
Student Cluster Competition 2014

— Report —

Arbeitsbereich Wissenschaftliches Rechnen
Fachbereich Informatik

Fakultät für Mathematik, Informatik und Naturwissenschaften
Universität Hamburg

Vorgelegt von: Anna Fuchs, Jakob Lüttgau,
Jennifer Nissley, Marian Tietz,
Johann Weging

Betreuer: Michael Kuhn

Hamburg, den 30.09.2014

Abstract
The International Supercomputing Conference (ISC1)is an annual global conference and
exhibition for high performance computing. New and established companies in the high
performance computing field are able to present their products and discuss the needs of
their potential customers. Additionally, several workshops are held to communicate the
knowledge gained in research groups. One major event is the anouncement of the new
TOP500 list of the 500 best performing supercomputers world-wide.

Another event at the ISC is the Student Cluster Competition (SCC) where student
teams from different universities from around the world come together and compete for
the best performing cluster system. This report summarizes the experiences of the team
from the University of Hamburg at the SCC of ISC’14 and highlights what can be done
better in the future.

1http://www.isc-events.com/isc14/

http://www.isc-events.com/isc14/

Contents

1 Introduction and Motivation 5
1.1 Task and Rules . 5

2 System 6
2.1 Hardware . 6
2.2 Operating System . 7
2.3 InfiniBand . 8
2.4 Software . 11

3 Compiler 13
3.1 GCC . 13
3.2 ICC . 15
3.3 Conclusion . 16

4 Libraries 17
4.1 Overview . 17
4.2 Available libraries . 17
4.3 Initial testing . 18
4.4 Library specific optimizations . 19
4.5 Final hardware testing . 20
4.6 Conclusion and Outlook . 21

5 MPI 23
5.1 Overview . 23
5.2 Compatibility . 25
5.3 MPI over InfiniBand . 25
5.4 Build . 26
5.5 Tuning Options . 27
5.6 Evaluation . 32

6 Benchmarks 39
6.1 HPCC . 39
6.2 Introduction and Motivation . 39
6.3 Build Script . 40
6.4 Input File . 41
6.5 Code Optimization . 44
6.6 Results . 44

3

6.7 Conclusion . 46
6.8 Sources . 46
6.9 HPCG . 47

7 Applications 50
7.1 Quantum Espresso . 50
7.2 Gadget . 55
7.3 OpenFOAM . 56

8 Future Work 58
8.1 Power Consumption . 59
8.2 File System . 59
8.3 GPU . 59

Bibliography 61

List of Figures 65

List of Tables 67

Listings 68

4

1 Introduction and Motivation
In July 2014, the 3rd HPCAC-ISC Student Cluster Competition1 during the ISC’14
Conference and Exhibition took place in Leipzig.

We were participating to – first and foremost – gain experience, both technically and
personally. We wanted to prove and – of course – improve our skills and were looking
forward to working together as a team. The Student Cluster Challenge was a very good
opportunity to get to know the international HPC scene, which is not easily possible
for students. It was also a good chance to compare our own methods with the other
teams. Additionally, it was very interesting to have the chance to work with this kind of
hardware and resources, because they are generally not easily accessible.

1.1 Task and Rules
The 11 teams, each consisting of 6 undergraduate students from all over the world, built
a small prepared cluster in a real time competition. They tried to reach best performance
results with their systems under certain conditions. There were three categories of awards
to be given - three prizes for Overall Winners, the highest LINPACK performance and
the Fan Favorite prize.

The power budget was limited to 3 kW on one monitored PDU. Exceeding this budget
was penalized down to disqualification from the competition or parts of it. It was not
allowed to restart the system or its components and also to change any of them at any
time of the competition, save as otherwise permitted. The adviser was not allowed to
actively support the team during the day.

Three applications were published some months in advance as well as the used bench-
marks were known from the beginning of the competition. One addition application was
published on the immediately preceding day.

1http://www.isc-events.com/isc14/student-cluster-competition.html

5

http://www.isc-events.com/isc14/student-cluster-competition.html

2 System
Author: alle

2.1 Hardware
The preliminary cluster configuration is given below. The hardware is provided by
sysGen1.

• 1 × Head node
– 1 × Intel Xeon Ivy Bridge-EP E5-2609v2, 2.5GHz, 4 cores
– 32GB main memory
– 2 × 120GB solid-state drive
– 4 × 2TB hard disk drive, 7.200RPM
– Mellanox ConnectX-3 InfiniBand, FDR (56Gbit/s)

• 8 × Compute node
– 2 × Intel Xeon Ivy Bridge-EP E5-2680v2, 2.8GHz, 10 cores
– 128GB main memory
– 500GB hard disk drive, 7.200RPM
– Mellanox ConnectX-3 InfiniBand, FDR (56Gbit/s)

• Mellanox InfiniBand switch, FDR (56Gbit/s), 12 ports

• Netgear Gigabit switch, 24 ports

1http://www.sysgen.de/

6

http://www.sysgen.de/

2.1.1 Power Consumption
The following table shows the power consumption given by the sponsor.

Node type Count Current (A) Power (W)
Head node 1 0.87A 200W
Compute node 8 1.30A 300W
InfiniBand 1 0.29A 300W
Gigabit Ethernet 1 0.29A 21W
Sum 11.85A 2,921W

To ensure that the values are accurate we did current measurements with two voltmeters,
which revealed deviated results due to enabled turbo boost. To ensure we would not
exceed the limit, turbo boost has been later disabled.

2.2 Operating System
Author: Jakob Lüttgau

This section is giving a brief overview of different considerations made before settling
with Qlustar. There are many different choices for a cluster operation system available.
Thriving for resource exploitation may make choosing the options with the most fine
grained control over every aspect the optimal choice because any unnecessary overhead
could potentially be removed. This would favor a custom tailored system.
On the other hand the cluster needs to be flexible to react to unforeseen problems

than can arise during operation as well as during solving the surprise application that is
part of the student cluster challenge.
The amount of different technologies involved should not be neglected as it requires

considerable efforts in e.g. system administration, storage and network technologies to
name a few to setup a working cluster. Beware of further raising the bar by introducing
unrealistic ambitions.

Not every aspect of the system can neither needs to be fully understood. In retrospect
it became obvious that there will be not a lot of time to troubleshoot problems during
the competition, especially with constraints that the system or even parts of must not
be restarted.

Special considerations were made towards Cent OS or Ubuntu/Debian based systems,
as the first is popular in industry (e.g. Amazon Web Services) and the second comes with
a large user base and is already in production in the cluster at the workgroup "Scientific
Computing" at the University of Hamburg.
Qlustar is a fairly new linux distribution targeting cluster installations by shipping

with software support for many common HPC related demands. Qlustar is based on
Ubuntu/Debian and integrates the experience of the software engine BeoBox which is

7

also developed by Q-Leap. BeoBox already powers multiple cluster installations for many
years.

The distribution as of Qlustar Version 8.1 comes with lightweight node operating
systems as well as many management and monitoring facilities preinstalled. Utilities to
add cluster hardware and manage node provisioning also allow to adjust and setup up
network setup such as the InfiniBand fabric.

2.2.1 Installation and Setup
An installation image of the distribution can be downloaded free of charge from the
qlustar homepage https://qlustar.com/download. The trail version, does not have
any time constraints but the cluster management utilities can not be used without
obtaining a license.

Qlustar is installed only on the head node. The compute nodes fetch their boot images
via netboot using PXE (Preboot Execution Environment), which needs to be configured
in the node BIOS/node firmware. Installation on the head node is straight forward
thanks to a guided installation wizard. On first boot the post-install script should be
executed to fully setup Slurm, Nagios and Ganglia. In environments with strict internet
security policies this can cause problems because the post-install script requires internet
access to download the most recent software.
The next steps require a Qlustar license. Without a registered copy of Qlustar the

InfiniBand fabric, node image provision and authentication and monitoring need to be
configured manually. No operating system images will be served to booting nodes on the
network without beeing registerd to Qlustars cluster management tool " qluman".
Registering new nodes using the qluman, build with Python and Qt, however is very

easy. A special network discovery frontend is provided which lists upcoming nodes
seeking a DHCP lease. Nodes can than added by their MAC address, a fixed IP can be
set as well a template which specifies which image to feed to the node as well as other
configuration options.

The changes to node and cluster configuration are kept in a database but to take effect
qluman needs to generate and overwrite affected system configuration files. This effects
NIS, NTP, Hostfiles, InfiniBand aswell as the Slurm and Nagios/Ganglia configurations.

2.3 InfiniBand
InfiniBand (IB) is one of the most performant computer network technologies, which is
widely used in industrial high performance computing. Nowadays InfiniBand is used to
interconnect within and among of computer systems. It is characterized by featuring
high throughput at low latencies (about 1-2µs). There are two manufacturers of switches
and host bus adapters for InfiniBand - Intel and Mellanox.
FDR InfiniBand, which is not the fastest available one, provides up to 14 Gb/s per

lane and up to 56 Gb/s per port, since 4x lanes are common (up to 12x available).

8

https://qlustar.com/download

The main difference between InfiniBand and the early Ethernet is the used topology.
The particular nodes interconnect via network switches. The total throughput is higher
due to multiple physical links connected over switches.

2.3.1 Evaluation
The reference performance values of the sponsored InfiniBand are as follows:

Mellanox 56Gb/s FDR IB
Throughput 6.8GB/s
Latency 0.7µs
Message Rate 137 Millionmsg/sec

Table 2.1: Reference Mellanox IB FDR56 native performance

First of all the real native performance should be measured, prior to involvement of
further libraries like MPI (see Section 5.3). To check the state of the IB use ibstatus:

1 $ ibstatus
2
3 Infiniband device ’mlx4_0 ’ port 1 status:
4 default gid: fe80 :0000:0000:0000:0025:90 ff:ffdf :39a9
5 base lid: 0x6
6 sm lid: 0x1
7 state: 4: ACTIVE
8 phys state: 5: LinkUp
9 rate: 56 Gb/sec (4X FDR)
10 link_layer: InfiniBand

Graphics 2.1 and 2.2 show the results of perftest2 benchmark done by Julian Kunkel.

2git://git.openfabrics.org/~shamoya/perftest.git

9

git://git.openfabrics.org/~shamoya/perftest.git

MPI IB

Seite 1

1
4

16
64

256
1024

4096
16384

65536
262144

1048576
4194304

0

1000

2000

3000

4000

5000

6000

7000

Msg Size

Th
ro

ug
hp

ut
 in

 M
B/

s

Figure 2.1: Writing performance of InifiniBand

MPI IB

Seite 1

1
4

16
64

256
1024

4096
16384

65536
262144

1048576
4194304

0

1000

2000

3000

4000

5000

6000

7000

Msg Size

Th
ro

ug
hp

ut
 in

 M
B/

s

Figure 2.2: Reading performance of InifiniBand

The initial results without tuning are about 0.8 GB/s weaker then the reference
performance. Investigation of the bottlenecks showed, that it is helpful to use more
streams and that touching the buffers adversely affects the performance.

10

2.4 Software
2.4.1 Batch System
Managing lots of parallel used resources manually is hard, unreliable and insecure. The
best way is to use a well implemented, comfortable and robust batch system. One of
the widest used ones is SLURM (Simple Linux Utility for Resource Management)3. The
main tasks of such a a manager are allocating resources and starting, executing and
monitoring work on the distributed resources. Additionally, SLURM provides a job
scheduler for managing the queue of pending work.

SLURM’s core are two daemons - slurmctld and slurmd. The first one is started on
the master or login node, the other on compute nodes.

Qlustar provides SLURM automatically if chosen during the installation. The daemons
on compute nodes can be comfortably restarted using Qluman.
Alternatively we could define hostfiles for launching jobs with MPI and doing lots of

additional manual work with environment, output and queuing of the jobs.

2.4.2 Modules
To use different library implementations and versions in a more comfortable way there
exists a package named "Environment Modules"4. This package should not be mixed up
with the loadable kernel modules for better dynamic organization of the Linux kernel
parts. Environment Modules also provide dynamic modification, not of the kernel, but
of the user’s environment.

Take note of the fact that Environment Modules package has been renamed to "Modules"
by Qlustar.
All required configuration information like paths and environment variables are kept

in modulefiles. Every modulefile defines a module, which can then be loaded or unloaded
dynamically and atomically. Due to the dependencies of libraries on compilers or other
libraries it is advisable to first think up a well organized hierarchical structure of the
modules. A special attention has to be paid to the compatibility of different modules.
The first hierarchical level are the compilers. Due to the missing binary interface

compatibility of the compilers the further structure tree paths should not intersect. The
same applies to all incompatible libraries.
Listing 2.1 shows an example modulefile for MVAPICH2 version 1.9 compiled with

debugging options using GCC 4.9 compiler.

Listing 2.1: Modulefile example
1 #%Module1 .0###################
2
3 set root /musorka/opt/gcc /4.9/ mvapich2 /1.9 _debug

3https://computing.llnl.gov/linux/slurm/
4http://modules.sourceforge.net/

11

https://computing.llnl.gov/linux/slurm/
http://modules.sourceforge.net/

4
5 prepend -path PATH $root/bin
6 prepend -path LD_LIBRARY_PATH $root/lib
7 prepend -path MANPATH $root/share/man
8 prepend -path PKG_CONFIG_PATH $root/lib/pkgconfig

The first line has to begin with the magic characters, which identify this text file as a
modulefile. The second line defines the root directory, where the binary for the module
content is defined. The rest lines set all necessary paths.
All available modules are listed with the module avail. The commando to load the

module looks as follows:

Listing 2.2: Load a module
1 module load gcc /4.9/ mvapich2 /1.9 _debug

All of the already loaded modules can be looked up with the command module list.
Beware of loading conflicting modules like different MPI implementations or several

compilers at the same time: their correct work is not guaranteed.

