLAGS="-O2 -DgFortran "
11 export LIBS="-lnetcdf -lhdf5 -lz -lcurl"
12 ./ configure --prefix=" $prefix " --disable -shared

↪→ --enable -parallel -tests
13 make -j $(nproc)
14
15 # installation
16 mkdir -p $prefix
17 make install

3.3. MPI
Author: Jonas Gresens

This chapter gives an overview over different MPI implementations as well as advantages
and disadvantages in this year’s Student Cluster Competition. Further information like
tuning results can be found in last year’s report.

3.3.1. Overview

MPI - short for Message Passing Interface - is not a library as it is, but a standardized
specification for users and developers of message passing. MPI is the de facto standard
in High Performance Computing.

There is a number of most used implementations of MPI which differ in performance,
cost, network support, documentation, some interface details, etc. These are the most
used, best supported, and optimized non-vendor specific MPI implementations:

• OpenMPI18

– free, independent implementation by multiple institutions

• MPICH19

18http://www.open-mpi.org/
19https://www.mpich.org/

35

http://www.open-mpi.org/
https://www.mpich.org/

– freely available, portable implementation of MPI

• MVAPICH220

– free MPICH derivative by the Ohio State University

• Intel® MPI Library21

– commercial MPICH derivative by Intel

• IBM® Platform MPI22

– commercial MPICH derivative by IBM

Table 3.3.1 compares some of the most useful characteristics of these implementations
with regard to decision-making whether to use them for a project. The first criterion is
the cost. Nearly all MPICH derivatives except MVAPICH2 are commercial, although it
is possible to get an academic license for tests and evaluation for Intel® MPI Library
and to use the free IBM® Platform MPI Community Edition as long as the cluster has
less than 4096 cores. The dates of last releases often show how actively projects are
developed. Almost of the listed implementations have been updated in 2015.

This list of criteria is not full and complete as a lot of details have been left out, such
as supported operation systems, compilers, or language versions.

Since MVAPICH2, Intel® MPI Library, and IBM® Platform MPI are based on MPICH2
and include more optimizations, MPICH2 has not been looked into, since its derivatives
are more focused towards optimization.

Implementation Freely Last stable
available release

OpenMPI yes 1.8.5 on 5.05.2015
MVAPICH2 yes 2.1 on 3.04.2015
Intel® MPI Library no* 5.0u3 on Feb 2015
IBM® Platform MPI no* 9.1.2 on 20.02.2014

Table 3.5.: Availability of various MPI implementations.

We decided to test each of them against every benchmark and application to find the
best combinations in regards of performance and used wattage.

3.3.2. Build
This section gives a short overview over the general approach of building MPI which,
however, is not different from compiling any other library.

Before building MPI some additional libraries and library headers should be installed.

20http://mvapich.cse.ohio-state.edu/news/
21https://software.intel.com/en-us/intel-mpi-library
22http://www-03.ibm.com/systems/platformcomputing/products/mpi/

36

http://mvapich.cse.ohio-state.edu/news/
https://software.intel.com/en-us/intel-mpi-library
http://www-03.ibm.com/systems/platformcomputing/products/mpi/

1 apt install {libibmad ,libibumad ,libpciaccess , libhwloc }-dev

• libibmad-dev is a developer package for InfiniBand Management Datagram (MAD)
library. It provides low layer InfiniBand functions to be used by the InfiniBand
diagnostic and management programs.

• libibumad-dev is a developer package for InfiniBand Userspace Management
Datagram (uMAD) library. It provides uMAD functions which sit on top of
the uMAD modules in the kernel. They are used by InfiniBand diagnostic and
management tools.

• libhwloc-dev - hwloc for MVAPICH2. OpenMPI already includes hwloc. See
more about hwloc in Section.

• libpciaccess-dev - package library for PCI support, required by hwloc. Instead
of libpciaccess the libpci packages can also be used, which is a question of
using GPL23 or other licenses. PCI is a local computer bus for attaching hardware
devices such as InfiniBand cards.

OpenMPI

OpenMPI uses the GNU build system, also known as GNU Autotools, which simplifies
the build process to just two commands (./configure and make).

1 ./ configure --prefix= $PREFIX --with -pmi
2 make -j $(nproc)

(excerpt from the build script for OpenMPI)

MVAPICH2

MVAPICH2 is built as well with GNU Autotools but has to be configured differently.
1 ./ configure --prefix= $PREFIX --with -pm=slurm

↪→ --with -pmi=pmi2 --enable -libpci
2 make -j $(nproc)

(excerpt from the build script for MVAPICH2)

Intel® MPI Library

We got a version of Intel® MPI Library as part of a Intel® Parallel Studio XE Cluster
Edition 2015 Update 3 which was already compiled. It is installed using a extensive shell
script-based installer.

23GNU General Public License

37

IBM® Platform MPI

IBM® Platform MPI Community Edition is precompiled as well and uses a Java-based
installer to extract and install the library from the archive. For some unknown reason it
was not possible to run this installer properly on the cluster, since it lead to the following
error:

1 $./ platform_mpi -09.01.02.00 u.x64.bin -i console
2 Preparing to install ...
3 Extracting the JRE from the installer archive ...
4 Unpacking the JRE ...
5 Extracting the installation resources from the installer

↪→ archive ...
6 Configuring the installer for this system ’s environment ...
7
8 Launching installer ...
9
10 ./ platform_mpi -09.01.02.00 u.x64.bin: 3319: exec:

↪→ /root/ install .dir .29359/ Linux/ resource /jre/jre/bin/java:
↪→ not found

Since this problem only occurred on the cluster, we tried to get it out of our way by
running the installer on a normal Laptop and copying the files to the cluster. Against
all odds this worked surprisingly well, although it was necessary to set the MPI_ROOT
environment variable accordingly to the location of the installed library.

3.3.3. Evaluation
Since the final hardware as well as the license for Intel® MPI Library was not available
from the start, we were forced to evaluate the different implementations in multiple
stages. The staged availability of hardware (including InfiniBand cards) and libraries
prevented us from comprehensively testing everything24.

First Round (abu)

Before the sponsored hardware by Bull and Mellanox was delivered, we used two abu
nodes, provided by our university’s Scientific Computing research group, to compile and
test the benchmarks, applications, and libraries. We got the following results:

• OpenMPI
– good performance, though slightly less than MVAPICH225

– correct results with every benchmark and application
24Every application and benchmark with every MPI implementation, math library, and compiler

combination.
25missing results

38

• MVAPICH2
– highest performance (750.4 GFLOPS)
– correct results with everything except for Octopus

• Intel® MPI Library
– not tested, since Intel had not provided us a license yet

• IBM® Platform MPI
– worse performance than MVAPICH2 and OpenMPI (745.5 GFLOPS)
– correct results with every benchmark and application

We decided to stay with MVAPICH2 for everything except Octopus, which was the
reason to stay with OpenMPI as well. We decided to leave out IBM® Platform MPI
because of its inferior performance as well as its problem prone installation.

Final Round (kraken)

Although we received the hardware sponsored by Bull in early June, we had to wait
additional three weeks before we got the InfiniBand hardware provided by Mellanox. We
tested all three remaining MPI implementations and got the following results:

• OpenMPI
– good performance (around 14 % slower than MVAPICH2)
– correct results with every benchmark and application

• MVAPICH2
– highest performance (5.27 TFLOPS)
– correct results with every benchmark and application

• Intel® MPI Library
– good performance (4.56 TFLOPS)
– correct results with every benchmark and application

Based on this results we decided to use MVAPICH2 for every benchmark and applica-
tion.

3.3.4. Tuning
In preparation for 2014’s Student Cluster Competition serious effort has been put into
measuring the performance gain of combining different MPI tuning options. The results
were underwhelming as the performance gain was less than one percent.

We decided that we would rather spend our time optimizing the applications than to
fine tune the MPI implementations.

