
Praktikum 2014
“Parallele Programmierung”

Universität Hamburg

Dept. Informatics / Scientific Computing

October 23, 2014

FluidSim

Paul Bienkowski
Author
2bienkow@informatik.uni-hamburg.de

Dr. Julian Kunkel
Supervisor

juliankunkel@googlemail.com

Abstract

This report describes my experiences of the development of a parallel cluster-
enabled Simulation using MPI.
My project in particular simulates fluid particles in two-dimensional space by a
simple repulsion formula and collision with polygon meshes. The goal was to be
able to simulate air flow around a wing shape and determine a possible uplift that
was generated only by the particles collisions.

Keywords: Simulation, Parallel, MPI, Fluid, Uplift, Particles, 2D

2bienkow@informatik.uni-hamburg.de
juliankunkel@googlemail.com

Praktikum “Parallele Programmierung” 2014 FluidSim

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Particle Model . 3

1.2.1 Magnitude of force . 3
1.3 Meshes . 4

2 The Simulator 6
2.1 Set implementation . 6
2.2 Parallelization . 6
2.3 Synchronization . 7
2.4 Data output . 7

3 The Visualizer 8
3.1 Basic Technology . 8
3.2 Data Transfer . 8

4 Results 9
4.1 Performance . 9
4.2 Difficulties . 10
4.3 Problems . 10

5 Conclusion 10

Paul Bienkowski Page 2 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

1 Introduction

1.1 Motivation

This is the project report for my practical course “Parallel Programming”. The goal of this
class is to develop any kind of parallel simulation, and implement it to be able to run on a
student cluster using MPI.

For my project, I chose the simulation of particles, specifically fluid particles, in 2D space.
This kind of simulation could be used in all kinds of research, mostly physics, where mainly
experiments are used instead. An example is a classical wind tunnel to investigate how air
flows around objects such as car bodies, aircraft wings and other objects that have to display
certain aerodynamic properties.

To evaluate how realistic my model would be, I set my goal to simulate a wing-shaped mesh,
and measure the force the particles apply to this mesh. I would consider the model sufficiently
realistic if this force would be directed upwards.

1.2 Particle Model

In my model, each particle has three basic properties: position, velocity and the current force.
Of these, only position and velocity need to be stored, force is recomputed every iteration.

Any two particles in the simulation domain repel each other, given they are in a specified radius
of each other:

forcei :=
∑
j

force(|pi − pj |) · norm(pi − pj) (1)

This equation contains an important function force, which is explained in more detail further
below. This function calculates the magnitude of the force based on the distance between the
particles, and multiplies this with the direction vector between them. The sum of the forces
caused by all other particles j is considered the force on particle i.

The force on a particle affects its velocity, and the velocity affects its position:

velocityi := velocityi + forcei · dt (2)

positioni := positioni + velocityi · dt (3)

1.2.1 Magnitude of force

I chose a simple parametrized formula for the magnitude of force between two particles. There
were two conditions this formula had to fulfill: a) it had to decrease to zero within a defined

Paul Bienkowski Page 3 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance

fo
rc
e

P=0.2
P=1
P=2
P=3
P=20

(a) Changing the Force Power (P) with F = 1,
D = 1, T = 0.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

distance

fo
rc
e

T=0.0
T=0.1
T=0.2
T=0.3

(b) Changing the Distance Threshold (T) with
F = 1, D = 1, P = 10.

Figure 1: Changing Parameters in the Force Formula.

radius, such that particles further away than this distance would not interfere with each other,
and b) it should configurable such that the formula could either approximate an elastic collision
or a continous force without impact.

force(x) =

{
F ·
(
1− x−T

D

)P for 0 ≤ x ≤ D + T

0 otherwise
(4)

Where x is distance between the two particles, F a constant factor to apply to the force, D
the minimum distance for influence between two particles, T the threshold that is subtracted
from the distance, and P the power of the force.

The above formula with its four simulation constants (F , D, T and P) proved to be sufficient
for the above mentioned conditions. Figure 1a displays the effect of the power P to the
function. For higher values of P , the curve bends down, such that particles that are much
closer to each other affect each other much more than those further away. In Figure 1b, one
can see a change in the distance threshold T , that basically changes the radius of the particles.
With T > 0 and P > 10, an elastic collision can be modeled, whereas other configurations
result in “smooth” repulsion.

For later simulation, the following configuration proved successful.

D = 0.001 T = 0.06 P = 1 F = 20

1.3 Meshes

A mesh is a simple polygon, consisting of segments between its points.

Paul Bienkowski Page 4 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

Mesh

Particle

p

p′

Figure 2: Particle colliding with a mesh fragment.

Before each position update of a particle (movement), collision with every line segment (frag-
ment) of every mesh is checked. For that, the point of intersection between the line of
movement of the particle i and the fragment f is calculated.

positionf + k1 · directionf = positioni + k2 · velocityi

This equation can be resolved for k1 and k2 as follows:

void intersect(const Vector& p1, const Vector& d1, const Vector& p2, const Vector& d2, double& k1, double& k2) {
k1 = ((p2.x-p1.x) * d2.y - (p2.y-p1.y) * d2.x) / (d1.x * d2.y - d1.y * d2.x);
k2 = ((p1.x-p2.x) * d1.y - (p1.y-p2.y) * d1.x) / (d2.x * d1.y - d2.y * d1.x);

}

If the point of intersection lies within the iteration’s travel distance of the particle (0 < k1 ≤ dt)
and on the mesh line (0 < k2 ≤ 1), the velocity is updated by reflection on the fragment normal
and multiplication with a damping factor, and the particle is moved to the reflected point:

positioni := positioni + velocityi · (dt · k1) + new_velocityi · (1− dt · k1)

Furthermore, the mesh m receives an impulse in the direction of the fragment’s normal:

forcem := forcem + normf · (velocityi · normf)

Paul Bienkowski Page 5 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

2 The Simulator

The simulator, FluidSim, is the part of the project that applies above mentioned model to a
set of particles and meshes inside a Domain. The simulator is an independent executable that
can take the simulation parameters from the command line and outputs the generated particle
data into a directory, one file per iteration. It is implemented in C++11 using OpenMP and
OpenMPI.