When launching jobs via SLURM you usually do not need to specify any modules in
the batch script, since SLURM exports all the environment options including set paths
and variables. That means, the job would be launched with the modules loaded on the
login node (where from you usually submit the jobs). Anyway, it could be helpful to
specify the required modules in the batch script to prevent any confusion with wrongly
loaded or missing modules. To do so the modules have to be installed at least on that
node, which will provide the batch script options and load the modules. Because this
node is any from the list of involved nodes, you usually install the necessary software on
all of them.

Sharing the system with lots of people makes it complicated to rebuild libraries, that
the others need. To test different configurations of libraries you may want to build the
library locally. To avoid conflicts with other modules the right paths have to be adapted
or the local libraries can also be specified as modules. For this purpose the MODULEPATH
has to be extended by the path to the local build.

12

3 Compiler
Author: Johann Weging

This Chapter is about the compilers used to compile the programs and benchmarks to
run on the cluster. The two compiler looked at are the Gnu Compiler Collection (GCC)
(gcc14b) and the Intel C++ Compiler (ICC) (icc14).

3.1 GCC
3.1.1 Building and Installation
Since Qlustar comes with GCC 4.6 it is necessary to install a newer release manually.
The latest release of GCC (4.9.0 at this time) is chosen to be installed. GCC can be
downloaded from one of these mirrors https://gcc.gnu.org/mirrors.html (gcc14a).

The installation process is shown in listing 3.1, aptitude and make install need to run
as root. First some build dependencies have to be installed, aptitude will take care of
that. After GCC is downloaded it has to be extracted and configured for building. Some
of the interesting configuration flags are –with-arch, –with-tune to determine which CPU
architecture should be used as default when generating code. When configure finishes a
simple make, make install is enough to compile and install it.

13

Listing 3.1: Building and installing GCC 4.9.0.
1 $ aptitude install libmpfr -dev libgmp3 -dev libmpc -dev \
2 flex bison zlib1g -dev
3
4 $ tar -xf gcc -4.9.0. tar.gz
5 $ cd gcc -4.9.0
6
7 $./ configure --prefix =/ musorka/opt/gcc /4.9/4.9.0 \
8 --enable -languages=c,c++,objc ,obj -c++,fortran ,go ,lto \
9 --enable -bootstrap --enable -shared \
10 --enable -threads=posix --enable -checking=release \
11 --with -system -zlib --enable -__cxa_atexit \
12 --disable -libunwind -exceptions \
13 --enable -gnu -unique -object --enable -linker -build -id \
14 --with -linker -hash -style=gnu --enable -plugin \
15 --enable -lto --disable -multilib --disable -werror \
16 --with -arch=ivybridge --with -tune=ivybridge \
17 --build=x86_64 -linux -gnu
18
19 $ make -j8
20 $ make install

To be able to load the compiler a module file is needed. Listing 3.2 shows the module
file used in this setup. It sets the necessary paths to use GCC.

Listing 3.2: GCC 4.9.0 module file.
1 # /etc/qlustar/common/modules/modulefiles/gcc /4.9/4.9.0
2 set root /musorka/opt/gcc /4.9/4.9.0
3
4 prepend -path PATH $root/bin
5 prepend -path LD_LIBRARY_PATH $root/lib
6 prepend -path LD_LIBRARY_PATH $root/lib64
7 prepend -path MANPATH $root/share/man
8 prepend -path PKG_CONFIG_PATH $root/lib/pkgconfig

14

If the setup was successful can be checked by loading the module and do a version
check shown in Listing 3.3.

Listing 3.3: Checking the GCC setup.
1 $ module load gcc /4.9/4.9.0
2 $ gcc --version
3 gcc (GCC) 4.9.0
4 Copyright (C) 2014 Free Software Foundation , Inc.
5 This is free software;
6 see the source for copying conditions.
7 There is NO warranty; not even for MERCHANTABILITY or
8 FITNESS FOR A PARTICULAR PURPOSE.
9
10 // gcc -v will give you a more complete overview

3.2 ICC
3.2.1 Building and Installation
To download and install the ICC it’s necessary to create a account at the Intel Developer
Zone (int14a). After the account is activated, it’s needed to sign in at the Intel Registra-
tioncenter (int14b). After the sing in it is possible to register the compiler by entering
the seiral number on the right. Refresh the page and the compiler can be downloaded.
After the download is finished the ICC needs to be extracted. For the installer to

function properly the cpio command is required.
1 $ aptitude install cpio
2 $ tar -xf l_ics_2013 .1.046 _intel64.tgz
3 $ cd l_ics_2013 .1.046 _intel64
4 $./ install.sh

The ICC installation dialog will start and ask which user should be used to install
the ICC. The installation will be performed as root to install the ICC system wide. The
installer will check if everything which is needed is installed on the system. Probably
some of the optional dependencies are missing but this can be skipped. After accepting
the license agreement the ICC needs to be activated. The simplest way is to use the
same serial number again, and enter it into the installer by choosing the default action.
Now the installation can be customized. The only thing that has to be changed is

the install path. The comopnents to be installed ca be changed but don’t have to. The
install directory is /musorka/opt/icc/2013.1/2013.1.046.

1 1. Start installation Now [default]
2
3 2. Change install directory

↪→ [/ musorka/opt/icc /2013.1/2013.1.046]

15

4 3. Change components to install [Custom]
5 4. Show pre -install summary

3.2.2 Tips for the Future
It’s quite complex to get the ICC up and running and to figure out which library to use
and when. Instead of using a module file it would be easier to just use the iccvar.sh
script inside the bin folder. Another problem is to figure out which threading and math
library to use. Using the AVX -math library failed and it was not clear what to do to get
it to work.

3.3 Conclusion
The GCC is easy to set up and use and works very well for the most applications. All
programs which are run on the cluster where build with GCC. The ICC is complex and
hard to setup. May it will generate faster code? But one has to put a lot of effort into it
to get it up and running.

16

4 Libraries
Author: Marian Tietz

4.1 Overview
This chapter reasons about the choice of mathematics libraries we made for the applica-
tions and benchmarks of the cluster challenge. Since optimal hardware utilization is a
major key to success, choosing the right libraries for the tasks is important.

Over the course of this chapter a selection of libraries and test results, on a test cluster
as well as the final competition cluster, are presented.

4.2 Available libraries
Three library categories, namely LAPACK 1, BLAS 2 and FFT 3, were necessary for the
benchmarks and applications. Several implementations exist for all categories, which can
vary widely in performance and ease of use. Initial research yields the following possible
implementations of the different APIs for our platform:

LAPACK BLAS FFT
Intel MKL ATLAS FFTW2
LAPACK GotoBLAS2 FFTW3

ScaLAPACK OpenBLAS Intel MKL
PLASMA Intel MKL

These implementations were filtered for up-to-dateness and their likelihood of being
efficient on the cluster. The reasoning behind the filtering is explained in the following
sub-sections. After filtering out the promising candidates, the table presented above
changed to the following:

LAPACK BLAS FFT
Intel MKL (11.1) FFTW2 (2.1.5)

LAPACK FFTW3 (3.3.4)
OpenBLAS (9c51cdf) Intel MKL (11.1)
Intel MKL (11.1)

1Linear Algebra PACKage
2Basic Linear Algebra Subprograms
3Fast Fourier transform

17

4.2.1 LAPACK implementations
netlib LAPACK 4 is fairly up-to-date but criticized for its lack of scalability on distributed-
memory systems. For this reason, ScaLAPACK5 was developed. ScaLAPACK’s latest
release is from May 2012 and therefore cannot support current CPU architectures, which
was the reason to rule ScaLAPACK out.

PLASMA’s documentation states its purpose is to eliminate the shortcomings of
LAPACK and ScaLAPACK on multi-core systems and their inability to efficiently utilize
accelerators. It does not, however, serve as an replacement for ScaLAPACK since it
developer for shared-memory systems. This and the fact that PLASMA still does not
fully implement all functionality of LAPACK rules PLASMA out as well. The only
remaining implementation that meets our up-to-dateness and performance criteria is
therefore the netlib LAPACK implementation and the implementation optimized by
Intel in the MKL.

4.2.2 BLAS implementations
BLAS is used by LAPACK to do the heavy-lifting computations. A general rule is:
if BLAS is fast, LAPACK will be fast. For this reason, a highly optimized BLAS
implementation is important to achieve good results.

GotoBLAS2 is officially discontinued 6 and only supports Intel Nehalem, which renders
it useless for our purposes. The source code of GotoBLAS2 was used to create OpenBLAS
which is still actively maintained and supports Intel SandyBridge as well as the Haswell
platform. It also incorporates the netlib LAPACK implementation but can be used with
PLASMA if so desired.

ATLAS also implements some LAPACK functions but is mainly a BLAS implementa-
tion. The benchmark (Don13a) suggests that ATLAS is outperformed by OpenBLAS
and Intel’s MKL and is therefore not used in further tests.
According to benchmarks made by a JuliaLang contributers and others, OpenBLAS

compared well to Intel’s MKL, even outperforming MKL in several tests. (Joh13)
(Don13b) While Intel’s MKL still performs well, OpenBLAS seems to be a very good
alternative. In conclusion, OpenBLAS and Intel MKL were selected as candidates for
the BLAS implementation.

4.3 Initial testing
Since the competition cluster hardware was not available to us in the beginning, we used
a different cluster to test the libraries using HPL as the benchmarking tool.
The cluster we used is a Intel Westmere cluster with 10 nodes, each having 12 cores

and 12 GB RAM per node. The nodes are connected using Ethernet, so latency intensive
tests were expected to be slow.

4http://www.netlib.org/lapack/
5http://www.netlib.org/scalapack/
6https://www.tacc.utexas.edu/tacc-software/gotoblas2

18

http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
https://www.tacc.utexas.edu/tacc-software/gotoblas2

As this cluster is a few years behind current CPU architectures, the results can only
be seen as a hint, not as a general rule. It was clear that further testing on the final
hardware was necessary. However, the results of the Westmere benchmarks still carry
some significance and hint in what direction to go in terms of software selection.
The software was used for testing besides the libraries was HPL in version 2.1 and

OpenMPI 1.6.5. OpenBLAS was compiled using GCC 4.7.2 and Intel ICC 2013.1.046.
HPL was configured with a process grid of P ×Q = 10× 12, 192 blocks and a problem
size of 100,000 (<80% of memory usage).

0 1 2 4 8
200

300

400

500

600

700

800

OPENBLAS_NUM_THREADS
OPENMP_NUM_THREADS

OpenBLAS
Intel MKL

GF
LO

PS

Figure 4.1: HPL performance using OpenBLAS with different threading configurations
on the Westmere cluster in comparison to Intel’s MKL using the same setup.

Hyper-Threading did not prove to be effective when testing with HPL. It is assumed
that the CPU utilization is already high enough for HT improve anything.
FFTW was not benchmarked on the initial test cluster.

4.4 Library specific optimizations
For OpenBLAS no specific compile time optimizations were applied since these are
applied automatically depending on the PLATFORM parameter supplied when building the
library. It also became clear that OpenBLAS performs better when using only one thread,
which is achieved by setting the environment variable OPENBLAS_NUM_THREADS=1.

For Intel’s MKL, similar performance characteristics were observed when setting
OPENMP_NUM_THREADS=1 as shown in Figure 4.1. No compile time optimizations were
done when linking with MKL except when otherwise stated by Intel MKL’s Link Advisor7.

For FFTW2 threading and MPI support was enabled at compile time but no further
optimizations were applied. FFTW3 on the other hand was configured to use SSE2 and
AVX instructions. The complete configuration line was:

7https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

19

https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor

--enable-sse2 --enable-avx --enable-threads --enable-mpi \
--with-combined-threads

4.5 Final hardware testing
This section presents the results of testing the selected software stack on the cluster com-
petition hardware. The software setup changed slightly with the final setup: OpenMPI
was mostly replaced with MVAPICH and the GCC version was 4.9 instead of 4.7.1. The
most significant change performance-wise seemed to be the MPI layer.

HPCC was used to test the performance. HPCC uses HPL but, amongst other things,
benchmarks the FFT as well. HPCC adjusts itself according to the HPL configuration,
which was similar to the one used in initial testing: N=100,000, P ×Q = 8×20, NB=192.
The process grid was arranged so that P matches the number of nodes and Q matches the
number of cores. While the problem size is sub-optimal, it allows for quick testing while
being moderately accurate in terms of the machine’s actual performance. In the following
the HPL and FFT performance is presented, starting with the HPL performance of
OpenBLAS with GCC and Intel’s MKL with ICC, as shown in Figure 4.2.

2,600 2,650 2,700 2,750

HPL
2,755

2,625

GFLOPS

OpenBLAS/GCC MKL/ICC

Figure 4.2: Performance comparison between HPL compiled with GCC 4.9, OpenBLAS
and compiled with ICC, MKL.

The comparison shown in Figure 4.2 shows that OpenBLAS with GCC 4.9 performs
a little bit better than Intel’s MKL. It has to benoted that, by mistake, the MKL
benchmarks were not run with OMP_NUM_THREADS=1, which according to section 4.4,
would have been better. It is also noteworthy that MVAPICH2 was invoked with the
options -map-by socket -bind-to hwthread but no such optimizations were applied
to IPMI.

This section presents the results of the HPCC run that was used as the final result for
HPCC at the competition. No changes were made to the configuration presented before
except for increasing the problem size to N=296,400. The HPL benchmark achieved
3.106 TFLOPS, the FFT results are presented in Figure 4.4.