39

3.3.5. MV2_USE_LAZY_MEM_UNREGISTER Flag
The MV2_USE_LAZY_MEM_UNREGISTER flag enables MVAPICH2 to use memory registra-
tion cache.
Setting MV2_USE_LAZY_MEM_UNREGISTER=0 fixes the incorrect results for octopus, as

the MVAPICH2’s cache registration/deregistration code breaks when the burst of gener-
ated messages gets too large.26

26https://github.com/m-a-d-n-e-s-s/madness/wiki/MADNESS-performance-tuning

40

https://github.com/m-a-d-n-e-s-s/madness/wiki/MADNESS-performance-tuning

4. Benchmarks

4.1. HPL
Author: Felix

HPL is a software package that solves a (random) dense linear system in double precision
(64 bits) arithmetic on distributed-memory computers. It can thus be regarded as a
portable as well as freely available implementation of the High Performance Computing
Linpack Benchmark.
The algorithm used by HPL can be summarized by the following keywords: Two-

dimensional block-cyclic data distribution - Right-looking variant of the LU factorization
with row partial pivoting featuring multiple look-ahead depths - Recursive panel factoriza-
tion with pivot search and column broadcast combined - Various virtual panel broadcast
topologies - bandwidth reducing swap-broadcast algorithm - backward substitution with
look-ahead of depth 1.
The HPL package provides a testing and timing program to quantify the accuracy

of the obtained solution as well as the time it took to compute it. The best perfor-
mance achievable by this software on your system depends on a large variety of factors.
Nonetheless, with some restrictive assumptions on the interconnection network, the
algorithm described here and its attached implementation are scalable in the sense that
their parallel efficiency is maintained constant with respect to the per processor memory
usage.

The HPL software package requires the availability on your system of an implementation
of the Message Passing Interface MPI (1.1 compliant). An implementation of either the
Basic Linear Algebra Subprograms BLAS or the Vector Signal Image Processing Library
VSIPL is also needed. Machine-specific as well as generic implementations of MPI, the
BLAS and VSIPL are available for a large variety of systems.
More information on HPL can be found at the HPL website.1

4.1.1. Dependencies
To run HPL you need a BLAS library, an MPI library, and a C compiler, of course. We
used Intel MKL, MVAPICH2 2.1, and GCC 5.1.

1http://www.netlib.org/benchmark/hpl/

41

http://www.netlib.org/benchmark/hpl/

4.1.2. How to Build
Unpack the tarball and execute sh ./setup/make_generic to create a default Makefile
called Make.UNKNOWN. Replace UNKNOWN with an architecture identifier of your choice.
Then edit this file and set the following two options: LAlib and ARCH. ARCH is the
architecture identifier you’ve used in the filename and LAlib are the linking options.
Here you have to specify the BLAS library, for example -lblas.

After the configuration load the corresponding modules for the packages listed under
Dependencies and execute make arch=$arch where $arch is the architecture identifier
again. Afterwards the binary xhpl and a sample configuration HPL.dat will be located
under ./bin/$arch/.

4.1.3. How to Run
First, you have to edit the configuration file. The configuration file shown in listing
A.1 should be a good starting point. There are many websites that describe how a
good configuration file for HPL should look like and there are even configuration file
generators but some options should be tested with different values to produce optimal
results. Basically, all options but N, NB, P, Q are fixed because they are optimal for
(nearly) every system.

N is the problem size, i.e. the order of the square matrix. For our cluster we used
327680 which roughly equates to 100 GiB memory usage per compute node. The matrix
should be as large as possible to achieve good results. But it is advisable to use only
about 90 % of the memory so that there is enough room for other data. A good value
for N can be calculated with the following formula:

N ≈ 0.9 ·
√

M

8 where M is the total amount of memory in bytes

NB is the block size for computation and communication. A good value for NB should
be between 128 and 256. The optimum depends on the computation and communication
performance of the cluster, and especially the ratio of them. We chose 256 at the ISC
because it was optimal in some sample runs with different NBs.
The last two interesting parameters P and Q describe the layout of the process grid.

P · Q should be equal to the total number of CPU cores of the cluster and the grid’s
shape should be close to a square, i.e. P and Q should be approximately equal with
P ≤ Q.
Now, HPL can be run with srun -N $NUM_OF_NODES -n $NUM_OF_CORES ./xhpl.

Our HPL run took over an hour and we’ve reached 4875 GFLOPS.

4.1.4. Problems
Compared to our competitors which used accelerator cards our CPU-only cluster has
a long running time of about an hour for one HPL benchmark. Therefore we had not
much time for benchmarking different configurations at the SCC. Slightly after the

42

deadline we finished another run with over 5 TFLOPS. As with Octopus we had to use
MV2_USE_LAZY_MEM_UNREGISTER=0 (see 3.3.5) for correct results with MVAPICH2.

4.1.5. Results
As stated in 4.1.3 we scored 4875 GFLOPS. (1.625 GFLOPS per Watt) With power
capping the cluster’s Rpeak is 8 · 2 · 12 · 16 · 2.1 ≈ 6451 GFLOPS, so the HPL benchmark
run had an efficiency of about 76%. Another run which did not finish in time had an
efficiency of nearly 80%. Both efficiencies are rather good results.

4.2. HPCC
Author: Lennart Braun

4.2.1. Overview
The HPC Challenge Benchmark2 (HPCC) is a collection of several benchmarks testing
the performance of a system in a variety of categories.

We used version 1.4.3 of HPCC. A new alpha release (1.5.0a) became available in May
2015, but it was not stable enough to use it.

• The suite includes the HPL benchmark, which measures the number of executed
floating point operations per second (FLOPS), while solving a large linear equation
system. The whole system is used to calculate a solution using MPI. See section
4.1 for details.

• The DGEMM benchmark tests the performance of the dgemm routine, which is part
of the Basic Linear Algebra Subprograms (BLAS) specification. dgemm performs a
multiplication of general matrices with double precision floating point numbers.

• STREAM is a benchmark measuring the memory bandwidth to main memory. It
gets discussed in more detail in section 4.2.3.

• In PTRANS (Parallel TRANSpose) a large matrix which is distributed among the
processes gets transposed using MPI. This operation measures the transfer rate of
large array between the memories attached to the different processors and nodes.

• RandomAccess executes updates at random positions in an integer array hold in
memory. The rate of updates is measured in updates per second (UP/s).

• FFT measures the performance of double precision floating point operations while
computing a complex one-dimensional discrete Fourier transform.

2http://icl.cs.utk.edu/hpcc/

43

http://icl.cs.utk.edu/hpcc/

• The last benchmark, Latency/Bandwidth, measures latency and bandwidth of MPI
communication. It transmits messages of different size between multiple nodes
using different communication patterns.

The reader is referred to [LDK+] for additional information.
The HPCC input file is almost the same as the HPL input file (listing A.1) as all

problem sizes are based on the size of the global matrix in HPL. It is possible to specify
additional problem sizes for PTRANS.

4.2.2. Installation
HPCC needs to be linked with an MPI implementation and a BLAS library. An external
FFT library is optional. The building process runs analog to the one of HPL. A Makefile
in the hpl subdirectory has to be adjusted to the requirements. Differences to the HPL
build are for example the path in the TOPdir variable and flags for using an external
FFT implementation.

4.2.3. Tuning and Modifications
The rules of HPCC3 allow the modification of certain parts of the codebase. Alternative
algorithms or implementations may be used, provided that no computation is skipped,
the same precision is reached and all built in verification tests are passed. For each
benchmark, procedures are specified, which are allowed to be substituted with custom
code. The SCC rules did not explicitly restrict the optimization of the benchmark, but
the build method and all patches had to be submitted with the results4.
All modifications were developed and tested with OpenMPI. Combined with MVA-

PICH2 the modifications were not stable enough to use them in the competition.

STREAM

The STREAM benchmark allocates three arrays with sizes depending on the HPL
problem size from the input file. The source code provides four function kernels which
can be substituted. Each of them performs a simple operation on the elements of one or
two arrays and stores the result in the third.
To fully exploit the available resources, we crafted custom assembly code specific for

our Intel Haswell processors. We made extensive use of the vector instructions from
AVX2. We also did use the FMA3 instruction set extension for fused multiply-add
operations.
The tuned Triad kernel is shown as an example in listing 4.2 (page 48). A complete

listing of all tuned kernels is available in the appendix (listing A.2 on page 73).
Each kernel consists of three sections.