20

StarFFT SingleFFT

1.4

1.6

1.8

2

2.2

1.6

2.11

1.46

2.11
G
FL

O
PS

FFTW/GCC MKL/ICC

MPIFFT

48

50

52

47.74

52.2

Figure 4.3: Performance comparison of FFT performance using HPCC results. FFTW
3.3.4/GCC 4.9 and using MVAPICH2 MPI implementation is compared to
ICC / Intel’s MKL 11.1 and Intel MPI. The problem sizes set by HPCC were
FFTN = 8388608 and MPIFFTN = 536870912.

4.6 Conclusion and Outlook
Benchmarking found that OpenBLAS and Intel’s MKL are very well on-par performance
wise. OpenBLAS was very easy to integrate and use but similar things could be said
about Intel’s MKL when using tools such as the Intel MKL link advisor. It was found
that limiting the number of threads to use in the respective BLAS implementations to
1 was most efficient when spawning as much MPI processes as there are cores. Since,
by mistake, some of the measurements with Intel’s MKL did not have this restriction
enabled it would be interesting to see these benchmarks redone with the thread limitation
active.

In hindsight, the exclusion of ScaLAPACK in subsection 4.2.1 seemed premature. Even
though it is reasonable to say the ScaLAPACK release from 2012 cannot accommodate
optimizations for CPU architectures from 2013, it is not known whether these opti-
mizations are that crucial. ScaLAPACK was specially designed for distributed-memory
systems, which means that it may perform better than LAPACK, even though it is
not as optimized. Also, Intel MKL provides its own version of ScaLAPACK, possibly
including architectural optimizations. For the future, it would make sense to include
ScaLAPACK in the benchmarks.
When using accelerators, PLASMA in corporation with OpenBLAS seems to be a

good choice since PLASMA explicitly attempts to improve accelerator utilization.

21

StarFFT SingleFFT

1.4

1.6

1.8

2

2.2

1.38

2.09

G
FL

O
PS

FFTW/GCC

MPIFFT

45

50

55

60

52.72

Figure 4.4: FFTW performance on the final cluster with GCC 4.9, FFTW 3.3.4 and
MVAPICH2 acquired by running HPCC. The problem sizes set by HPCC
were FFTN = 134217728 and MPIFFTN = 8589934592.

22

5 MPI
Author: Anna Fuchs

This Chapter gives an overview over different implementations of MPI, their differences,
advantages and disadvantages.

5.1 Overview

MPI - Message Passing Interface - is not a library as it is, but a standardized specification
for users and developers of message passing. MPI is the de facto standard in HPC1.

There is a number of most used implementations of MPI which differ in performance,
cost, network support, documentation, some interface details, etc. Here are the most
used and best supported implementations:

• OpenMPI2

• MPICH23

– Active developing branch of MPICH

• MVAPICH-24

– MPICH derivative by Ohio State University

• Intel® MPI Library5

– MPICH derivative

• IBM MPI6

– MPICH derivative for Blue Gene Systems

1High Performance Computing
2http://www.open-mpi.org/software/ompi/v1.8/
3http://www.mpich.org/
4http://mvapich.cse.ohio-state.edu/news/
5https://software.intel.com/en-us/intel-mpi-library
6http://www-03.ibm.com/systems/platformcomputing/products/mpi/

23

http://www.open-mpi.org/software/ompi/v1.8/
http://www.mpich.org/
http://mvapich.cse.ohio-state.edu/news/
https://software.intel.com/en-us/intel-mpi-library
http://www-03.ibm.com/systems/platformcomputing/products/mpi/

Table 5.1 compares some of the most useful characteristics of these implementations
with regard to decision-making whether to use them for a project. The first criterion is
the cost. Nearly all MPICH derivatives except MVAPICH2 are commercial. For some
of them, like the derivative by Intel, it is possible to get an academic license for tests
and evaluation. Next important aspect is the ability of all implementations to support
applications running over InfiniBand. Once available only on big and expensive systems
today InfiniBand enjoys increasing demand, which makes it an ubiquitous interconnect
of tomorrow (see more in Section 2.3). The dates of last releases often show how actively
projects are developed. All of the listed implementations have been updated in 2014.
When making a decision whether to use one of the implementations, one more important
fact could be the backwards compatibility. Not only is the compatibility between different
implementations not a common practice, but also even consecutive implementations
are not always compatible (they are often considered only with regard to forwards
compatibility). The Table shows the earliest version of the same implementation with
which the latest release is backwards compatible (see more in Section 5.2). The last
chosen criterion is the implementation of the MPI-3 standard, which was published on
21.09.2012.

This list of criteria is not full and complete. It neither claims to show the only way to
rate the above-mentioned criteria. A lot of details have been left out, such as supported
operation systems, compilers or language versions. For this project the first two columns
were the key ones. The full support of MPI-3 standard was of no relevance, since, most
likely no application and definitely none of all published benchmarks would use its
functionality.
The final selection of the implementations to be tested in future consisted of three

candidates - OpenMPI, MVAPICH2 and Intel MPI with the provided license. Since the
latest releases of MVAPICH2 are based on the latest ones of MPICH2 and include more
optimizations, MPICH2 has not been looked into.(MV2c)

Implementation Open InfiniBand Last stable MPI-3
source support release support

OpenMPI yes yes 1.8.1 on 23.04.2014 yes*
MPICH2 yes yes 3.1.2 on 21.06.2014 yes*
MVAPICH2 yes yes 2.0 on 20.06.2014 yes*
Intel MPI no yes 5.0 on 17.06.2014 yes*
IBM MPI no yes 9.1.2 on 20.02.2014 yes*

Table 5.1: Most important characteristics of various MPI implementations.

* particulary implemented

24

5.2 Compatibility
The interfaces of all functions are well described and standardized, but not the calling
environment and some functions like the mpirun function.
The mpirun command is used as a job launcher, and since it is not part of the MPI

standard, it differs in interface and functionality.
Due to that fact, there is no guarantee that an application with components compiled

by using different MPI implementations will work. During the period of preparation for
the SCC it was detected that OpenMPI 1.8 and MVAPICH2-1.9 definitely do not work
together. When using SLURM for scheduling the resources, the typical error in this case
looks as follows:

Listing 5.1: Possible error message when launching a job using MVAPICH-1.9 and
OpenMPI 1.8.1 via SLURM

1 srun: cluster configuration lacks support for cpu
↪→ binding

Nevertheless there have been an announcement at SC137 about the ABI8 Compatibility
Initiative, the goal of which is to make different implementations work together: „ABI,
or application binary interface, is the low-level interface between two program modules.
An ABI determines such details as how functions are called and the size, layout and
alignment of datatypes. With ABI compatibility, programs conform to the same set of
runtime conventions.“(MPIa) The collaborators at that time were MPICH v3.1, IBM
MPI v2.1, Intel® MPI Library v5.0 and Cray MPT v7.0.0, which are all derivations of
MPICH. For the present moment it looks like ABI compatibility standards are not going
to be developed in the near future.

5.3 MPI over InfiniBand
MPI needs to be adapted to InfiniBand and its support becomes common practice.
Since the InfiniBand architecture does not define an API, there are different fabrics
implementations made by organizations like OpenFabrics Alliance9.
„In general, MPI performance is dominated by interconnect fabric latency and to

a less extent on bandwidth. A general rule of thumb is to use the default compiler
optimizations and avoid overly aggressive optimizations.“(Int)

Using MVAPICH2 with Mellanix InfiniBand, RoCE, or iWARP network adapter there
is no need to change the configuration. The MVAPICH team strongly recommends to
use of the OFA-IB-CH3 interfaces for the Mellanox InfiniBand adapter, which is default
to Linux.(MV2b). For the QLogic InfiniBand adapter following should be done:

7http://sc13.supercomputing.org/
8Application Binary Interface
9link

25

http://sc13.supercomputing.org/
link

1 $./ configure --with -device=ch3:psm

5.4 Build
This section gives a short overview over the general approach of building MPI, which,
however, is not different from compiling any other library.
Before building MPI some additional libraries should be installed.

1 aptitude install libibmad -dev
2 aptitude install libibumad -dev
3 aptitude install libpciaccess -dev
4 aptitude install libhwloc -dev

libibmad-dev is a developer package for Infiniband Management Datagram (MAD)
library. It provides low layer InfiniBand functions to be used by the InfiniBand diagnostic
and management programs(libb).
libibumad-dev is a developer package for InfiniBand Userspace Management Data-

gram (uMAD) library. It provides uMAD functions which sit on top of the uMAD modules
in the kernel. They are used by InfiniBand diagnostic and management tools(libc).
libpciaccess-dev - package library for PCI support, required by hwloc. Instead of

libpciaccess the libpci packages can also be used, which is a question of using GPL10

or other licenses. In case neither of them can be found, PCI support will be disabled by
OpenMPI.(liba). PCI, is a local computer bus for attaching hardware devices(pci)
libhwloc-dev - hwloc for MVAPICH2. OpenMPI already includes hwloc. See more

about hwlock in Section 5.5.2.
The configuration then should be performed with enabling PCI support. For further

tuning options see Section 5.5.1.
1 wget http:// mvapich.cse.ohio -state.edu/download/
2 mvapich2/mv2rc2/mvapich2 -2.0 rc2.tgz
3 tar -xfz mvapich2 -2.0 rc2.tgz
4 cd mvapich2 -2.0 rc2/
5
6 ./ configure --enable -libpci

↪→ --prefix =/ musorka/opt/gcc /4.9/ mvapich2 /2.0
7
8 make -j8
9 make install

1 wget http:// mvapich.cse.ohio -state.edu/download/
2 mvapich2/mv2rc2/mvapich2 -2.0 rc2.tgz

10GNU General Public License

26

3 tar -xfz mvapich2 -2.0 rc2.tgz
4 cd mvapich2 -2.0 rc2/
5
6 ./ configure --enable -libpci

↪→ --prefix =/ musorka/opt/gcc /4.9/ mvapich2 /2.0
7
8 make -j8
9 make install

5.5 Tuning Options
There are several available options for tuning of the implementations. Lots of them
can improve the performance, some of them, like debugging output, help to improve
understanding and work with MPI. Sometimes such options exclude each other, since
more detailed debugging comes at the expense of the performance.

In general there are two types of tuning options - runtime and configured. Configured
options are set before building the library and influence the environment used. Runtime
options can be passed as a parameter while running the application - normally between
the mpirun command and the application call.
Those options differ for different implementations. The following section describes

some of the most helpful, partly tested and evaluated options in detail.

5.5.1 Configured options
OpenMPI provides default building configuration. The default options are: (ope)

• all optimizations enabled

• shared libraries

• building components as standalone dynamic shared object (DSO) files

• trying to find support for all hardware and environments by looking for support
libraries and header files in standard locations, proceeding to the next stage if the
support cannot be found

The default options for MVAPICH2 are: (MV2a)

• build both, shared and static libraries

• all debugging information disabled

• registration cache enabled

27

• chose hydra as process manager

Further options are: (MV2b)

• ––disable-shared - creates only static libraries

• ––enable-g=all ––enable-error-messages=all - controls the amount of debug-
ging information.

• --enable-fast - configure for fastest performance at the cost of error reporting
and other development aids. This option disables all debugging information.

• --enable-shared - build with shared libraries, try to automatically detect the
type of shared library support required.

When using MPI as a shared library, the application code related to the library makes
a reference to the code used. When using static libraries, the required code is directly
linked to the application code at compile time. Finally, it is something like copying and
integrating a part of the library code. In general, shared libraries have some additional
runtime load costs, while static libraries have larger binaries. The performance rates
have to be investigated.

5.5.2 Runtime options
Once built the library, there is still some leeway for tuning the performance.

Process Affinity

Modern complex and hierarchical topologies have a major impact on the application
performance. So optimizations of mapping and binding the processes to the hardware
are necessary. When starting a parallel application MPI creates a map, pairing processes
to processors and memory. To bind the processes means to define the hardware level
where the processes or threads can run, owing to the ability of migration the processes
by the operation system. There can be more or less useful strategies, but commonly no
general solution exists.
To improve the understanding of following details, Figure 5.1 shows an exemplary

hardware structure of a server node. It consists of boards, NUMA nodes and a sockets
in variable number, the hierarchy of which differs depending on the architecture. In
the example the three cache levels and the core are on the socket. The core consists of
processing units, which enable hyper or hardware threads.

Not every implementation provides any default values of process affinity as there are
no specifications in the MPI standard about the binding or mapping polices. However
there are lots of options, which can and should be set manually.

28

Server6Node6P906(48GB)6

Board6P906

NUMA6Node6P906(24GB)

Socket6P90

L36Cache6(12MB)

L26(256KB)

L16(32KB)

Core6P90

PU6P90

L26(256KB) L26(256KB) L26(256KB)

L16(32KB) L16(32KB) L16(32KB)

Core6P91 Core6P92 Core6P93

PU6P91 PU6P93 PU6P95 PU6P97

PU6P96PU6P94PU6P92

Board6P91

NUMA6Node6P916(24GB)

Socket6P91

L36Cache6(12MB)

L26(256KB)

L16(32KB)

Core6P94

PU6P98

L26(256KB) L26(256KB) L26(256KB)

L16(32KB) L16(32KB) L16(32KB)

Core6P95 Core6P96 Core6P97

PU6P99 PU6P911 PU6P913 PU6P915

PU6P914PU6P912PU6P910

Figure 5.1: An example of hierarchical architecture of components (arc)

MVAPICH2 provides a resource manager and launcher called Hydra. It natively
interacts with several resource managers and launchers. Moreover, it is configured for
using hwloc (MV2d). The Portable Hardware Locality (hwloc) software package provides
an abstraction to obtain the hierarchical map of key computing components (hwl). It
is released and developed in collaboration with OpenMPI, but lots of other projects
support it(hwl14).