3http://icl.cs.utk.edu/hpcc/overview/index.html
4http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition/
faqs.php

44

http://icl.cs.utk.edu/hpcc/overview/index.html
http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition/faqs.php
http://www.hpcadvisorycouncil.com/events/2015/isc15-student-cluster-competition/faqs.php

Listing 4.1: Original STREAM kernels (without OpenMP)
1 void tuned_STREAM_Copy ()
2 {
3 int j;
4 for (j=0; j< VectorSize ; j++)
5 c[j] = a[j];
6 }
7
8 void tuned_STREAM_Scale (double scalar)
9 {
10 int j;
11 for (j=0; j< VectorSize ; j++)
12 b[j] = scalar*c[j];
13 }
14
15 void tuned_STREAM_Add ()
16 {
17 int j;
18 for (j=0; j< VectorSize ; j++)
19 c[j] = a[j]+b[j];
20 }
21
22 void tuned_STREAM_Triad (double scalar)
23 {
24 int j;
25 for (j=0; j< VectorSize ; j++)
26 a[j] = b[j]+ scalar*c[j];
27 }

The first one (lines 4 to 11 in listing 4.2) loads the array addresses into registers and
does the setup of the loop counter. The addresses of the last 256bit words in the input
and output arrays are stored in rsi and rdi respectively (If a third array is used its
address is stored in rcx). A negative offset rax relative to the end of the arrays is used
as indexing variable and loop counter.
In the second part (lines 13 to 21) four packed doubled are loaded by vmovapd from

the used arrays. Then an operation is applied on each of the four doubles in the 256 bit
words. In Scale the vmulpd instruction is used to multiply the source operand in ymm1
with the scalar value. The result is stored in ymm2. In Add vaddpd adds the content
of two vector registers. The last kernel, Triad, requires a multiplication followed by
an addition. The FMA3 instruction vfmadd231pd %ymm0, %ymm1, %ymm2 performs the

45

following calculation (element-wise):

%ymm0← %ymm1 ·%ymm2 + %ymm0

Finally the result is stored via vmovntpd in the destination array. vmovntpd is a non-
temporal write operation. That is, the cache lines are not updated and the data is
written directly to memory. This strategy is more efficient, if the data is not used in the
near future. In this case, the written data is not used again at all in the benchmark.

The third part (line 23 and following) performs the same operations as above for the
remaining array elements in case the array length is not divisible by four. Contrary to
the previous block, only one double at the time is processed.
An overview about the increase in performance is given in table 4.1 and plotted in

fig. 4.1 on page 49.

SingleSTREAM StarSTREAM (average)
default custom default custom

Copy 11.315GB/s 18.021GB/s 3.252GB/s 4.670GB/s
Scale 11.560GB/s 18.777GB/s 3.233GB/s 4.604GB/s
Add 12.637GB/s 19.634GB/s 3.770GB/s 4.849GB/s
Triad 12.628GB/s 19.441GB/s 3.975GB/s 5.098GB/s

Table 4.1.: Comparison of STREAM Kernel implementations (HPCC on four nodes with
24 tasks each)

FFT

By default HPCC uses a built-in implementation of FFTE. There is an alternative
implementation using the FFTW2 API. FFTW2 is deprecated and was last updated
in 1999. Since FFTW3 uses a different interface, the two versions are incompatible to
each other. Thus linking against FFTW3 results in an error. Information about the
differences between version 2 and 3 can be found in the FFTW3 documentation5. We
developed a patch for the FFT benchmark that allowed us to use the newer FFTW3
library.
Using the patched version in combination with the Intel MKL Library resulted in a

segmentation fault during the first MPIFFT benchmark. Because the FFTE library
performed almost as good as FFTW3, we chose to use FFTE and MKL in the competition,
as the latter one was the favored option for HPL.

An overview about the performances of the different FFT implementations is given in
table 4.2 and plotted in fig. 4.2 on page 50.

5http://www.fftw.org/fftw3_doc/Upgrading-from-FFTW-version-2.html

46

http://www.fftw.org/fftw3_doc/Upgrading-from-FFTW-version-2.html

FFTW3 FFTE FFTW2
MPIFFT 30.919 27.918 20.870
StarFFT (average) 3.485 1.678 1.524
SingleFFT 3.194 2.201 1.848

Table 4.2.: Comparison of FFT implementations in GFLOPS (HPCC on two nodes with
24 tasks each)

4.2.4. Results
In this section we give an overview about the performance achieved during the competi-
tion.

• HPL: 4934 GFLOPS

• RandomAccess
MPI 0.244 GUP/s
Star (average) 0.015 GUP/s
Single 0.033 GUP/s

• PTRANS
walltime 47.270GB/s
cputime 61.184GB/s

• DGEMM
Star (average) 29.716 GFLOPS
Single 41.959 GFLOPS

• STREAM
Copy Scale Add Triad

Star (average) 4.779GB/s 4.750GB/s 5.091GB/s 5.418GB/s
Single 17.828GB/s 19.215GB/s 19.203GB/s 19.236GB/s

• FFT
MPI 84.132 GFLOPS
Star (average) 1.689 GFLOPS
Single 2.378 GFLOPS

• LatencyBandwidth
PingPong NaturallyOrderedRing RandomlyOrderedRing

Latency 1.438 µs 1.362 µs 1.918 µs
Bandwidth 8.606 GB/s 0.506 GB/s 0.431 GB/s

47

Listing 4.2: Tuned STREAM Triad kernel
1 void tuned_STREAM_Triad(double scalar)
2 {
3 __asm__ (
4 "mov %[vs], %%rax \n" // n
5 "sub $4, %%rax \n" // n - 4
6 "lea (%[a], %%rax , 8), %%rdi \n" // &a[n -4]
7 "lea (%[b], %%rax , 8), %%rcx \n" // &b[n -4]
8 "lea (%[c], %%rax , 8), %%rsi \n" // &c[n -4]
9 "neg %%rax \n" // -(n - 4)
10 "vbroadcastsd %[scl], %%ymm3 \n" // scalar
11 "jg 2f \n" // skip if n < 4
12
13 "1: \n" // begin of loop
14 "vmovapd (%%rsi , %%rax , 8), %%ymm0 \n" // load 4 doubles (c)
15 "vmovapd (%%rcx , %%rax , 8), %%ymm1 \n" // load 4 doubles (b)
16 ".intel_syntax noprefix \n" //
17 "vfmadd231pd %%ymm1 , %%ymm3 , %%ymm0 \n" // fma
18 ".att_syntax prefix \n" //
19 "vmovntpd %%ymm1 , (%%rdi , %%rax , 8) \n" // store 4 doubles
20 "add $4, %%rax \n" // next 4 doubles
21 "jl 1b \n" // next iteration
22
23 "2: \n"
24 "sub $4, %%rax \n" // remainder
25 "jns 4f \n" // done
26
27 "3: \n"
28 "vmovsd 32(%%rsi , %%rax , 8), %%xmm0 \n" // load 1 double from a
29 "vmovsd 32(%%rcx , %%rax , 8), %%xmm1 \n" // load 1 double from b
30 ".intel_syntax noprefix \n" //
31 "vfmadd231sd %%xmm1 , %%xmm3 , %%xmm0 \n" // fma
32 ".att_syntax prefix \n" //
33 "vmovsd %%xmm1 , 32(%%rdi , %%rax , 8) \n" // store 1 double to c
34 "add $1, %%rax \n" // next 4 doubles
35 "js 3b \n" // done
36
37 "4: \n" // end
38 : // no output operands
39 : [a] "r" (a), [b] "r" (b), [c] "r" (c), [vs] "m" (VectorSize),

↪→ [scl] "m" (scalar) // input operands
40 : "%ymm0", "%ymm1", "%ymm2", "%xmm0", "%xmm1", "%xmm2", "%rax",

↪→ "%rcx", "%rsi", "%rdi" // clobbered registers
41);
42 }

48

Copy Scale Add Triad
Kernel

0

5

10

15

20

25
G

B
/s

Performance of Custom Kernels in SingleSTREAM

default

custom

(a) SingleSTREAM

Copy Scale Add Triad
Kernel

0

1

2

3

4

5

6

7

8

G
B

/s

Performance of Custom Kernels in StarSTREAM (average)

default

custom

(b) StarSTREAM (average)

Figure 4.1.: Comparison of STREAM Kernel Implementations (see table 4.1)

49

MPIFFT StarFFT (average) SingleFFT
Benchmark

0

5

10

15

20

25

30

35

G
FL

O
P
S

Comparison of FFT Implementations in HPCC

FFTW3
FFTE
FFTW2

Figure 4.2.: Comparison of FFT implementations (see table 4.2)

50

4.3. Graph500
Author: Felix Wiedemann

Graph5006 was the secret application at ISC’15, hence we were not familiar with this
benchmark before. Graph500 is a HPC benchmark which constructs a huge graph and
does a breadth-first-search on it. It scales from small graphs which are only a couple
of megabytes in size to huge graphs with more than one petabyte. There is a reference
implementation which features several implementations for specific parallelizations –
especially MPI and OpenMP. The output score of Graph500 is the number of traversed
edges per second – or short TEPS.