Table 5.5.2 lists all binding and mapping options supported by the mpirun command
using hwloc. The bold highlighted objects are defaults for the corresponding option.

Option Object OpenMPI MVAPICH2
--map-by slot, hwthread, core, L1cache, socket* none

L2cache, L3cache, socket, numa,
board, node, sequential, distance, ppr

--bind-to slot, hwthread, core, socket, core same as mapping
numa, board, node or none

Table 5.2: Mapping and binding options

* More specific information about the default values beginning form the 1.7 version of
OpenMPI: (Squ13a)

• In case the number of processes <= 2, processes mapped by core

• In case the number of processes > 2, processes mapped by socket

The following items explain every object provided by the options (Squ12)

29

• slot - indicates how many processes can potentially be executed on a node. For
the best performance, the number of slots may be chosen to be the number of cores
on the node or the number of processor sockets. When using SLURM OpenMPI
would anyway set the slot number provided by the resource manager. The default
is 1.

• hwthread - possible hardware thread, which runs on a single logical core - is
synonymous to hyper thread.

• core - equivalent of a physical core. One physical core can support multiple logical
cores or hardware threads (acc14). When passing this options the binding would
look like one process per core on the first node, then one process per core on the
next node.

• L1cache, L2cache, L3cache - levels of cache. On Intel architectures, L3 is larger
and commonly shared among all of the cores of one socket, while L2 and L1 are
core exclusive. This differs according to the architecture.

• socket - mapping by socket can be useful in cases where the main memory is
limited. Having less processes than cores, one or few processes would use the whole
socket memory.

• numa - the true position of allocated memory can have a substantially impact
on performance. This option ensures explicit binding and mapping by a NUMA
domain, especially for such architectures in which NUMA level does not correspond
with the socket or the third cache levels (Rei09)(Cas14).

• board - processor board, an explicit option for nodes with several motherboards
(DMRF11).

• node - server node, opposite to the core binding, node binding means one process
on the first core of each node, then one process on the second core of each node,
etc.

• sequential - reads the provided hostfile line by line, assigning processes to nodes
in whatever order the hostfile specifies (mpib).

• distance - specifies an additional option of mapping the processes, which allows
to indicate in which distance the options like core or socket bindings have to be
applied.

• ppr - „processes per“, specifies the exact number of elements per object.

The options can be modified by adding a colon symbol and any number of processing el-
ements to each processor. Moreover options SPAN (for load balancing), NOOVERSUBSCRIBE
(forbidding more processes than) and OVERSUBSCRIBE are possible. Example: --map-by
ppr:4:node (mpib).

30

Note, that the support for process binding depends on the underlying operating system.
It is possible, that some process binding options are not available on every system. After
mapping and bounding all of the processes, the library assigns ranks in MPI_COMM_WORLD
(oCSU14) (MV213).

Several bindings or mappings can be passed in a row, which would mean that what
comes first, must be done first. For example, „bind to node, bind to socket“ would mean
that the first bind must be done to the node and the second bind must be done to the
socket, and so on. Especially for hybrid programming it makes most sense to define both
bindings and mappings. For example, mapping by socket and binding to socket enable
migrations of threads among the socket, which could perform better than the default
binding to a core. At the same time, biding in general can degrade performance when it
inhibits balancing of the load by the operation system(ope14).
Absence of binding and mapping will highly likely cause a negative impact on the

performance. If no restrictions are set, it means that the kernel is either allowed or,
at least, not forbidden to migrate the MPI processes to a different core. When run
on modern Intel architectures this would cause level 1 and 2 cache misses due to their
affiliation to the processor core. Sometimes the operation system would oversubscribe
some resources, like sockets, leaving the other available ones idle (Squ13b).

Measurements of latencies between ranks of an MPI application can help to understand
the structure. Since the latencies between nodes are commonly higher than within a
node it makes most sense to investigate the communication speed between sockets, cores,
and CPUs regarding the cache levels. The processes should then be placed according to
their affinity - keeping close processes which share, synchronize or communicate a lot.

Nevertheless, the decision making can be hard due to competing properties. Compared
to two processes on different sockets, binding two processes to two cores on one socket
will enable cache sharing, but reduce the memory bandwidth. In general, it depends
on the machine structure and the application needs, so there is no single recipe for
combination of options to provide the best performance.
A more reliable method instead of deductive measurements would be analyzing the

algorithms and trying to find out if and how far they are already adapted to locality of
the hardware. However, this way is sometimes far too complicated for the common use
case of application’s performance tuning.

The provided binding can be shown with the option --report-bindings, which makes
each rank print its binding to the standard error output. These options are known by
OpenMPI only.
MVAPICH2 also provides its own binding polices - bunch and scatter, while bunch

is default. The police can be set by option MV2_CPU_BINDING_POLICY=bunch. Bunch
groups the processes on cores of one socket, while scatter almost uniformly distributes
them over cores on all sockets. Correct option could improve latencies of the point-to-point
communication (oCSU14).

31

Launching

There are two possibilities to launch a parallel job - to use resource manager, the other
is to make it manually. The benefits of resource managers like SLURM are convenient
passing of parameters, implicit monitoring and lots of features, that make the work easier.
The cost is often the longer launching time due to the load coming from additional
services. On the other hand, manual launching requires a greater effort and more
attention due to a higher risk of semantical and syntactical errors.

The difference in runtime is first noticeable using around 8 nodes. In conditions of the
competition, when even queuing of the jobs was optional, there is no need to tune of job
launching time.

Both implementations provide many more tuning options, which, nevertheless, affect
the performance on bigger systems. For example, there exists an MVAPICH2 option for
scanning the system for heterogeneity before launching - MV2_HOMOGENEOUS_CLUSTER. If
the fact of homogeneity of the system has already been established, this option can be
set to 1 to skip the verification. Either way, the unnecessary verification does not affect
clusters with number of nodes in a single-digit range. Other optionS refer to buffer sizes,
USE of shared memory for different MPI functions and many other things (MV2b).

5.6 Evaluation
The implementations were evaluated using the High Performance LINPACK and IMB (In-
tel® MPI Benchmarks). The versions OpenMPI 1.8.1, MVAPOCH2 1.9 and MVAPICH2
2.0rc were tested and compared.

5.6.1 HPL
For the first results HPL 2.1 was used with the an input file consisting the following
lines:

1 100128 Ns
2 224 NBs
3 8 Ps
4 20 Qs

All the other options has been not modified. One run took about four minutes and
was sufficient for a first approximation. The measurements were repeated at least three
times. All of the libraries were built with all available performance options and disabled
debugging support. All the runs were performed on 8 nodes with 160 processes.

Before the decision of disabling the turbo boost, some measurements were performed
in order to find out the potential performance loss. Figure 5.2 shows the results. Nearly
180 GFLOPS were lost.

32

2,6

2,65

2,7

2,75

2,8

2,85

2,9

2,95

3

MVAPICH2T1.9,THPLT2.1Tp10Tq16

Turbo No turbo

Pe
rf

or
m

an
ce

[T
FL

O
P

]S

Figure 5.2: Performance measurements of turbo boost using MPVAPICH2 1.9

2,6

2,62

2,64

2,66

2,68

2,7

2,72

2,74

2,76

2,78

2,8

MVAPICH2T1.9T-THPL2.1

p10Tq16 p8Tq20

Pe
rf

or
m

an
ce

[T
F L

O
P

] S

Figure 5.3: Performance measurements of different HPL input data configuration using
MPVAPICH2 1.9

Figure 5.3 shows the results of comparison of two different HPL configurations (different
Ps and Qs). The initial runs without any options already show better results for the
configuration p8, q20. With the exception of one case, this configuration performed also

33

better with passed options. Only the mapping by hardware thread and binding to core
could even out this difference.

The next Figure compares MVAPICH2 1.9 and OpenMPI 1.8.1 using the better HPL
input configuration. There is a constant difference in performance results. The „no
options“ case of OpenMPI is equal to the mapping by socket and binding to core due to
the default configuration.

Mapping by socket and binding to hwthread seem to perform best, but regarding the
deviations there does not seem to be a configuration for achieving outstanding results.
However, MVAPICH2 was chosen as the implementation used in all applications.

2,6

2,62

2,64

2,66

2,68

2,7

2,72

2,74

2,76

2,78

2,8

HPLT2.1Tp8Tq20

MVAPICH2T1.9 OpenMPIT1.8.1

Pe
rf

or
m

an
ce

[T
FL

O
P

]S

Figure 5.4: Performance measurements comparing MVAPICH2 1.9 and OpenMPI 1.8.1

Figure 5.5 compares the two versions of MVAPICH2. The results are nearly the same,
so MVAPICH2 1.9 was chosen for reasons of stability.
Unfortunately non of the options were of benefit during the full HPL run (look up

configuration in Section ??). The results without any mapping or binding options using
MVAPICH2 1.9 (3,125TFLOPS) do not differ significantly from the tuned run with
passed options -map-by socket -bind-to hwthread (3,124TFLOPS).

34

2,6

2,62

2,64

2,66

2,68

2,7

2,72

2,74

2,76

2,78

2,8

MVAPICH2 1.9 MVAPICH2 2.0rc

Pe
rf

or
m

an
ce

[T
FL

O
P

]S

Figure 5.5: Performance measurements of different MPVAPICH2 versions

5.6.2 IMB
This benchmark developed by Intel® performs measurement tests for different commu-
nication types. The focus is on the performance of the whole system (including nodes,
network and throughput) and the efficiency of the MPI implementation (int13).
The used part references to IMB-EXT - one-sided communications benchmarks.
Table reftab:test4 shows the results of OpenMPI 1.8.1 and MVAPICH2 1.9. Two cases

were tested - 40 processes on 20 nodes and 160 processes on 8 nodes. The results are
similar in both cases and are very different in terms of the implementations. MVAPICH2
seems to provide terrible performance results, which does not correspond to measurement
of further benchmarks. It has to be analyzied whether the reasons are connected to with
the wrong output, the wrong calculations or the failing InfiniBand support using this
benchmark and MVAPICH2 1.9.
The results of OpenMPI look more realistic, but do not reach the native Infiniband

performance of up to 6.8GB/s. The performance on 8 nodes decreases to a peak of
5208MB/s.

35

OpenMPI MVAPICH2
#bytes #repetitions t_avg[usec] Mbytes/sec t_avg[usec] Mbytes/sec

0 1000 1.50 0.00 6.85 0.00
1 1000 1.57 2.41 7.16 0.53
2 1000 1.57 4.84 6.85 1.11
4 1000 1.58 9.44 7.07 2.15
8 1000 1.59 19.07 6.76 4.51
16 1000 1.59 38.34 7.40 8.24
32 1000 1.62 74.57 7.07 17.25
64 1000 1.90 127.95 8.98 27.17
128 1000 2.57 188.67 10.12 48.20
256 1000 2.78 349.52 14.40 67.74
512 1000 3.03 640.40 18.69 104.43
1024 1000 3.40 1146.54 30.13 129.58
2048 1000 4.27 1823.18 52.48 148.76
4096 1000 8.01 1945.61 60.38 258.56
8192 1000 10.82 2879.12 72.73 429.23
16384 1000 18.10 3446.00 205.63 303.81
32768 1000 28.52 4371.22 355.23 351.74
65536 640 49.32 5055.78 668.83 373.69
131072 320 98.66 5046.04 1252.09 399.18
262144 160 182.60 5422.81 2546.73 392.30
524288 80 361.23 5416.42 4962.44 402.65
1048576 40 995.44 3902.63 10086.61 396.03
2097152 20 2857.47 2650.59 20323.17 393.23
4194304 10 5976.94 2459.00 40892.87 390.66

0 1000 1.53 0.00 38.41 0.00
1 1000 1.62 2.27 6.81 0.56
2 1000 1.63 4.56 6.78 1.12
4 1000 1.62 9.07 6.75 2.25
8 1000 1.65 17.90 6.67 4.55
16 1000 1.65 36.18 7.18 8.47
32 1000 1.67 70.73 7.17 16.97
64 1000 1.95 122.56 8.27 29.39
128 1000 2.61 185.57 10.04 48.54
256 1000 2.82 340.37 13.91 70.01
512 1000 3.05 627.64 17.89 108.82
1024 1000 3.45 1118.67 27.17 143.23
2048 1000 4.39 1749.31 44.16 176.61
4096 1000 8.06 1921.88 53.65 290.85
8192 1000 11.12 2775.77 71.09 438.71
16384 1000 19.22 3210.42 206.83 302.07
32768 1000 30.10 4108.20 387.20 322.70
65536 640 50.80 4880.29 822.11 303.88
131072 320 102.12 4817.41 1369.47 364.56
262144 160 188.82 5196.36 2619.96 380.69
524288 80 367.39 5208.50 5051.87 393.97
1048576 40 994.69 3881.50 10257.82 388.23
2097152 20 2862.74 2255.56 20514.22 386.42
4194304 10 5945.04 2393.42 40594.12 391.71

Table 5.3: Exchange benchmark with 40 processes on 2 nodes and 160 processes on 8
nodes using MVAPICH2 1.9 and OpenMPI 1.8.1

36

5.6.3 Third party results
All in this section presented information is provided by Julian Kunkel.

OpenMPI 1.8.1, MVAPICH2 2.0rc, MVAPICH2 1.9 with debugging support and Intel
MPI 4.1 were compared using the osu-micro-benchmarks11.
Figure 5.6 shows the results for latency measurements done by

1 mpiexec -np 2 --map -by node ./ osu_latency

To start jobs using Intel MPI mpdboot is required. The following Listing shows a
session example.

1 mpdboot --file=hostfile -v --totalnum=$(wc -l hostfile|cut
↪→ -d " " -f 1)

2 mpiexec -nolocal -perhost 1 -np 2 hostname
3 mpdallexit

MPI IB

Seite 1

0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096
0

0,5

1

1,5

2

2,5

3

3,5

4

OpenMPI Raw MVAPICH2 IntelMPI

Msg Size

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

1
4

16
64

256
1024

4096
16384

65536
262144

1048576
4194304

0

1000

2000

3000

4000

5000

6000

7000

OpenMPI RAW average[MB/sec] MVAPICH2

Msg Size

Th
ro

ug
hp

ut
 in

 M
B/

s

Figure 5.6: Latency measurements using different MPI implementations

MVAPICH2 performs best, while there were no significant differences between the
versions 2.0rc and 1.9debug. On larger message sizes (not in the graphic) OpenMPI
performed by far poorer (1184µs vs. 675µs using MVAPICH2).
The bandwidth benchmark was running with

1 mpiexec -np 2 --map -by node ./ osu_bw

11http://mvapich.cse.ohio-state.edu/benchmarks/osu-micro-benchmarks-4.3.tar.gz

37

http://mvapich.cse.ohio-state.edu/benchmarks/osu-micro-benchmarks-4.3.tar.gz

Figure 5.7 compares the throughput results of the implementations.

MPI IB

Seite 1

0

1000

2000

3000

4000

5000

6000

7000

OpenMPI RAW average[MB/sec]
MVAPICH2 IntelMPI

Msg Size

Th
ro

ug
hp

ut
 in

 M
B/

s

Figure 5.7: Throughput measurements using different MPI implementations

MVAPICH2 also performs best here, while the results are even better then the RAW
average. On smaller message sizes its performance is as well as OpenMPI, on bigger sizes
it is comparably well to Intel MPI, while OpenMPI and Intel MPI have a performance
leak on around 262144 byte message size. The collective communication has not been
examined.

38

6 Benchmarks
This chapter gives the general overview and some tuning advices for the benchmarks
used during the competition.

6.1 HPCC
Author: Jennifer Nissley

6.2 Introduction and Motivation
The HPCC-Benchmark is an extension of the commonly used HPL. He combines 7 tests,
that are also used indiviually to measure the performance of clusters. This combination
is useful for measuring as many different patterns of communication and memory access
on the system as possible with starting just one program.
It contains the following tests, which are measured in the units specified:

HPL: solves linear systems, TFLOP/s
DGEMM: multiplies matrices, GFLOP/s
STREAM: fetches data from the RAM and stores them back into it, GB/s(Bandbreite
zum Speicher)
PTRANS: transposes matrices and tests communication, GB/s
RandomAccess: update data in the main storage, GUP/s (Updates pro Sekunden)
FFT: one-dimensional Fourier transform, GFLOP/s
b_eff: measures latency and communication-bandwith, GB/s usec (microseconds)

Some of the tests (DGEMM, STREAM, FFT and RandomAccess) are not only performed
on the system as a whole, but also on single CPUs, to measure the peak performances that
are possible when communication is not needed. DGEMM and STREAM are performed
only on single CPUs, FFT and RandomAccess are also performed on the whole system. [8]

HPL is only measuring the maximum number of floating-point operations a system
can perform per second. It is called a weak scaling test, because the communication
between processes does not increase if the problem size and the number of processes
are equally increasing. This is not the case with most of the real programms, that are

39

used in HPC. They tend to need more communication for a single process when the
number of processes is increasing. FFT and PTRANS are testing this scenario. PTRANS
distributes the matrix between processes and then transposes the columns with the
rows. So not only processes wich hold elements that are neighbors in the matrix need to
exchange elements with each other, but every process with every other.

The source code is available on the HPCC website [7]. We used the newest version
available at the time of the challenge, hpcc-1.4.3.

To get the benchmark running, one needs to create a build script and a file for the
parameters given to the program, like how big the problem should be, the input file. The
parameters defined in the input file can also be used to run the HPL alone.

6.3 Build Script
To compile the source code on a specific system, there are some build script examples in
the hpcc-folder hpl/setup/. One of them has to be adjusted for the system and then
copied into the hpl-folder. All of these files begin with Make. The name after the point is
used in the compiling-commando to find the right build-script. To compile the program,
one calls Make=name while being in the top hpcc-folder, where the Makefile is located.
So it is possible to have more than one build-script and decide at compiling which one to
use. This is useful for benchmarking, because the test has to be compiled with different
libraries, compilers and compileroptimisations to find the best configuration of the system.

We didnt use different build-scripts, because it was possible to use our module files to
change the system variables that specified which libraries should be used. So we didnt
have to specify which libraries to use and where they are located in the build script.

Normally, one would specify where the MPI-, Algebra- and FFT-libraries are located.
We loaded the right module files before starting the compilation instead. If you want
to use FFTE for the Fourier-transform, you dont have to specify it in the build script,
because it is already implemented in the hpcc. If FFTW should be used, there has to
be a -DUSING_FFTW under CCNOOPT and it has to be specified where to find the
library or in our case, the right module has to be loaded.
As compiler we specified mpicc, which calls the right C compiler that is loaded as a mod-
ule and gives him all of the specified information about optimisations and options that
are to be used and links against the MPI-libraries. To use all possible code-optimisations,
we used -O3. All warnings have been enabled with -Wall. We used native for march
and mtune, so the compiler searches for the right architectural details in the system. It
would also be possible to specify them yourself, but there is always the possibility to
overlook details, which are important for optimisations.

The Benchmark was tested with different libraries. The Intel-Libraries got left out,

40

because it couldnt be figured out how to activate the FFT-libraries with them, even after
following the instructions on the official Intel-site [9]. Without them, the HPCC cant be
compilated. They also got bad results in the testing with the HPL, compared to blas
and mvapich or openmpi.

We didnt test all of the preprocessor-options, that can be specified in CCNOOPT
and CCFLAGS, because this would have taken too much time and the performance is
mostly affected by which libraries and compilers are used and by the options in the input
file. Possible options we could have used are: HPCC_FFT_235: sizes of vectors are
2x ∗ 3y ∗ 5z, without it they are only powers of 2
HPCC_FFTW_ESTIMATE: FFTW is called with FFTW_ESTIMATE, without it is
called with FFTW_MEASURE, makes the performance worse in most cases, but the
runtime can get quicker and the distribution in memory better
HPCC_MEMALLCTR: own custom memory allocator is used
USE_MULTIPLE_RECV: use multiple non-blocking Receives at once, instead of one at
a time
RA_SANDIA_NOPT: use another implementation of RandomAccess, which uses a
virtual Hypercube
A_SANDIA_OPT2: use another implementation of RandomAccess, which is optimized
for a multiple of two of processors
RA_TIME_BOUND_DISABLE: use RandomAccess without a time out, not recom-
mended in most cases
USING_FFTW: use FFTW instead of FFTE

6.4 Input File
The problem sizes are only specified for HPL and PTRANS, for the other tests the
sizes are adjusted to take the same space in memory. The standard practice here is
to fill the whole main memory, to let the processor run as long as possible. This way,
the pipelines of the processor have enough time to get filled and after they have been
filled the processor has as much time as possible to run on full speed to compensate
for the slow start. The problem size also cant be too big, because otherwise parts of
the matrix have to be put on hard drives and getting them back to work with them
wastes a lot of time. Because there are also processes from the operating system and
program-code in main memory, it can only be filled around 80-95% with the hpcc
matrices. On the website [10], it is recommended to use smaller sizes than the sizes
that can be used if you run the HPL alone, because FFT needs more space than the
other tests. 80% was the size that was recommended by most of the websites on the topic.

In the hpcc-folder, there is a text file hpccinf.txt, that has to be modified. The most
important lines are:
3: name of the file, in which the output should be written

41

4: where the output should be directed to, possibilities are stderr(7), stdout(6) and a file
(neither 6 nor 7)
5: number of problem sizes
6: size of matrix N, matrix will be NxN big
7: number of block sizes
8: block sizes
9: how the processes should be distributed among the nodes, only important if there is
more than one process on one node: row or column (row is recommended)
10: number of process grids
11-12: process grids (P=rows, Q=columns)
for PTRANS:
33: number of additional matrix sizes (if necessary)
34: matrix sizes
35: number of block sizes
36: block sizes

More information on that can be found under [1].
Our final input file listed following options: Ns = 296400, NBs = 192, Ps = 8, Qs = 20.

To test the different libraries against each other, we used a small size at first, because
the test can take a few hours, these were:

Compiler Algebra MPI FFT
gcc blas openmpi ffte
gcc blas openmpi fftw
gcc blas mvapich ffte
icc mkl intelmpi ffte (in MKL)

(FFT stands for Fast Fourier Transform)
FFTE obtained better results than FFTW with openmpi, therefore and because a lot of
sources say FFTE runs better on a lot of CPUs [12], only FFTE was used after this test.
Openmpi obtained poorer results than Mvapich. The combination of Intel libraries with
the icc was better than the combination gcc + openmpi, but worse than gcc + mvapich.
The results were much better with 230.000 as a problem size than with 100.000.

We took the block size that was recommended on [3] and already proofed to be ben-
eficial for the HPL. The blocking size should be as big as possible to avoid too much
communication between processes. If it is too small, the matrix get parted into small
pieces and those are distributed among the processes, so if they calculate something in
the matrix, they need to get a lot of elements from other processes, there is a lot of
communication. [2] It also should be small enough to let as much processes work simul-
taniously as possible, since one block cannot be divided and distributed between processes.

The process grid serves as a communication pattern for the processes. The HPL does
exchanges of data after every iteration, therefore, every column of the grid does a broad-
cast to every other column. The processes in the columns transmit data between them

42

in single messages. The runtime of PTRANS is dependant on the process grid [4]:

number of iterations: kgV (P,Q)
ggT (P,Q) , number of communication pairs: ggT(P,Q), if ggT (P,Q) >

1

For our cluster there where the possibilities (8,20) and (10,16). We chose these two options,
because it was recommended, that P and Q should be as even as possible and Q should be
a little bit bigger than P. It was calculated which one would be better suited for PTRANS:

kgV(8,20) = 40 , ggT(8,20) = 4 ⇒ iterations: 10, communication pairs: 4
kgV(10,16) = 80 , ggT(10,16) = 2 ⇒ iterations: 40, communication pairs: 2

The grid we chose, (8, 20) was also the one that was best suited for our Infiniband-wiring,
P=8 nodes with Q=20 processors each. This is beneficial, because every node is a column
in the grid, which broadcasts to every over column over Infiniband, which is fitted to
transmit such a big message. The single processes can then use the short routes on their
node to transmit the data over small messages between them. We proved this theory
with the HPL and the HPCC by comparing with other process grids.

The rest of the input data was generated with the website [3]. Testing all combi-
nations would have taken too much time.

We calculated how big the problem size would have to be to fill 80% of the main
memory:√

128∗109∗8bit∗8
64bit

∗ 0.8 (GB = Gigabyte) = 320.000. (Every element of the matrix needs the
space of 64 bit. The total main memory is 128 ∗ 109 Byte per node, of which we have 8.
We take 80% of it, so *0.8. By taking the square root of the whole space N*N, we get
the problem size N.)

The calculation should have been done with GiB instead of GB, because vendors
normally mean GiB when they use GB, so instead of 109, we should have used 230:√

128∗230∗8bit∗8
64bit

∗ 0.8 = 331.588
On our final run, we used N=296400, which was given in the table on the website [5]
(with the input: 8 cores, 20 processes per core, 128 RAM per core). This value takes
about the same space and is better divisible by the blocking factor 192, so that the data
can be distributed among the processes, so that every process has the same amount
of data in every iteration and no time is wasted by one process waiting for the others.
However, we looked at the wrong column, it should have been N=296448.

We also tried to use Hyperthreading (two threads on one core), but the runtime didnt
get any better through it. The grid had to be changed, because we had more threads,
we used: P=8, Q=40.

43

6.5 Code Optimization
The following functions are allowed to be replaced by own optimized ones:

HPL: HPL_pdgesv(), HPL_pdtrsv()
PTRANS: pdtrans()
STREAM: tuned_STREAM_Copy(), tuned_STREAM_Scale(), tuned_STREAM_-
Add(), tuned_STREAM_Triad()
RandomAccess: Power2NodesMPIRandomAccessUpdate(), AnyNodesMPIRandomAc-
cessUpdate(), RandomAccessUpdate()
FFT: fftw_malloc(), fftw_free(), fftw_create_plan(), fftw_one(), fftw_destroy_plan(),
fftw_mpi_create_plan(), fftw_mpi_local_sizes(), fftw_mpi(), fftw_mpi_destroy_-
plan()

There are some rules to follow. Calculations have to be done with 64 bit precision.
New algorithmns for the calculations have to be approved by the HPCC-commitee and
they need to get to the same result as the current algorithmns. For example, the Strassen
algorithmn is forbidden in HPL because it produces a less precise solution. It is forbidden
to use knowledge about the result or to use a more intelligent algorithmn, that doesnt
need as much calculations. It is allowed to do the calculations in a way that is better
suited for the machine your working on, but you cant just use less calculations. If you
want to use your own libraries or compilers, they have to be available to the public or
they have to be made available a few months after the submission of the results. This
critearia is also met if they can be bought somewhere, they dont have to be free. The
point here is only to ensure nobody uses libraries that arent tested or accessible for
validation.
So in our case, it would have also been possible to use FFTW3 instead FFTW2, which
the HPCC is capable of using without code modification. The FFT library is only used in
the FFT-test and all of the function in which it is used are allowed to be modified. These
code modifications are necessary, because FFTW3 has another Interface than FFTW2.
FFTW3 has a whole new syntax, so the function calls cant simply be substituted. If one
has a full understanding of the code, it is possible by using the directions on the website
[11]. Because we didnt fully understand the decisions the programmers of the code made
and didnt know what would be beneficial for our system, we didnt do this.