4.3.1. Dependencies
We used the reference MPI implementation. The only dependencies are therefore a C
compiler and an MPI library.

4.3.2. How to Build
Unpack the source code archive which is available on the homepage of Graph500. Change
into the directory mpi and execute make. Make sure that you load the necessary modules
before the compilation.

4.3.3. How to Run
srun -N <nodes> -n <total_cores> ./graph500_mpi_<flavor> <scale>

4.3.4. Problems
As it was the secret benchmark we hadn’t much time for optimizing this benchmark.
The Graph500 reference code offers four MPI implementations which greatly vary in
speed. Additionally, there are many parameters which control the graph construction
and traversal. Also, the runtime is very long for large inputs. In the end we used the
defaults for all parameters and a scale factor of 19 which is significantly smaller than the
scale factor of the smallest predefined problem class called Toy. For the same reason we
don’t have any data of interest to present.

6http://www.graph500.org

51

http://www.graph500.org

4.3.5. Results
Our result was 2.73 GTEPS with the replicated MPI implementation and a scale factor
of 19. The result seems to be really bad as a MacBook Air has got 1.2 GTEPS7. However,
the Graph500 benchmark does not scale very well. A similar system8 has got 28 GTEPS
with 128 cores. Upscaled to our cluster with 192 cores (and assuming perfect strong
scaling) the score would be 42 GTEPS, so there is a considerable room for improvement
of an order of magnitude.

7See place 155 in http://www.graph500.org/results_nov_2015
8See place 77, 8 nodes with two Intel Xeon E5-2670 2.60GHz per node

52

http://www.graph500.org/results_nov_2015

5. Applications

5.1. PyFR
Author: Lars Thoms

PyFR is an open-source Python based framework for solving advection-diffusion
type problems on streaming architectures using the Flux Reconstruction approach of
Huynh. The framework is designed to solve a range of governing systems on mixed
unstructured grids containing various element types. It is also designed to target a range
of hardware platforms via use of an in-built domain specific language derived from the
Mako templating engine.1

5.1.1. Dependencies
• GCC 5.1.0

• Python 3.4

• HDF5 1.8.15-patch1

• OpenMPI 1.8.5

• OpenBLAS 0.2.14

5.1.2. How to Build
First of all, we have to install some packages from the Ubuntu repositories: apt-get
↪→ install python-setuptools python-virtualenv libmetis-dev libgmp-dev libscotch-5.1
↪→ libhdf5-dev
After that a virtual-environment for python3 is needed. So load Python3 module,

create a virtual-env and activate it: virtualenv -p python3 PyFR-VirtualEnv
Afterwards it is necessary to load MPI, compiler (GCC), and HDF5 modules to install

their python-wrapper and other libraries: pip install numpy mpmath mpi4py mako
↪→ cython appdirs decorator h5py

1Source: http://pyfr.org

53

To build HDF5-wrapper with MPI-support manual configuration is required.
1 pip install --download -cache="$(pwd)" h5py
2 tar xf h5py -*. tar.gz
3 (
4 cd h5py -*
5 python setup.py configure --mpi
6 python setup.py build
7 python setup.py install
8)

Changing to another MPI-implementation is easy: load corresponding module and
reinstall mpi4py.
Finally install PyFR itself: python3 ./setup.py install

5.1.3. How to Run
To solve a problem with PyFR you need two things: a configuration-file (*.ini) and a
Gmsh-file. First set right configuration values:

• cc: C compiler

• cblas: path to shared C BLAS library

• cblas-type: serial or parallel

Thereafter convert Gmsh-file to *.pyfrm and start partitioning our problem into n
parts, where n = Number of processes.

1 pyfr import cyl -pritet.msh cyl -pritet.pyfrm
2 mkdir p192
3 pyfr partition 192 cyl -pritet.pyfrm cyl -1000.00. pyfrs p192/

Now it is possible to start simulation. We used Slurm, so start PyFR with srun in the
virtual-env.

1 srun -N 8 -n 192 pyfr -p -b openmp restart
↪→ p192/cyl -pritet.pyfrm cyl -1000.00. pyfrs cylinder .ini

After PyFR finished simulation (it takes really some time!) the solution (*.pyfrs) can
be exported to a *.vtu-file. To visualize the results we used ParaView. It can handle
*.vtu-files and generates nice pictures or videos.

1 pyfr export p192/cyl -pritet.pyfrm cyl -1003.00. pyfrs
↪→ cyl -1003.00. vtu -d 5

54

5.1.4. Problems
It was very difficult to install ParaView on our cluster. But it was necessary, because
generating the two images (figures 5.1a + 5.1b) for the competition used very much
memory and processing time.

Additionally we have got always a warning, but it did not disappear and did not affect
our results:

1 WARNING : Error in initializing MVAPICH2 ptmalloc
↪→ library . Continuing without InfiniBand

5.1.5. Results
Here you see the two images from the Student Cluster Competition. To solve the first
problem (Cylinder) we used 8 nodes and 192 processes. It took 27 minutes from step
1000.00 to 1003.00. Unfortunately, this was extremely slow compared to the competitors.
The second one took 21 minutes from step 84.515 to 91.000.

1 srun -N 8 -n 192 -J "PyFR" --hint= multithread pyfr restart
↪→ -p -b openmp p192/cyl -pritet.pyfrm
↪→ p192/cyl -1000.00. pyfrs cylinder .ini

2 srun -N 8 -n 192 -J "PyFR" --hint= multithread pyfr restart
↪→ -p -b openmp p192/ taylor_green .pyfrm
↪→ p192/taylor_green -1 -84.515. pyfrs taylor_green .ini

(a) Cylinder (b) Taylor green

55

Benchmarks

Each table represents a standalone test group. Each group has different test sets and
runtimes are not comparable to each other!
We tested MPI libraries (MVAPICH2, OpenMPI, and Intel MPI), math libraries

(OpenBLAS and MKL, ATLAS was not an alternative), and PyFR parameters.
The result was that MVAPICH2 is the fastest MPI library and MKL the fastest library

for math. We started PyFR with one process per core, because spawning threads lead to
a longer runtime. Binding processes to cores did not indicate significant effects.

ID MPI BLAS (cblas-type) mpirun cpu_bind time [min.]
1 MVAPICH2 OpenBLAS (serial) -N 1 -n 24 cores 9:52
2 MVAPICH2 OpenBLAS (parallel) -N 1 -n 24 cores 10:01
3 MVAPICH2 MKL (serial) -N 1 -n 24 cores 9:36
4 MVAPICH2 MKL (parallel) -N 1 -n 24 cores > 10:00
5 MVAPICH2 MKL (serial) -N 1 -n 48 cores > 10:00
6 OpenMPI MKL (serial) -N 1 -n 24 cores 9:39
7 MVAPICH2 MKL (serial) -N 1 -n 24 –hint=multithread cores 9:16
8 IMPI MLK (serial) -N 1 -n 24 –hint=multithread cores 9:49

Table 5.1.: PyFR-Benchmarks 1

Figure 5.1.: Diagram to benchmark 1

56

ID MPI BLAS (cblas-type) mpirun cpu_bind time [min.]
1 MVAPICH2 MKL (serial) -N 8 -n 192 –hint=multithread cores 5:24
2 MVAPICH2 MKL (serial) -N 8 -n 384 –hint=multithread cores 4:38
3 MVAPICH2 MKL (serial) -N 8 -n 384 –hint=multithread threads 4:42
4 MVAPICH2 MKL (serial) -N 8 -n 384 –hint=multithread

–cpu-freq=Performance cores 4:37

5 MVAPICH2 MKL (serial) -N 8 -n 384 –hint=multithread
–cpu-freq=2500000 cores 4:39

6 MVAPICH2 MKL (serial) -N 8 -n 384 –hint=multithread
–cpu-freq=3300000 cores 4:40

Table 5.2.: PyFR-Benchmarks 2

Figure 5.2.: Diagram to benchmark 2

57

ID MPI BLAS (cblas-type) mpirun cpu_bind time [min.]
1 OpenMPI OpenBLAS (serial) -N 8 -n 384 –hint=multithread default 04:42
2 OpenMPI OpenBLAS (serial) -N 7 -n 336 –hint=multithread default 07:13
3 OpenMPI OpenBLAS (serial) -N 6 -n 288 –hint=multithread default 06:23
4 OpenMPI OpenBLAS (serial) -N 5 -n 240 –hint=multithread default 07:54
5 OpenMPI OpenBLAS (serial) -N 4 -n 192 –hint=multithread default 09:35
6 OpenMPI OpenBLAS (serial) -N 3 -n 144 –hint=multithread default 12:46
7 OpenMPI OpenBLAS (serial) -N 2 -n 96 –hint=multithread default 18:12
8 OpenMPI OpenBLAS (serial) -N 1 -n 48 –hint=multithread default 34:01