6.6 Results
The results of the test can be found in a file hpccoutf.txt. It is automatically created in
the hpcc-folder.
Here are some interesting parts of the results from our final run at the cluster challenge:

1 StarDGEMM_Gflops =1.06518
2 SingleDGEMM_Gflops =1.19744

44

3
4 PTRANS_GBs =1.53021
5
6 StarRandomAccess_GUPs =0.0963877
7 SingleRandomAccess_GUPs =0.167188
8
9 Minimum Copy GB/s 3.074954
10 Average Copy GB/s 3.119951
11 Maximum Copy GB/s 3.179126
12 Minimum Scale GB/s 3.086960
13 Average Scale GB/s 3.120812
14 Maximum Scale GB/s 3.236323
15 Minimum Add GB/s 3.502806
16 Average Add GB/s 3.571931
17 Maximum Add GB/s 3.627865
18 Minimum Triad GB/s 3.569321
19 Average Triad GB/s 3.628885
20 Maximum Triad GB/s 3.906788
21
22 HPL:
23 ==
24 T/V N NB P Q Time Gflops
25 --
26 WR11C2R4 296400 192 8 20 5589.36 3.106e+03
27 --
28 Finished 1 tests with the following results:
29 1 tests completed and passed residual checks ,
30
31 tarSTREAM_Copy =3.11995
32 StarSTREAM_Scale =3.12081
33 StarSTREAM_Add =3.57193
34 StarSTREAM_Triad =3.62889
35 SingleSTREAM_Copy =11.2584
36 SingleSTREAM_Scale =11.3952
37 SingleSTREAM_Add =11.5407
38 SingleSTREAM_Triad =11.6622
39
40 MaxPingPongLatency_usec =3.24845
41 RandomlyOrderedRingLatency_usec =14.4998
42 MinPingPongBandwidth_GBytes =3.80608
43 NaturallyOrderedRingBandwidth_GBytes =1.20773
44 RandomlyOrderedRingBandwidth_GBytes =0.216748
45 MinPingPongLatency_usec =0.804663
46 AvgPingPongLatency_usec =1.88951

45

47 MaxPingPongBandwidth_GBytes =7.44992
48 AvgPingPongBandwidth_GBytes =5.35664
49 NaturallyOrderedRingLatency_usec =2.09808

6.7 Conclusion
We didnt optimize every parameter for our cluster, but we did for the ones that where
most important for the performance as stated by our sources. Testing every possible
combination would have cost to much time and wouldnt have greatly affected the result.
We didnt understand the code and the process of optimizations for a certain architecture
good enough to find useful code optimizations. In our understanding of the challenge,
it wasnt demanded to do any code optimizations in the HPCC, because we didnt have
to provide the code we used, which you would normally have to do when you use code
optimizations and because most of the other teams didnt do that as well.

6.8 Sources
[1] http://www.netlib.org/benchmark/hpl/tuning.html

[2] http://www.docstoc.com/docs/74480101/Analyze-and-optimize-the-HPL-High-Performance-
Linpack-benchmark

[3] http://www.advancedclustering.com/act-kb/tune-hpl-dat-file/

[4] PARALLEL MATRIX TRANSPOSE ALGORITHMS ON DISTRIBUTED MEM-
ORY CONCURRENT COMPUTERS, Jaeyoung Choi, Jack J. Dongarra, David W.
Walker, 1993

[5] http://hpl-calculator.sourceforge.net

[6] http://www.spec.org/workshops/2007/austin/slides/Keynote_Jack_Dongarra.pdf,
Folie 9

[7] http://icl.cs.utk.edu/hpcc/software/index.html

[8] HPC Challenge v1.x Benchmark Suite, SC|05 Tutorial — S13, Dr. Piotr Luszczek,
Dr. David Koester, 2005

[9] https://software.intel.com/en-us/intel-sdp-home

[10] http://scicom.cmm.uchile.cl/pmwiki.php/Main/Levque-64Cores-HPCC

[11] http://www.fftw.org/doc/Upgrading-from-FFTW-version-2.html

[12] http://www2.ccs.tsukuba.ac.jp/SC/sc2008/17.pdf

46

6.9 HPCG
Author: Johann Weging

From the ISC’14 instructions:
HPCG is a software package that performs a fixed number of symmetric Gauss-Seidel
preconditioned conjugate gradient iterations using double precision (64 bit) floating point
values.

The HPCG was the third benchmark that had to be run at the competition. Because
of a of some miss information previously to the competition our team didn’t know about
this application. And this could be called the secret application for the event.

6.9.1 Building
To configure HPCG uses different Makefiles which resides inside the setip directory. The
final runs where done with GCC and MPICH. Listing 6.1 shows the necessary changes
applied to the make file. HPCG must be linked against MPICH and the OpenMP support
is disabled.

Listing 6.1: GHPC Makefile changes.
1 # file: hpcg -2.4/ setup/Make.gcc_mvapich2
2 MPlib = -lmpich
3 HPCG_OPTS = -DHPCG_NOOPENMP

The simplest way to build HPCG is to create a build directory for specific build some
where, in this case inside the HPCG directory (Listing 6.2). To configure HPCG the
path to configure and the modified make file is given.

Listing 6.2: Building HPCG.
1 $ mkdir build_hpcg
2 $ cd build_hpcg
3 $../ configure ../ setup/Make.gcc_mvapich2
4 $ make

After the build is finished a bin directory is created inside the build directory with the
xhpcg executable.

47

6.9.2 Benchmarking and Results
Listing 6.3 shows the input file. At the beginning there was some confusion about how
to tune the input but a short chat with a member of the SCC-Council revealed, that the
input file shouldn’t be changed and HPCG should be run as is.

Listing 6.3: HPCG input file hpcg.dat.
1 HPCG benchmark input file
2 Sandia National Laboratories; University of Tennessee ,

↪→ Knoxville
3 104 104 104
4 900

To run HPCG a directory is created with the current slurm job id and the input file is
copied into it. The working directory is changed to the newly create directory and the
benchmark is run. The correct MPI implementation hat to be loaded (Listing 6.4).

Listing 6.4: HPCG job script.
1 #!/bin/sh
2 # Allocate for 64 tasks on 8 nodes.
3 #SBATCH -N 8 -n 160
4 #SBATCH --time =40
5
6 if ! (mkdir $SLURM_JOB_ID && cp hpcg.dat

↪→ $SLURM_JOB_ID/hpcg.dat); then
7 echo "Failed copying the hpcg.dat file"
8 exit 1
9 fi
10
11 cd $SLURM_JOB_ID
12
13 . /etc/profile.d/modules.sh
14 module purge
15
16 module load gcc /4.9/4.9.0
17 module load gcc /4.9/ mvapich2 /1.9/1.9
18
19 mpiexec -map -by socket -bind -to hwthread

↪→ /musorka/home/weging/hpcg/gcc_mvapich2/xhpcg

48

Table 7.1 shows the results of benchmarking runs with different problem sizes. In fact
the default problem size delivers the best performance with 72.573 GFLOP/s.

Problem Size GFLOP/s
192 192 192 71.323
160 160 160 71.2476
150 150 150 71.2369
120 120 120 71.25
104 104 104 72.573

Table 6.1: HPCG Results: Problem size on the left and the reached performance in
GFLOPs on the right side.

The benchmark wasn’t known before hand but like the council member said, there
shouldn’t be any tuning done to the input. It was just intended to build the benchmark
and to one or two quick runs, so the whole process will not take to much time.

49

7 Applications

7.1 Quantum Espresso
Author: Marian Tietz

7.1.1 Overview
Quantum Espresso (QE) 1 is a suite of applications to do electronic-structure calculations
and nano-scale material modeling. It is well supported on many platforms and offers a
wide range of support for current math libraries. The project is well documented and
especially the PW user guide 2 was of great help.

QE itself recommends to use ScaLAPACK, at least for large matrices (> 1000× 1000)
or many processors (> 512) (Gia14). Since these criteria were unlikely to be met during
the competition, it was decided to not use ScaLAPACK, also because this library was
disqualified before in subsection 4.2.1.
In terms of other libraries, QE is very liberate but recommends, amongst others,

GotoBLAS2, Intel MKL, ATLAS and FFTW3. The final choice, as discussed in chapter 4,
was to use OpenBLAS, which is based on GotoBLAS2, and FFTW 3.3.4. MVAPICH2
was used as the MPI implementation.

Since the challenges during the competition were likely to use the Plane-Wave Self-
Consistent Field tool offered by the QE suite, it made sense to do pre-testing to learn
the various tuning parameters of the PW tool. This testing and tuning is described
in subsection 7.1.3, followed by a section discussing the actual competition results and
finishing off with a conclusion.

7.1.2 Tuning parameters
Quantum Espresso, especially the plain wave computation tool PW takes a few parameters
which influence the parallelization and diagonalization as documented in (Gia14). QE
follows a fairly deep MPI hierarchy which is pictured in Figure 7.1. When implemented
in the corresponding tool there are parameters to influence how many processes are
dedicated to the specified MPI level to improve performance in that area.
As shown in Figure 7.1, there are several levels to split the number of available MPI

processes. These layers can be configured individually and serve a special purpose. The

1http://www.quantum-espresso.org/
2http://www.quantum-espresso.org/wp-content/uploads/Doc/pw_user_guide.pdf

50

http://www.quantum-espresso.org/
http://www.quantum-espresso.org/wp-content/uploads/Doc/pw_user_guide.pdf

world diagPW

...tg1 tgn

...image1 imagen

...pool1 pooln ...pool1 pooln

...band1 bandn
...band1 bandn

...band1 bandn
...band1 bandn

Figure 7.1: Process hierarchy of Quantum Espresso. While world includes all processes,
each subsequent layer splits up its parent’s process count equally whle PW
and diag are configured independently. tgi are groups used to parallelize FFT
tasks, diag is a global group dedicated to linear-algebra.

purpose of each layer and how it can be configured according to (Gia14) is explained in
the following.

• world: Corresponds to MPI_COMM_WORLD and includes all available processes.

• images (-nimage): An image corresponds to a self-consistent or linear-response
calculation, loosely coupled to other images.

• pools (-npools): Each pool takes care of a group of k-points to compute these in
parallel. The number of k-point groups depends on the input data and the number
of pools cannot exceed the number of k-points.

• bands (-nbands): The pools can be further partitioned to band groups where each
band group is taking care of a group of Kohn-Sham wave-functions.

• PW: Plane-wave computations are distributed over all available processes. This
behavior cannot be influenced.

• tasks (-ntg): In order to allow good parallelization of the 3D FFT when the
number of processors exceeds the number of FFT planes, FFTs on Kohn-Sham
states (the number can be determined by the output of PW) are redistributed to
task groups so that each group can process several wave functions at the same
time.

• linear-algebra group (-ndiag): Independent of other parallelization levels, this
level is responsible for diagonalization of arrays whose dimension is the number of
Kohn-Sham states. Arrays of data are distributed across a square grid of processes,
therefore the parameter is given in the format n2. It defaults to the biggest possible
size n where n2 < number of total processes.

51

An example call of the PW utility could look like this:

$ mpirun -np 1024 pw.x -nimage 4 -npools 4 -ntg 2 -ndiag 121

In this example the number of images is 4, meaning that each image contains 1024/4 =
256 processes. These 256 processes are further divided into 4 pools, resulting in 64
processes per pool. Plane wave computations are done using the processors of all pools
but 4 k-point groups can now be computed in parallel. (O’G13) The pools are further
divided in two task groups for each pool, having 32 processes for each task group.

It is noteworthy that there is low communication between images and their pools but
the processes in pools communicate heavily. This means that, for optimal performance,
pool processes should be on the same CPU, mainboard or at least be connected over
another low-latency medium.

7.1.3 Pre-competition benchmarks
To test the performance of the setup there are a few official benchmarks with references
for a number of different systems one can compare to. In this section the AUSURF112
benchmark is used since it is medium sized, therefore finishes fairly quickly but can still
be run in parallel.
QE was built with the following commands:

module load gcc/4.9/mvapch2/1.9/1.9
module load gcc/4.9/mvapich2/1.9/fftw/3.3.4
export MPI_LIBS="-L /opt/gcc/4.9/mvapich2/1.9/lib/"
configure --enable-parallel
make pwall

Several parameters and their practical effectiveness were tested. The results are
presented in Figure 7.2. It can be seen that hyper-threading (np > 160) does not
have a positive impact on the performance. Small diagonalization grids lead to worse
performance while at a certain point performance is not improved with bigger process
grids.

7.1.4 Competition results
During the competition 3 tests were assigned to be computed by the teams. Each
test had different characteristics so that different tuning parameters had to be applied.
Since these measurements were taken under the pressure of the competition, not every
promising parameter combination could be tested.
The first test did not allow for k-point parallelization since it used gamma points,

therefore the number of pools was irrelevant. With a relatively high number of Kohn-
Sham states (1144) and nothing else to specially parallelize the major impact made
increasing the diagonalization grid size. An excerpt of the results acquired during the
competition is shown in Figure 7.4.

52

8 16 8 4 4 8 4 8 16 8 8

0

200

400

144 14464 36 3616 9
160 320np

ndiag
ntg

Time

Figure 7.2: Results of AUSURF112 benchmark on the competition hardware with differ-
ent parameters. The best result was achieved using a 8× 8 diagonalization
process grid, 4 task groups, each consisting of 160/4 = 40 processes.

246 144 80 100 120

0

500

1,000

1,500

0 4
160np

ntg
ndiag

Time

Figure 7.3: Running times of the first QE assignment during the cluster challenge. The
most impact on performance was made by increasing the diagonalization grid
size.

53

144 36 64 121 121 100 144 144

0

200

400

600

800

024
160np

ntg
ndiag

Time

Figure 7.4: Various results of the second assignment. Grouping tasks is way more effective
than in the first assignment, probably due to reduced FFT dimensionality.

The second assignment did not allow for k-point parallelization for the same reason as
in the first assignment. In fact, the atomic configuration of the two assignments is the
same, just the parameters changed. The most important changes are the reduction of
FFT and PW dimensionality and the number of iterations which goes up from 10 to 18,
leading to potentially longer runtime and higher precision of the result to compensate
the lower dimensionality. Different parameter configurations and run-times are shown in
Figure 7.4. The reduction of FFT dimensionality might explain why the task groups
are more effective than in the test before where the FFT dimensionality exceeded the
number of processes. This is also discussed by (Lar13).

The third and last assignment was not finished on the machine. At this point in time
the system encountered severe problems with the file system which rendered the system
useless until rebooted, since this was a kernel issue.
It can be said that even though the power budget was exhausted by applications

such as HPCC and HPL, nearly all runs of Quantum Espresso were at 2.6 kW, well 400
Watt below the threshold. In the future it may be possible to utilize the CPU’s turbo
mode on demand. During the competition this was attempted but in a non-consistent,
experimental way which can be improved upon.

7.1.5 Conclusion and Outlook
Although QE is well documented and offers a great deal of information to aid in
parallelizing the application, the process is still non-trivial to achieve optimal results,
especially when the parameters that influence the computational complexity are not
fully understood. It is still possible, however, to achieve pretty good results with the
guidelines offered by QE’s documentation and the analytical output of the application
itself.
Since ScaLAPACK was disregarded at the beginning although it is recommended

54

for large input data for diagonalization in Quantum Espresso, ScaLAPACK should be
considered for testing in combination with Quantum Espresso in the future. In case
accelerators, such as GPUs are used, QE itself should not pose a problem since it already
offers support for GPUs.

7.2 Gadget
Author: Johann Weging

From the ISC’14 Gadget instructions:
GADGET is a freely available code for cosmological N-body/SPH simulations on mas-
sively parallel computers with distributed memory. GADGET represents fluids by means
of smoothed particle hydrodynamics (SPH). The code can be used for studies of iso-
lated systems, or for simulations that include the cosmological expansion of space,
both with or without periodic boundary conditions. GADGET can therefore be used
to address a wide array of astrophysically interesting problems, ranging from collid-
ing and merging galaxies, to the formation of large-scale structure in the Universe.
http: // www. mpa-garching. mpg. de/ gadget/ GADGET-3 can be obtained from this
location: http: // www. prace-ri. eu/ ueabs# GADGET

7.2.1 Building
After the source code of gadget was downloaded, the file run.c has to be replaced by the
file provided by the SCC-Council. The next step is to add a system configuration to the
Makefile which contains the necessary compiler flags. Listing 7.1 shows the configuration
added for GCC, FFTW and MPICH2 although the GNU Scientific Library (GSL) (gsl14)
is required by Gadget.

Listing 7.1: To compile Gadget a new SYSTYPE needs to be added to the Makefile.
1 ifeq ($(SYSTYPE),"gcc_mvapich2")
2 CC = mpicc -DHAVE_HDF5 -DH5_USE_16_API -lhdf5 -lz
3 CXX = mpicxx
4 OPTIMIZE = -O3 -mtune=native -march=native
5 GSL_INCL =
6 GSL_LIBS = -lgsl
7 FFTW_INCL=
8 FFTW_LIBS= -ldrfftw_mpi -ldfftw_mpi -ldrfftw -ldfftw
9 MPICHLIB = -lmpich
10 HDF5INCL =
11 HDF5LIB = -lhdf5 -lz
12 endif

Listing 7.2 shows the make command to build Gadget. The required Config.sh and
the SYSTYPE is passed to the make command.

55

http://www.mpa-garching.mpg.de/gadget/
http://www.prace-ri.eu/ueabs#GADGET

Listing 7.2: Calling make for Gadget with configuration and the new SYSTYPE.
1 make CONFIG=Config -Large.sh SYSTYPE=gcc_mvapich2 -FFTW3

7.2.2 Running
The provided ICs folder has to be copied in the same directory as the param.txt and the
path of the param.txt has to be passed to the Gadget executable.

1 #!/bin/sh
2 # Allocate for 64 tasks on 8 nodes.
3 #SBATCH -N 8 -n 160
4
5 mkdir $SLURM_JOB_ID
6 cd $SLURM_JOB_ID
7 mkdir output
8
9 . /etc/profile.d/modules.sh
10 module purge
11
12 module load gcc /4.9/4.9.0
13 module load gcc /4.9/ gsl /1.16
14 module load gcc /4.9/ mvapich2 /1.9/1.9
15 module load gcc /4.9/ mvapich2 /1.9/ fftw /2.1.5
16 module load gcc /4.9/ mvapich2 /1.9/ hdf5 /1.8.13
17
18 mpiexec -map -by socket -bind -to hwthread

↪→ /musorka/home/weging/gadget3/gcc_mvapich2_fftw2/gadget
↪→ ../ param.txt

Sadly Gadget didn’t finish because of the ZFS I/O bug.

7.3 OpenFOAM
Author: Jakob Lüttgau

OpenFOAM(R) (Open Field Operation and Manipulation) provides a toolbox for CFD
(Computational Fluid Dynamics). The package is free and open source and enjoys a
large user base from commercial and academic organisations. Applications range from
chemical reactions, heat transfer and fluid flows over to the simulation of solid dynamics
and electromagnetics. It provides over 80 solver applications and more than 170 utility
applications for pre- and post processing.

56

OpenFOAM has several dependencies 3rd party dependencies and requires cmake
for compilation. The full list of dependencies includes flex, bison, cmake, zlib1g-dev,
qt4-dev-tools, libqt4-dev, gnuplot, libreadline-dev, libncurses-dev, libxt-dev as well as
libscotch-dev, libopenmpi-dev, libcgal-dev.
Qt is needed for GUI tools which can be used for pre and post processing. A task

that was also required to solve the OpenFOAM challenge at SCC. Libscotch assists in
distributing work among many nodes (e.g. sequential and parallel graph partitioning).
CGAL provides a library for geometry algorithms.

The competition guidelines did reveal only little about how challenges in OpenFOAM
could look like, resulting in a rather heavy weight installation on the cluster.

OpenFOAM provides good documentation once installed, but requires a lot of training
time since it is very extensive and rich in features. Enough time should be reserved to
work through the examples and to understand the available parameters needed to adjust
a problem to the system specifications.

Installation

OpenFOAM can be installed from package management on Ubuntu Systems. The
specified dependencies might not be satisfied by the Qlustars default package repositories.
For the particular case installation from source is advisable anyways especially since
multiple MPI backends are available.

OpenFOAM is bundled into two source packages, one for the OpenFOAM application,
and another one providing third party dependencies. If in doubt build the dependencies
from the third party package.
Either way, to build OpenFOAM or the dependencies it is required to adjust the

bashrc located at etc/bashrc in the source package. Here it is possible to set the paths
for compiler and libraries to be used for building. Problems with the executables most
likely stem from a mistake made during this configuration.
OpenFOAM uses the wmake build system which come bundled with the source, it

is possible to build OpenFOAM in parallel by announcing SSH nodes with corecounts
using environment variables.

57

8 Future Work
Author: alle

The key to success - in addition to competitive hardware - is the best preparation,
deep analyses and wide testing of everything that can be tested.
Since the number of combinations of hard- and software components is too large to

test them all, it is most important to draw up a strategy and decide which is the favored
approach. To begin structuring with the system setup, it is a good practice to test
the components separately and to note down the separate power consumption and the
performance rate. These two characteristics are most relevant especially in cases of
surprise tasks. Having all test results can help to ease the decision-making whether to
install the components - hard- or software, or to provide specific options depending on
the task. Further characteristics like the robustness or flexibility should be well known
before the competition starts.
Following points should be considered in more detail:

• Power consumption of
– Head node
– Compute nodes
– Switches
– HDDs or SSDs
– Cooling
– CPUs separately and depending on the configuration (hyper threading, turbo

boost, etc.)

• Robustness of
– Hardware (enough cooling)
– Operating system (kernel bugs)
– File system

• Performance of
– Configured hardware (regarding theoretical peak performance)
– Chosen libraries, software and corresponding tuning options
– I/O or file system

58

8.1 Power Consumption
Considering the limits to the power budget and especially the last competition task it
would have been helpful to try out a system configuration without a head node. The
primary disadvantages are less comfort and more effort for running the system and
the applications. On the other hand, it would be possible to increase performance by
adding a spare node when the power budget allows it or to enable turbo-boost on certain
occasions. It is noteworthy that recent SLURM versions as well as other job management
systems allow for power budgeting and dynamic clock scaling. Dynamic clock scaling
could potentially achieve a finer grained automatic control than could be achieved by
manually clocking the nodes.
Cooling is another factor which should have been considered in the this competition.

Based on the fact that the system could safely run for about half an hour without or
with reduced cooling, the chances to win would significantly increase. To achieve it, the
system should be extensively tested in the first place, not only in a secure environment,
but also stress tested with regard to temperature differences and high load during a real
competition.

8.2 File System
The decision about the file system is mainly based on the experience with the applications
and on a loose prediction of what can be expected as secret applications. Since the
decision is so dependent on the applications, it is necessary to find out if the published
applications provide parallel I/O. The next step would be evaluating of costs and benefits
of a parallel file system of which two candidates would be Lustre1 and OrangeFS2.
The main reason not to use a parallel file system, whether or not parallel I/O is

expected, is the complexity of use and setup. A potential drawback of Lustre, for
example, is that it requires a relatively old kernel. "The last client-side software was
updated in March 2013 to work with Linux kernels up to version 3.6. "
...

8.3 GPU
The decision to leave out GPUs was, in retrospective, a reasonable one. There were
many challenges to overcome and another software layer for GPU or accelerator support
might have been too time consuming. Although GPU support has improved greatly and
the competition is laid out to support GPUs, it is still a significant amount of additional
work, especially for the first participation in this competition.

Now that experiences with a CPU-only system were made and the general proceeding
of the competition is known, accelerators such as GPUs can be discussed. Software

1http://lustre.opensfs.org/
2http://www.orangefs.org/

59

http://lustre.opensfs.org/
http://www.orangefs.org/

wise there is PLASMA for a GPU/accelerator-friendly alternative to LAPACK and, for
example, CUBLAS for nVIDIA graphics cards.

It is noteworthy that the performance increase of using GPUs is not universal. While
accelerators outperform CPUs with a large margin on tasks that can be clearly separated
and distributed, such as LAPACK/BLAS operations, applications that do not have such
clear abstractions and solely rely on the CPU do not cope well with accelerators. Careful
tuning and deeper knowledge of the applications is required to utilize the accelerator
appropriately. It might be worth to use smaller accelerators to swap out, for example,
BLAS operations.

60

Bibliography
[acc14] Acceleration and parallelization. http://www.gromacs.org/

Documentation/Acceleration_and_parallelization, 2014. [Online;
accessed 17-September-2014].

[arc] Understanding and managing hardware affinities on hierarchical plat-
forms With Hardware Locality (hwloc). http://www.open-mpi.org/
projects/hwloc/tutorials/20140522-PATC-hwloc-tutorial.pdf. [On-
line; accessed 17-September-2014].

[Cas14] Ralph Castain. Open MPI User’s Mailing List Archives - [OMPI users] pin-
ning processes by default. http://www.open-mpi.org/community/lists/
users/2014/05/24459.php, 2014. [Online; accessed 17-September-2014].

[DMRF11] Ph.D. Dr. Mark R. Fernandez. Nodes, Sockets, Cores and
FLOPS, Oh, My. http://en.community.dell.com/techcenter/
high-performance-computing/w/wiki/2329, 2011. [Online; accessed
17-September-2014].

[Don13a] Wei Dong. MKL vs. ATLAS vs. OpenBLAS. http://www.wdong.org/
wordpress/blog/2013/08/30/mkl-vs-atlas-vs-openblas/, 2013. Ac-
cessed: 2014-09-10.

[Don13b] Wei Dong. OpenBLAS benchmark. http://www.wdong.org/wordpress/
blog/2013/09/01/openblas%E9%80%86%E8%A2%AD/, 2013. Accessed: 2014-
09-10.

[gcc14a] GCC Mirros. https://gcc.gnu.org/mirrors.html, 2014. [Online; accessed
1-Oktober-2014].

[gcc14b] Gnu Compiler Collection Homepage. https://gcc.gnu.org/, 2014. [Online;
accessed 1-Oktober-2014].

[Gia14] Paolo Giannozzi. Parallelization levels. http://www.quantum-espresso.
org/wp-content/uploads/Doc/user_guide/node18.html, 2014. Accessed:
2014-09-22.

[gsl14] GNU Scientific Library. http://www.gnu.org/software/gsl/, 2014. [On-
line; accessed 1-Oktober-2014].