Table 5.3.: PyFR-Benchmarks 3

Figure 5.3.: Diagram to benchmark 3

58

ID MPI BLAS (cblas-type) mpirun cpu_bind time [min.]
1 OpenMPI OpenBLAS (serial) -N 8 -n 192 –hint=multithread cores 05:26
2 OpenMPI OpenBLAS (serial) -N 8 -n 384 –hint=multithread default 05:12
3 OpenMPI MKL (serial) -N 8 -n 192 –hint=multithread cores 05:51
4 OpenMPI MKL (serial) -N 8 -n 192 –hint=multithread default 05:55
5 OpenMPI MKL (serial) -N 8 -n 384 –hint=multithread default 05:19
6 OpenMPI Atlas (serial) -N 8 -n 192 –hint=multithread cores 08:06
7 OpenMPI OpenBLAS (serial) -N 8 -n 384 –hint=multithread default 04:48
8 OpenMPI OpenBLAS (serial) -N 8 -n 384 default 04:50
9 OpenMPI OpenBLAS (serial) -N 8 -n 192 –hint=multithread cores 05:05
10 OpenMPI OpenBLAS (serial) -N 8 -n 384 –hint=multithread default 04:46
11 OpenMPI MKL (serial) -N 8 -n 192 –hint=multithread cores 05:31
12 OpenMPI MKL (serial) -N 8 -n 192 –hint=multithread default 05:31
13 OpenMPI MKL (serial) -N 8 -n 384 –hint=multithread default 04:59
14 OpenMPI Atlas (serial) -N 8 -n 192 –hint=multithread cores 07:33
15 OpenMPI Atlas (serial) -N 8 -n 384 –hint=multithread default 06:51
16 OpenMPI OpenBLAS (parallel) -N 8 -n 192 –hint=multithread cores 05:51
17 OpenMPI OpenBLAS (parallel) -N 8 -n 384 –hint=multithread default 04:47
18 OpenMPI MKL (parallel) -N 8 -n 192 –hint=multithread cores 36:19
19 OpenMPI MKL (parallel) -N 8 -n 192 –hint=multithread default > 35:00
20 OpenMPI MKL (parallel) -N 8 -n 384 –hint=multithread default 04:57
21 OpenMPI Atlas (parallel) -N 8 -n 192 –hint=multithread cores 07:29
22 OpenMPI Atlas (parallel) -N 8 -n 384 –hint=multithread default 06:50

Table 5.4.: PyFR-Benchmarks 4

Figure 5.4.: Diagram to benchmark 4

59

5.2. Octopus
Author: Jonas Gresens

Figure 5.5.: Octopus logo

Octopus is a scientific program aimed at the ab initio virtual experimentation on a hope-
fully ever-increasing range of system types. Electrons are described quantum-mechanically
within density-functional theory (DFT), in its time-dependent form (TDDFT) when doing
simulations in time. Nuclei are described classically as point particles. Electron-nucleus
interaction is described within the pseudopotential approximation.
For optimal execution performance Octopus is parallelized using MPI and OpenMP

and can scale to tens of thousands of processors. It also has support for graphical
processing units (GPUs) through OpenCL.2

5.2.1. Dependencies
We required the MPI-parallelized version of Octopus, which depends on several libraries:

• libxc is the library of exchange and correlation functionals, developed by the
Octopus team. Version 2.0.x or 2.1.x is required.

• GSL: Octopus uses splines, complex numbers, special functions, and more from
the GNU Scientific Library. Version 1.9 or later is required.

• LAPACK/BLAS: Octopus depends on an implementation of a LAPACK/BLAS
library for its linear-algebra operations. See 3.1.2 for more info.

• FFTW is used to perform Fast Fourier Transforms. Version 3.0.0 or later is
required.

• MPI: See 3.3.

The latest list of dependencies can be found at http://www.tddft.org/programs/
octopus/wiki/index.php/Manual:Installation#Requirements

2Source: http://www.tddft.org/programs/octopus/wiki/index.php/Main_Page

60

http://www.tddft.org/programs/octopus/wiki/index.php/Manual:Installation#Requirements
http://www.tddft.org/programs/octopus/wiki/index.php/Manual:Installation#Requirements
http://www.tddft.org/programs/octopus/wiki/index.php/Main_Page

5.2.2. How to Build
Octopus 4.1.2

We used the following flags to build octopus:
1 # compile software
2 FLAGS="--prefix= $prefix "
3 FLAGS +=" --with -blas= $blas_version /lib/ libblas .so"
4 FLAGS +=" --with -libxc -prefix= $libxc_version "
5 FLAGS +=" --disable -zdotc -test --enable -mpi --enable -utils"
6 FCCPP="/lib/cpp -ansi" ./ configure $FLAGS
7 make -j $(nproc)

SCC’15 Specific Version

The version used in the competition was a stable prerelease of version 5 of Octopus. We
were advised to use revision 14111 from its SVN source code repository. This version
required a slightly different build process:
We had to unpack and reconfigure the project on the head node . . .

1 tar -xf octopus -5.0.x-r14111.tar.gz
2 cd 5.0.x
3 autoreconf -i
4 chmod 755 build -aux/*.pl

and build it on one of the compute nodes as the head node was deliberately not
designed for such intensive tasks like compilation

1 FCCPP="/lib/cpp -ansi" ./ configure --prefix= $PREFIX \
2 --with -blas =\
3 /apps/ modules /gcc /5/ openblas /0.2/0.2.14/ lib/ libopenblas .a \
4 --with -libxc -prefix =\
5 /apps/ modules /gcc /5/ libxc /2.1/2.1.2 \
6 --with -netcdf -prefix =\
7 /apps/ modules /gcc /5/ mvapich2 /2.1/ netcdf - fortran /4.4/4.4.2 \
8 --disable -zdotc -test \
9 --enable -mpi \
10 --enable -utils
11 make -j $(nproc)

5.2.3. How to Run
Octopus uses an input file named inp which has to reside in the same directory Octopus
is called from.

61

Compiling Octopus with support for MPI generates the octopus_mpi executable,
which we started using the a job script for SLURM:

1 #!/bin/sh
2
3 #SBATCH --time =600
4 #SBATCH --nodes=8
5 #SBATCH --ntasks -per -node =24
6 #SBATCH --error=job.err --output=job.out
7
8 srun octopus_mpi

As well as the following shell script to do the module management and committing
the job script:

1 #!/bin/sh
2
3 GCC="gcc /5"
4 MPI=" mvapich2 /2.1"
5 FFTW="fftw /3.3"
6 BLAS=" openblas /0.2"
7
8 . /etc/ profile .d/ modules .sh
9 module purge
10 module load $GCC/gsl /1.16
11 module load $GCC/libxc /2.1/2.1.2
12 module load $GCC/$BLAS /0.2.14
13 module load $GCC/$MPI /2.1
14 module load $GCC/$MPI/$FFTW /3.3.4
15 module load mvapich -octopus -5.0.x-r14411
16 module list
17
18 MV2_USE_LAZY_MEM_UNREGISTER =0 sbatch octopus .job

5.2.4. Problems
C Preprocessor

Building Octopus uses the C preprocessor for C as well for Fortran code, which can cause
the compilation to be aborted because of C comments, which are pasted into the Fortran
code and interfere with Fortran’s syntax. This problem was caused by the missing -ansi
option in the C preprocessor call.

More detailed info can be found in the Octopus wiki:
http://www.tddft.org/programs/octopus/wiki/index.php/Preprocessors

62

http://www.tddft.org/programs/octopus/wiki/index.php/Preprocessors

MVAPICH2 with Multiple Nodes

Computing and visualizing the ground state of a benzene molecule (dataset from http://
www.tddft.org/programs/octopus/wiki/index.php/Tutorial:Benzene_molecule) showed
that the computation immediately generated wrong results after the first iteration. The
errors were caused by the communication between multiple nodes, since they did not
appear on only one node (compare fig. 5.6 and 5.7).