61

http://www.gromacs.org/Documentation/Acceleration_and_parallelization
http://www.gromacs.org/Documentation/Acceleration_and_parallelization
http://www.open-mpi.org/projects/hwloc/tutorials/20140522-PATC-hwloc-tutorial.pdf
http://www.open-mpi.org/projects/hwloc/tutorials/20140522-PATC-hwloc-tutorial.pdf
http://www.open-mpi.org/community/lists/users/2014/05/24459.php
http://www.open-mpi.org/community/lists/users/2014/05/24459.php
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://www.wdong.org/wordpress/blog/2013/08/30/mkl-vs-atlas-vs-openblas/
http://www.wdong.org/wordpress/blog/2013/08/30/mkl-vs-atlas-vs-openblas/
http://www.wdong.org/wordpress/blog/2013/09/01/openblas%E9%80%86%E8%A2%AD/
http://www.wdong.org/wordpress/blog/2013/09/01/openblas%E9%80%86%E8%A2%AD/
https://gcc.gnu.org/mirrors.html
https://gcc.gnu.org/
http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide/node18.html
http://www.quantum-espresso.org/wp-content/uploads/Doc/user_guide/node18.html
http://www.gnu.org/software/gsl/

[hwl] hwloc(7) - Linux man page. http://linux.die.net/man/7/hwloc. [Online;
accessed 17-September-2014].

[hwl14] Portable Hardware Locality (hwloc). http://www.open-mpi.org/
projects/hwloc/, 2014. [Online; accessed 17-September-2014].

[icc14] Intel C++ Compiler. https://software.intel.com/en-us/c-compilers,
2014. [Online; accessed 1-Oktober-2014].

[Int] Performance Tools for Software Developers - Building Open MPI* with
the Intel® compilers. https://software.intel.com/en-us/articles/
performance-tools-for-software-developers-building-open-mpi-with-the-intel-compilers.
[Online; accessed 10-September-2014].

[int13] Intel® MPI Benchmarks 4.0. https://software.intel.com/en-us/
articles/intel-mpi-benchmarks, 2013. [Online; accessed 17-September-
2014].

[int14a] Intel Developer Zone. https://software.intel.com, 2014. [Online; ac-
cessed 1-Oktober-2014].

[int14b] Intel Registration Center. https://registrationcenter.intel.com/
RegCenter/, 2014. [Online; accessed 1-Oktober-2014].

[Joh13] Blake Johnson. OpenBLAS comparison to MKL. https://github.com/
JuliaLang/julia/issues/3965#issuecomment-22745557, 2013. Accessed:
2014-09-10.

[Lar13] Peter Larsson. Quantum espresso vs. vasp (round 2). https://www.nsc.liu.
se/~pla/blog/2013/02/19/qevasp-part2/, 2013. Accessed: 2014-09-24.

[liba] Open MPI Development Mailing List Archives - [OMPI devel] hwloc:
libpci vs. libpciaccess - what should OMPI do? http://www.open-mpi.
org/community/lists/devel/2013/03/12206.php. [Online; accessed 17-
September-2014].

[libb] Paket: libibmad-dev (1.3.11-3 und andere) . https://packages.debian.
org/de/sid/libibmad-dev. [Online; accessed 17-September-2014].

[libc] Paket: libibumad-dev (1.2.3-20090314-1) [universe] . http://packages.
ubuntu.com/de/lucid/libibumad-dev. [Online; accessed 17-September-
2014].

[MPIa] MPICH ABI Compatibility Initiative. http://www.mpich.org/abi/. [On-
line; accessed 05-September-2014].

[mpib] mpirun(1) man page (version 1.8.1). https://www.open-mpi.org/doc/v1.
8/man1/mpirun.1.php. [Online; accessed 17-September-2014].

62

http://linux.die.net/man/7/hwloc
http://www.open-mpi.org/projects/hwloc/
http://www.open-mpi.org/projects/hwloc/
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-building-open-mpi-with-the-intel-compilers
https://software.intel.com/en-us/articles/performance-tools-for-software-developers-building-open-mpi-with-the-intel-compilers
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com
https://registrationcenter.intel.com/RegCenter/
https://registrationcenter.intel.com/RegCenter/
https://github.com/JuliaLang/julia/issues/3965#issuecomment-22745557
https://github.com/JuliaLang/julia/issues/3965#issuecomment-22745557
https://www.nsc.liu.se/~pla/blog/2013/02/19/qevasp-part2/
https://www.nsc.liu.se/~pla/blog/2013/02/19/qevasp-part2/
http://www.open-mpi.org/community/lists/devel/2013/03/12206.php
http://www.open-mpi.org/community/lists/devel/2013/03/12206.php
https://packages.debian.org/de/sid/libibmad-dev
https://packages.debian.org/de/sid/libibmad-dev
http://packages.ubuntu.com/de/lucid/libibumad-dev
http://packages.ubuntu.com/de/lucid/libibumad-dev
http://www.mpich.org/abi/
https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php
https://www.open-mpi.org/doc/v1.8/man1/mpirun.1.php

[MV2a] MPICH Installer’s Guide. http://www.mpich.org/static/downloads/3.0.
4/mpich-3.0.4-installguide.pdf. [Online; accessed 17-September-2014].

[MV2b] MVAPICH2 2.0 Quick Start Guide. http://mvapich.cse.ohio-state.
edu/static/media/mvapich/mvapich2-2.0-quickstart.pdf. [Online; ac-
cessed 17-September-2014].

[MV2c] MVAPICH2 Changelog. http://mvapich.cse.ohio-state.edu/static/
media/mvapich/MV2_CHANGELOG-2.0.txt. [Online; accessed 18-September-
2014].

[MV2d] Using the Hydra Process Manager. https://wiki.mpich.org/mpich/index.
php/Using_the_Hydra_Process_Manager. [Online; accessed 17-September-
2014].

[MV213] MVAPICH2. https://wiki.calculquebec.ca/w/MVAPICH2/en, 2013. [On-
line; accessed 17-September-2014].

[oCSU14] MVAPICH Team Network-Based Computing Laboratory Department of Com-
puter Science and Engineering The Ohio State University. MVAPICH2
2.0 User Guide. http://mvapich.cse.ohio-state.edu/static/media/
mvapich/mvapich2-2.0-userguide.html#x1-90004.3.1, 2014. [Online;
accessed 17-September-2014].

[O’G13] Christopher O’Grady. Quantum espresso. https://confluence.slac.
stanford.edu/display/SUNCAT/Quantum+Espresso, 2013. Accessed: 2014-
09-22.

[ope] FAQ: Building Open MPI. http://www.open-mpi.org/faq/?category=
building. [Online; accessed 17-September-2014].

[ope14] FAQ: General run-time tuning. http://www.open-mpi.org/faq/
?category=tuning, 2014. [Online; accessed 17-September-2014].

[pci] Conventional PCI. http://en.wikipedia.org/wiki/Conventional_PCI.
[Online; accessed 17-September-2014].

[Rei09] James Reinders. Mixing MPI and OpenMP, hugging hardware and
dealing with it. https://software.intel.com/en-us/blogs/2009/11/
16/mixing-mpi-and-openmp-hugging-hardware-and-dealing-with-it,
2009. [Online; accessed 17-September-2014].

[Squ12] Jeff Squyres. Open MPI v1.5 processor affinity options. http://blogs.cisco.
com/performance/open-mpi-v1-5-processor-affinity-options/, 2012.
[Online; accessed 17-September-2014].

63

http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-installguide.pdf
http://www.mpich.org/static/downloads/3.0.4/mpich-3.0.4-installguide.pdf
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-quickstart.pdf
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-quickstart.pdf
http://mvapich.cse.ohio-state.edu/static/media/mvapich/MV2_CHANGELOG-2.0.txt
http://mvapich.cse.ohio-state.edu/static/media/mvapich/MV2_CHANGELOG-2.0.txt
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://wiki.calculquebec.ca/w/MVAPICH2/en
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-90004.3.1
http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.0-userguide.html#x1-90004.3.1
https://confluence.slac.stanford.edu/display/SUNCAT/Quantum+Espresso
https://confluence.slac.stanford.edu/display/SUNCAT/Quantum+Espresso
http://www.open-mpi.org/faq/?category=building
http://www.open-mpi.org/faq/?category=building
http://www.open-mpi.org/faq/?category=tuning
http://www.open-mpi.org/faq/?category=tuning
http://en.wikipedia.org/wiki/Conventional_PCI
https://software.intel.com/en-us/blogs/2009/11/16/mixing-mpi-and-openmp-hugging-hardware-and-dealing-with-it
https://software.intel.com/en-us/blogs/2009/11/16/mixing-mpi-and-openmp-hugging-hardware-and-dealing-with-it
http://blogs.cisco.com/performance/open-mpi-v1-5-processor-affinity-options/
http://blogs.cisco.com/performance/open-mpi-v1-5-processor-affinity-options/

[Squ13a] Jeff Squyres. Open MPI: Binding to core by default . http://blogs.cisco.
com/performance/open-mpi-binding-to-core-by-default/, 2013. [On-
line; accessed 17-September-2014].

[Squ13b] Jeff Squyres. Process and memory affinity: why do
you care? . http://blogs.cisco.com/performance/
process-and-memory-affinity-why-do-you-care/, 2013. [Online;
accessed 17-September-2014].

64

http://blogs.cisco.com/performance/open-mpi-binding-to-core-by-default/
http://blogs.cisco.com/performance/open-mpi-binding-to-core-by-default/
http://blogs.cisco.com/performance/process-and-memory-affinity-why-do-you-care/
http://blogs.cisco.com/performance/process-and-memory-affinity-why-do-you-care/

List of Figures

2.1 Writing performance of InifiniBand . 10
2.2 Reading performance of InifiniBand . 10

4.1 HPL performance using OpenBLAS with different threading configurations
on the Westmere cluster in comparison to Intel’s MKL using the same setup. 19

4.2 Performance comparison between HPL compiled with GCC 4.9, Open-
BLAS and compiled with ICC, MKL. 20

4.3 Performance comparison of FFT performance using HPCC results. FFTW
3.3.4/GCC 4.9 and using MVAPICH2 MPI implementation is compared
to ICC / Intel’s MKL 11.1 and Intel MPI. The problem sizes set by HPCC
were FFTN = 8388608 and MPIFFTN = 536870912. 21

4.4 FFTW performance on the final cluster with GCC 4.9, FFTW 3.3.4 and
MVAPICH2 acquired by running HPCC. The problem sizes set by HPCC
were FFTN = 134217728 and MPIFFTN = 8589934592. 22

5.1 An example of hierarchical architecture of components (arc) 29
5.2 Performance measurements of turbo boost using MPVAPICH2 1.9 33
5.3 Performance measurements of different HPL input data configuration

using MPVAPICH2 1.9 . 33
5.4 Performance measurements comparing MVAPICH2 1.9 and OpenMPI 1.8.1 34
5.5 Performance measurements of different MPVAPICH2 versions 35
5.6 Latency measurements using different MPI implementations 37
5.7 Throughput measurements using different MPI implementations 38

7.1 Process hierarchy of Quantum Espresso. While world includes all pro-
cesses, each subsequent layer splits up its parent’s process count equally
whle PW and diag are configured independently. tgi are groups used to
parallelize FFT tasks, diag is a global group dedicated to linear-algebra. . 51

7.2 Results of AUSURF112 benchmark on the competition hardware with
different parameters. The best result was achieved using a 8 × 8 diag-
onalization process grid, 4 task groups, each consisting of 160/4 = 40
processes. 53

7.3 Running times of the first QE assignment during the cluster challenge. The
most impact on performance was made by increasing the diagonalization
grid size. 53

65

7.4 Various results of the second assignment. Grouping tasks is way more
effective than in the first assignment, probably due to reduced FFT
dimensionality. 54

66

List of Tables

2.1 Reference Mellanox IB FDR56 native performance 9

5.1 Most important characteristics of various MPI implementations. 24
5.2 Mapping and binding options . 29
5.3 Exchange benchmark with 40 processes on 2 nodes and 160 processes on

8 nodes using MVAPICH2 1.9 and OpenMPI 1.8.1 36

6.1 HPCG Results: Problem size on the left and the reached performance in
GFLOPs on the right side. 49

67

Listings

2.1 Modulefile example . 11
2.2 Load a module . 12

3.1 Building and installing GCC 4.9.0. 14
3.2 GCC 4.9.0 module file. 14
3.3 Checking the GCC setup. 15

5.1 Possible error message when launching a job using MVAPICH-1.9 and
OpenMPI 1.8.1 via SLURM . 25

6.1 GHPC Makefile changes. 47
6.2 Building HPCG. 47
6.3 HPCG input file hpcg.dat. 48
6.4 HPCG job script. 48

7.1 To compile Gadget a new SYSTYPE needs to be added to the Makefile. . 55
7.2 Calling make for Gadget with configuration and the new SYSTYPE. . . 56

68

	Introduction and Motivation
	Task and Rules

	System
	Hardware
	Operating System
	InfiniBand
	Software

	Compiler
	GCC
	ICC
	Conclusion

	Libraries
	Overview
	Available libraries
	Initial testing
	Library specific optimizations
	Final hardware testing
	Conclusion and Outlook

	MPI
	Overview
	Compatibility
	MPI over InfiniBand
	Build
	Tuning Options
	Evaluation

	Benchmarks
	HPCC
	Introduction and Motivation
	Build Script
	Input File
	Code Optimization
	Results
	Conclusion
	Sources
	HPCG

	Applications
	Quantum Espresso
	Gadget
	OpenFOAM

	Future Work
	Power Consumption
	File System
	GPU

	Bibliography
	List of Figures
	List of Tables
	Listings