Figure 5.6.: benzene molecule with MVAPICH2 on one node

Figure 5.7.: benzene molecule with MVAPICH2 on two nodes

Using MV2_USE_LAZY_MEM_UNREGISTER=0 fixed this problem (see 3.3.5).
The visualizations were created with UCFS Chimera.

63

http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial:Benzene_molecule
http://www.tddft.org/programs/octopus/wiki/index.php/Tutorial:Benzene_molecule

5.2.5. Results
MPI

Our measurements showed that MVAPICH2 is around 15% faster than OpenMPI.

BeeGFS

Octopus usually writes a lot of data to the hard disks, these data may be used for
program restarts and subsequent computations. We were able to speed up the write
process by parallelizing the writing with BeeGFS. (for a comparison see table 5.5).

Filesystem def def_wf
ext4 3m 18.96s 14m 34.40s
BeeGFS 2m 05.65s 10m 11.81s

Table 5.5.: Comparison of BeeGFS and ext4

The runs produce different amounts of data:

• def writes 1 GB

• def_wf writes 10 GB

5.3. LAMMPS
Author: Lennart Braun

Figure 5.8.: LAMMPS logo

LAMMPS3 is a simulator for atomic and molecular dynamics. It is written in the C++
programming language and uses MPI for distributed, massively parallel simulations. We
used the LAMMPS version from May 15th 2015, which was the most recent at the time
of the competition.

3http://lammps.sandia.gov/

64

http://lammps.sandia.gov/

Dependencies

• an MPI implementation

• an FFT library (optional, KISS FFT is included in the LAMMPS source code)

• libpng, libjpeg (optional): dumping images in the PNG and JPEG formats

• FFMPEG (optional): rendering videos

How to Build

There are two ways to build LAMMPS. First a Makefile can be written to meet the
environment. The second option is to use the newer Make.py script. The complete
process of building LAMMPS and optional packages can be done in a single line. We
did use the following command to compile LAMMPS with the features required in the
competition.

1 ./ Make.py -j 24 -m kokkos_omp -p kokkos reaxc reax \
2 -mpi mpi -fft fftw3 -jpg yes -png yes -s ffmpeg \
3 -o kraken_kokkos -a lib -all file exe

An explanation of the used command line flags:

-j 24 Uses 24 processes to build (analog to make -j).

-m kokkos_omp Uses the Makefile.kokkos_omp as starting point.

-p kokkos reaxc reax Installs the packages kokkos, reaxc and reax.

-mpi mpi Assume that the compiler is a wrapper for MPI.

-fft fftw3 Selects FFTW3 as FFT library.

-jpg yes Enables JPEG output.

-png yes Enables PNG output.

-s ffmpeg Enables the FFMPEG setting for video output.

-o kraken_kokkos The binary is called lmp_kraken_kokkos.

-a lib-all file exe All auxiliary libraries needed by the selected packages are in-
stalled (lib-all). A Makefile.auto is written (file) and the LAMMPS binary
is compiled (exe).

Make.py includes documentation about all available options. It can be viewed using the
-h switch.

65

Packages

A large amount packages are available which provide additional functionality to the
LAMMPS core. Some packages enables the modeling of different physical properties,
others help to run LAMMPS in different environments such as with OpenMP or with
accelerator cards. Packages can be enabled at compile time with make yes-package of
the -p flag of Make.py as shown above. Some packages require external libraries to be
build prior to the LAMMPS compilation. Many of these are included in the LAMMPS
source code archive and can be build with the above command if necessary.

The Kokkos Package

This package enables LAMMPS to make use of the Kokkos library. It contains a C++
abstraction layer to perform efficient calculations on different hardware. It supports
OpenMP on multi-core processors and Xeon Phi accelerator cards as well as CUDA on
NVIDIA graphic cards. Kokkos has to be enabled and configured at runtime. We used
the following command during the competition.

1 export MV2_USE_LAZY_MEM_UNREGISTER =0
2 srun -N8 -n192 -o slurm_output ../ src/ lmp_kokkos_omp \
3 -i in.lj -l log.lammps -sf kk -k on t 1 -v kokkos 3

Explanation:
-i in.lj Selects in.lj (listing A.3) as input file.

-l log.lammps Writes log to log.lammps.

-sf kk Uses commands with the suffix kk (for Kokkos) if available.

-k on t 1 Enables Kokkos with one thread per process.

-v kokkos 3 Specifies a variable named kokkos with value 3.
The variable introduced with the last option is specific for the input files used in the
competition and selects further options regarding Kokkos.

How to Run

A LAMMPS input script defines an experiment. An environment is modeled by a lattice
and atoms are placed in it. Also files containing data about the molecular topology can
be imported, various force fields and other physical parameters can be set, such as the
initial velocity of the particles. The current state of the computation can be dumped
as text file or rendered as an image. With the run command a number of steps are
simulated.
LAMMPS reads commands from the standard input. Use I/O-redirection to let

LAMMPS work on an input script: [srun ...] lmp_krakken < in.file. Alterna-
tively the input file can be declared with the command line option -in (short -i). The
input is parsed and executed line by line.

66

With the source code a number of example input files are distributed. These make use
of different styles and packages. They are useful to test whether LAMMPS has been built
correctly and runs without problems. For performance evaluation different benchmarks
are supplied. They measure the efficiency of the parallelization and the results can be
compared with published data4 from other systems.

Competition

At the competition we were given two input files to run. These were slightly modified
version of the Lennard-Jones (listing A.3) and the EAM (listing A.4) benchmarks included
with LAMMPS.

4http://lammps.sandia.gov/bench.html

67

http://lammps.sandia.gov/bench.html

Bibliography
[ABB+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, A. Greenbaum, S. Hammerling, A. McKenney, et al. LAPACK
Users’ Guide: Third Edition. Software, Environments, and Tools. Society for
Industrial and Applied Mathematics, 1999.

[FLN+14] A. Fuchs, J. Lüttgau, J. Nissley, M. Tietz, and J. Weging. Student cluster
competition 2014. Technical report, Universität Hamburg, 2014.

[GG] KAZUSHIGE GOTO and ROBERT A. VAN DE GEIJN. Anatomy of high-
performance matrix multiplication. https://www.cs.utexas.edu/users/
pingali/CS378/2008sp/papers/gotoPaper.pdf. last visited: 27.10.2015.

[LDK+] Piotr Luszczek, Jack Dongarra, David Koester, Rolf Rabenseifner, Bob Lu-
cas, Jeremy Kepner, John McCalpin, David Bailey, and Daisuke Takahashi.
Introduction to the hpc challenge benchmark suite. http://icl.cs.utk.
edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf. last
visited: 18.12.2015.

[net] Netlib.org. http://www.netlib.org/. last visited: 25.10.2015.

[PyF15] Pyfr mailing list - example datasets. https://groups.google.com/forum/#!
msg/pyfrmailinglist/osp16U_0UCE/cZSVSjcZaI8J, March 2015. last vis-
ited: 25.10.2015.

[Wit08] Tobias Wittwer. Choosing the optimal blas and lapack library. http://
www.wittwer.nl/wp-content/uploads/2009/08/blas_lapack.pdf, March
2008. last visited: 25.10.2015.

68

https://www.cs.utexas.edu/users/pingali/CS378/2008sp/papers/gotoPaper.pdf
https://www.cs.utexas.edu/users/pingali/CS378/2008sp/papers/gotoPaper.pdf
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf
http://icl.cs.utk.edu/projectsfiles/hpcc/pubs/hpcc-challenge-benchmark05.pdf
http://www.netlib.org/
https://groups.google.com/forum/#!msg/pyfrmailinglist/osp16U_0UCE/cZSVSjcZaI8J
https://groups.google.com/forum/#!msg/pyfrmailinglist/osp16U_0UCE/cZSVSjcZaI8J
http://www.wittwer.nl/wp-content/uploads/2009/08/blas_lapack.pdf
http://www.wittwer.nl/wp-content/uploads/2009/08/blas_lapack.pdf

List of Figures

1.1 Setup day in our bay . 4
1.2 Our bay . 5

2.1 Official power graph . 8
2.2 Power consumption of different applications 9
2.3 QluMan config sets window . 11
2.4 QluMan disk config . 13
2.5 How OrangeFS works5 . 14
2.6 How BeeGFS works6 . 17
2.7 Module directory tree . 23

3.1 Initial Benchmarks with MVAPICH and OpenMPI (Table 3.1 and 3.2) . 29
3.2 Benchmark of BLAS-libaries (Table 3.3) 31
3.3 Test of scalability of OpenBLAS (Table 3.4) 32

4.1 Comparison of STREAM kernel implementations 49
4.2 Comparison of FFT implementations . 50

5.1 Diagram to benchmark 1 . 56
5.2 Diagram to benchmark 2 . 57
5.3 Diagram to benchmark 3 . 58
5.4 Diagram to benchmark 4 . 59
5.5 Octopus logo . 60
5.6 benzene molecule with MVAPICH2 on one node 63
5.7 benzene molecule with MVAPICH2 on two nodes 63
5.8 LAMMPS logo . 64

69

List of Tables

3.1 Initial benchmarks with MVAPICH . 28
3.2 Initial benchmarks with OpenMPI . 29
3.3 Benchmarks of BLAS-libraries . 30
3.4 Test of scalability of OpenBLAS . 31
3.5 Availability of various MPI implementations. 36

4.1 Comparison of STREAM kernel implementations 46
4.2 Comparison of FFT implementations . 47

5.1 PyFR-Benchmarks 1 . 56
5.2 PyFR-Benchmarks 2 . 57
5.3 PyFR-Benchmarks 3 . 58
5.4 PyFR-Benchmarks 4 . 59
5.5 Comparison of BeeGFS and ext4 . 64

70

List of Listings

sources/2.2–Power/powerwatch.sh . 8
sources/2.2–Power/powergraph.gnuplot . 8
sources/2.2–Power/powergraph_looper.gnuplot 9
sources/2.2–Power/setpowerlimit.sh . 9
sources/2.4–Filesystem/disk_config.txt . 13
sources/2.4–Filesystem/orangefs–2.9.1.sh . 15
sources/2.4–Filesystem/orangefs–init.sh . 15
2.1 Install template . 24

3.1 Excerpt of the HDF5 install script . 34
3.2 Excerpt of the NetCDF install script . 34
3.3 Excerpt of the NetCDF Fortran install script 35

4.1 Original STREAM kernels (without OpenMP) 45
4.2 Tuned STREAM Triad kernel . 48

sources/5.2–Octopus/octopus.job . 62
sources/5.2–Octopus/run–octopus.sh . 62

A.1 The HPL.dat file used by us at SCC 15 72
A.2 Tuned STREAM kernels . 73
A.3 LAMMPS input file: Lennard-Jones . 76
A.4 LAMMPS input file: EAM . 76

71

A. Additional Listings

Listing A.1: The HPL.dat file used by us at SCC 15
1 HPLinpack benchmark input file
2 Innovative Computing Laboratory , University of Tennessee
3 HPL.out output file name (if any)
4 6 device out (6=stdout ,7= stderr ,file)
5 1 # of problems sizes (N)
6 327680 Ns
7 1 # of NBs
8 256 NBs
9 0 PMAP process mapping (0=Row -,1=Column -major)
10 1 # of process grids (P x Q)
11 12 Ps
12 16 Qs
13 16.0 threshold
14 1 # of panel fact
15 2 PFACTs (0=left , 1=Crout , 2=Right)
16 1 # of recursive stopping criterium
17 4 NBMINs (>= 1)
18 1 # of panels in recursion
19 2 NDIVs
20 1 # of recursive panel fact.
21 1 RFACTs (0=left , 1=Crout , 2=Right)
22 1 # of broadcast
23 1 BCASTs (0=1rg ,1=1rM ,2=2rg ,3=2rM ,4=Lng ,5= LnM)
24 1 # of lookahead depth
25 1 DEPTHs (>=0)
26 2 SWAP (0=bin -exch ,1=long ,2= mix)
27 64 swapping threshold
28 0 L1 in (0= transposed ,1=no-transposed) form
29 0 U in (0= transposed ,1=no-transposed) form
30 1 Equilibration (0=no ,1= yes)
31 8 memory alignment in double (> 0)
32 ##### This line (no. 32) is ignored (it serves as a separator). ######
33 0 Number of additional problem sizes

↪→ for PTRANS
34 1200 10000 30000 values of N
35 0 number of additional blocking sizes

↪→ for PTRANS
36 40 9 8 13 13 20 16 32 64 values of NB

72

Listing A.2: Tuned STREAM kernels
1 void tuned_STREAM_Copy ()
2 {
3 __asm__ (
4 "mov %[vs], %% rax \n" // n
5 "sub $4 , %% rax \n" // n - 4
6 "lea (%[a], %%rax , 8) , %% rsi \n" // &a[n -4]
7 "lea (%[c], %%rax , 8) , %% rdi \n" // &c[n -4]
8 "neg %% rax \n" // -(n - 4)
9 "jg 2f \n" // skip if n < 4

10
11 "1: \n" // begin of loop
12 " vmovapd (%% rsi , %%rax , 8) , %% ymm0 \n" // load 4 doubles from a
13 " vmovntpd %% ymm0 , (%% rdi , %%rax , 8) \n" // store 4 doubles to c
14 "add $4 , %% rax \n" // next 4 doubles
15 "jl 1b \n" // next iteration
16
17 "2: \n"
18 "sub $4 , %% rax \n" // remainder
19 "jns 4f \n" // done
20
21 "3: \n"
22 " vmovsd 32(%% rsi , %%rax , 8) , %% xmm0 \n" // load 1 double from a
23 " vmovsd %% xmm0 , 32(%% rdi , %%rax , 8) \n" // store 1 double to c
24 "add $1 , %% rax \n" // next 4 doubles
25 "js 3b \n" // done
26
27 "4: \n" // end
28 : // no output operands
29 : [a] "r" (a), [c] "r" (c), [vs] "m" (VectorSize) // input operands
30 : "%ymm0", "%xmm0", "%rax", "%rsi", "%rdi" // clobbered registers
31);
32 }
33
34 void tuned_STREAM_Scale (double scalar)
35 {
36 __asm__ (
37 "mov %[vs], %% rax \n" // n
38 "sub $4 , %% rax \n" // n - 4
39 "lea (%[c], %%rax , 8) , %% rsi \n" // &c[n -4]
40 "lea (%[b], %%rax , 8) , %% rdi \n" // &b[n -4]
41 "neg %% rax \n" // -(n - 4)
42 " vbroadcastsd %[scl], %% ymm1 \n" // scalar
43 "jg 2f \n" // skip if n < 4
44
45 "1: \n" // begin of loop
46 " vmovapd (%% rsi , %%rax , 8) , %% ymm0 \n" // load 4 doubles
47 " vmulpd %% ymm1 , %% ymm0 , %% ymm2 \n" // scalar multiplication
48 " vmovntpd %% ymm2 , (%% rdi , %%rax , 8) \n" // store 4 doubles
49 "add $4 , %% rax \n" // next 4 doubles
50 "jl 1b \n" // next iteration
51
52 "2: \n"
53 "sub $4 , %% rax \n" // remainder
54 "jns 4f \n" // done
55
56 "3: \n"
57 " vmovsd 32(%% rsi , %%rax , 8) , %% xmm0 \n" // load 1 double from a
58 " vmulsd %% xmm1 , %% xmm0 , %% xmm2 \n" // scalar multiplication
59 " vmovsd %% xmm2 , 32(%% rdi , %%rax , 8) \n" // store 1 double to c
60 "add $1 , %% rax \n" // next 4 doubles
61 "js 3b \n" // done
62
63 "4: \n" // end
64 : // no output operands

73

65 : [b] "r" (b), [c] "r" (c), [vs] "m" (VectorSize), [scl] "m" (scalar) // input
↪→ operands

66 : "%ymm0", "%ymm1", "%ymm2", "%xmm0", "%xmm1", "%xmm2", "%rax", "%rsi", "%rdi" //
↪→ clobbered registers

67);
68 }
69
70 void tuned_STREAM_Add ()
71 {
72 __asm__ (
73 "mov %[vs], %% rax \n" // n
74 "sub $4 , %% rax \n" // n - 4
75 "lea (%[a], %%rax , 8) , %% rsi \n" // &a[n -4]
76 "lea (%[b], %%rax , 8) , %% rcx \n" // &b[n -4]
77 "lea (%[c], %%rax , 8) , %% rdi \n" // &c[n -4]
78 "neg %% rax \n" // -(n - 4)
79 "jg 2f \n" // skip if n < 4
80
81 "1: \n" // begin of loop
82 " vmovapd (%% rsi , %%rax , 8) , %% ymm0 \n" // load 4 doubles
83 " vmovapd (%% rcx , %%rax , 8) , %% ymm1 \n" // load 4 doubles
84 " vaddpd %% ymm1 , %% ymm0 , %% ymm2 \n" // addition
85 " vmovntpd %% ymm2 , (%% rdi , %%rax , 8) \n" // store 4 doubles
86 "add $4 , %% rax \n" // next 4 doubles
87 "jl 1b \n" // next iteration
88
89 "2: \n"
90 "sub $4 , %% rax \n" // remainder
91 "jns 4f \n" // done
92
93 "3: \n"
94 " vmovsd 32(%% rsi , %%rax , 8) , %% xmm0 \n" // load 1 double from a
95 " vmovsd 32(%% rcx , %%rax , 8) , %% xmm1 \n" // load 1 double from b
96 " vaddpd %% xmm1 , %% xmm0 , %% xmm2 \n" // scalar multiplication
97 " vmovsd %% xmm2 , 32(%% rdi , %%rax , 8) \n" // store 1 double to c
98 "add $1 , %% rax \n" // next 4 doubles
99 "js 3b \n" // done

100
101 "4: \n" // end
102 : // no output operands
103 : [a] "r" (a), [b] "r" (b), [c] "r" (c), [vs] "m" (VectorSize) // input operands
104 : "%ymm0", "%ymm1", "%ymm2", "%xmm0", "%xmm1", "%xmm2", "%rax", "%rcx", "%rsi",

↪→ "%rdi" // clobbered registers
105);
106 }
107
108 void tuned_STREAM_Triad (double scalar)
109 {
110 __asm__ (
111 "mov %[vs], %% rax \n" // n
112 "sub $4 , %% rax \n" // n - 4
113 "lea (%[a], %%rax , 8) , %% rdi \n" // &a[n -4]
114 "lea (%[b], %%rax , 8) , %% rcx \n" // &b[n -4]
115 "lea (%[c], %%rax , 8) , %% rsi \n" // &c[n -4]
116 "neg %% rax \n" // -(n - 4)
117 " vbroadcastsd %[scl], %% ymm3 \n" // scalar
118 "jg 2f \n" // skip if n < 4
119
120 "1: \n" // begin of loop
121 " vmovapd (%% rsi , %%rax , 8) , %% ymm0 \n" // load 4 doubles (c)
122 " vmovapd (%% rcx , %%rax , 8) , %% ymm1 \n" // load 4 doubles (b)
123 ". intel_syntax noprefix \n" //
124 " vfmadd231pd %% ymm1 , %% ymm3 , %% ymm0 \n" // fma
125 ". att_syntax prefix \n" //
126 " vmovntpd %% ymm1 , (%% rdi , %%rax , 8) \n" // store 4 doubles
127 "add $4 , %% rax \n" // next 4 doubles

74

128 "jl 1b \n" // next iteration
129
130 "2: \n"
131 "sub $4 , %% rax \n" // remainder
132 "jns 4f \n" // done
133
134 "3: \n"
135 " vmovsd 32(%% rsi , %%rax , 8) , %% xmm0 \n" // load 1 double from a
136 " vmovsd 32(%% rcx , %%rax , 8) , %% xmm1 \n" // load 1 double from b
137 ". intel_syntax noprefix \n" //
138 " vfmadd231sd %% xmm1 , %% xmm3 , %% xmm0 \n" // fma
139 ". att_syntax prefix \n" //
140 " vmovsd %% xmm1 , 32(%% rdi , %%rax , 8) \n" // store 1 double to c
141 "add $1 , %% rax \n" // next 4 doubles
142 "js 3b \n" // done
143
144 "4: \n" // end
145 : // no output operands
146 : [a] "r" (a), [b] "r" (b), [c] "r" (c), [vs] "m" (VectorSize), [scl] "m" (scalar)

↪→ // input operands
147 : "%ymm0", "%ymm1", "%ymm2", "%xmm0", "%xmm1", "%xmm2", "%rax", "%rcx", "%rsi",

↪→ "%rdi" // clobbered registers
148);
149 }

75

Listing A.3: LAMMPS input file: Lennard-Jones
1 # 3d Lennard - Jones melt
2
3 variable kokkos index 0
4
5 if "${ kokkos } == 1" then &
6 " package kokkos neigh half/ thread comm/ forward device comm/ exchange host" &
7 " newton off"
8 if "${ kokkos } == 2" then &
9 " package kokkos neigh full comm/ forward device comm/ exchange device " &

10 " newton off"
11 if "${ kokkos } == 3" then &
12 " package kokkos neigh full comm/ forward host comm/ exchange host" &
13 " newton off"
14 if "${ kokkos } == 4" then &
15 " package kokkos neigh full comm/ forward host comm/ exchange no" &
16 " newton off"
17 if "${ kokkos } == 5" then &
18 " package kokkos neigh half/ thread comm/ forward no comm/ exchange no" &
19 " newton off"
20 if "${ kokkos } == 6" then &
21 " package kokkos neigh half/ thread comm/ forward no comm/ exchange no" &
22 " newton on"
23 if "${ kokkos } == 7" then &
24 " package kokkos neigh half/ thread comm/ forward device comm/ exchange device " &
25 " newton on"
26
27 units lj
28 atom_style atomic
29
30 lattice fcc 0.8442
31 region box block 0 64 0 64 0 64
32 create_box 1 box
33 create_atoms 1 box
34 mass 1 1.0
35
36 velocity all create 1.44 87287 loop geom
37
38 pair_style lj/cut 2.5
39 pair_coeff 1 1 1.0 1.0 2.5
40
41 neighbor 0.3 bin
42 neigh_modify delay 0 every 20 check no
43
44 fix 1 all nve
45 thermo 100
46 run 20000

Listing A.4: LAMMPS input file: EAM
1 # bulk Cu lattice
2 variable kokkos index 0
3 # System size probable want a 7 here
4 variable rep index 7
5 # Number of timesteps want 10000 here to get some MSD data
6 variable nsteps index 10000
7
8 if "${ kokkos } == 1" then &
9 " package kokkos neigh half/ thread comm/ forward device comm/ exchange host" &

10 " newton off"
11 if "${ kokkos } == 2" then &
12 " package kokkos neigh full comm/ forward device comm/ exchange device " &
13 " newton off"
14 if "${ kokkos } == 3" then &
15 " package kokkos neigh full comm/ forward host comm/ exchange host" &

76

16 " newton off"
17 if "${ kokkos } == 4" then &
18 " package kokkos neigh full comm/ forward host comm/ exchange no" &
19 " newton off"
20 if "${ kokkos } == 5" then &
21 " package kokkos neigh half/ thread comm/ forward no comm/ exchange no" &
22 " newton off"
23 if "${ kokkos } == 6" then &
24 " package kokkos neigh half/ thread comm/ forward no comm/ exchange no" &
25 " newton on"
26 if "${ kokkos } == 7" then &
27 " package kokkos neigh half/ thread comm/ forward device comm/ exchange device " &
28 " newton on"
29
30 variable xx equal 20*${rep}
31 variable yy equal 20*${rep}
32 variable zz equal 20*${rep}
33
34 units metal
35 atom_style atomic
36
37 # Sort Frequency and binsize can affect cache locality a lot
38 atom_modify map array sort 100 4.0
39
40 # MPI rank layout for domain decomposition can have significant influence on

↪→ communication cost
41 processors * * *
42 lattice fcc 3.615
43 region box block 0 ${xx} 0 ${yy} 0 ${zz}
44 create_box 1 box
45 create_atoms 1 box
46
47 pair_style eam
48 pair_coeff 1 1 Cu_u3 .eam
49
50 velocity all create 1600.0 376847 loop geom
51
52 # Modify skin distance and requency of neighbor list building (also potentially bin

↪→ size)
53 # This can have significant performance influence : but if set too agressive

↪→ invalidates the run (i.e. produces wrong results)
54 neighbor 1.0 bin
55 neigh_modify delay 0 check no every 20
56
57 fix 1 all nve
58
59 timestep 0.005
60 thermo 50
61
62 run ${ nsteps }

77

	Introduction and Motivation
	Task and Rules
	Bay

	System
	Hardware Overview
	Power Consumption
	Power Capping
	Operating System
	Compiler
	Filesystem
	Modules

	Libraries
	Math Libraries
	I/O Libraries
	MPI

	Benchmarks
	HPL
	HPCC
	Graph500

	Applications
	PyFR
	Octopus
	LAMMPS

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Additional Listings