2.1 Set implementation

In many parts of the program, sets of objects are used to work with. Since the order of these is
usually not important, I implemented my own Set class (QuickSet), to be able to fine-tune for
performance. The QuickSet supports common set operations (insert, get, remove, clear)
as well as guarantees contiguous memory layout and pointer access. This is important to be
able to send the data from a QuickSet via MPI.

The QuickSet internally allocates a fixed-sized buffer (whose size is configurable via command
line parameter -B/–buffer). Opon insertion, the element is copied directly into this buffer
using memcpy, for deletion only the element count is reduced and the last element is moved
to the deleted element’s index. This ensures contiguous memory layout without the need to
move the remaining elements forward by one index.

2.2 Parallelization

There are two types of parallelization used in FluidSim. Since each particle has to be updated
every iteration in a simple for loop, threading with OpenMP was a trivial implementation.
Every process owns a distinct set of particles, and one #pragma omp for was nearly enough
to parallelize this.

However, for cluster parallelization, a message passing implementation was required. In order
to do so, the overall particle domain is divided into a grid with n cells, where n is the number
of processes (see Figure 3a). Each process only updates its own particles using the positions
of its own and its neighbours particles, and sends the updated positions to every neighbour.

Since only the neighbour cells are taken into account when calculating particles, two particles
that are further away than one grid cell’s size must not influence each other. Therefor par-
ticle/force model was designed such that such a maximal influence distance was given (see
above).

When a particle moves into a different domain cell, upon receiving the new particle the target
process inserts the particle into its own set, and the sending process removes it.

Paul Bienkowski Page 6 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

Mode Sending Receiving Directions

1. Checkerboard black white N, E, S, W

2. Checkerboard white black N, E, S, W

3. Stripes black white NE, SE, SW, NW

4. Stripes white black NE, SE, SW, NW

Table 1: Synchronization transactions

2.3 Synchronization

This section describes the scheme implemented that supports grid cells to synchronize with
every neighbour. I designed this scheme such that any arbitrary sized grid could be synchronized
in a fixed number of transactions (steps). The required transaction count turned out to be 16,
two directions for eight neighbours. Every cell, except border cells, have to perform each of
these transactions, as such, the scheme is very efficient.

To visualize the scheme, the grid may be “colored” in two different ways, see Figure 3. The
coloring then determines in which step a process is either sending or receiving. Table 1 is a list
of all transactions, in which the coloring mode is described, as well as which color describes
which instruction.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

(a) Checkerboard

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

(b) Stripes

Figure 3: Modes of Domain coloring

2.4 Data output

Figure 4 describes the output format of the particle data. One file with this format is generated
for every iteration. The first 32 bytes are the header, containing basic information about the
iteration. Following this header, each process writes all of its particle positions in order, then
all of its particles’ position and velocity vectors. The offset of each process’ data is calculated
first, then propagated to the processes themselves, and then they write their chunk of data
using MPI-IO.

Paul Bienkowski Page 7 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

0000000 0020 0000 0001 0000 0004 0000 2710 0000
0000010 1387 0000 0000 0000 1389 0000 0000 0000
0000020 8a72 d187 c4bb 3fa1 73d1 4e75 d95f 3fbe
0000030 d3f4 2c9a cf42 3fbc b890 9e75 5a61 3fc1
...
0013870 9aa6 af8e c353 3fc7 1df2 1539 3ec1 3fc3
0013880 c065 7825 f853 3fb3 717a c31f 1f55 3fc3
...

Header length: 32
bytes

Iteration number: 1
Number of processes:

4
Particle count: 10000
Particle count by

process
Particle positions of P1
Particle velocities of P1

Figure 4: Iteration output file format

3 The Visualizer

3.1 Basic Technology

The visualizer (FluidVis) is the part of the project that takes the generated data from the
simulator as input and displays them for analysis. Mostly, it is an OpenGL application, using
SFML for simple rendering as well as window and input management.

This application is not very complicated or smart, just loading all of the data into memory.
However, it has a few useful features, such as displaying the domain grid, coloring the particles
by different features (process number, velocity, ...) and Live mode, where it reads the status
from the master process and always loads the latest available iteration.

3.2 Data Transfer

While there might have been a number of possibilities to send live data from the simulator to
the visualizer, such as using MPI itself, or some kind of networking or socket implementation,
I chose a rather simple version, to keep the simulator clean.

The simulator’s main process writes a status file at the end of each iteration, with some
metadata, mostly the iteration count and grid size. The visualizer repeatedly reads this file
and then opens the corresponding iteration file. For the simulation performed on a remote
machine or cluster, I decided to use the same technique, just mounting the remote file system
to a local path, so the implementation would be the same.

This worked out quite well, except that the internet connection to the student test cluster
limited the speed at which I was able to inspect the generated data. Downloading it was
actually much slower than the simulation, so I consider the simulation to be able to run in
real-time.

Paul Bienkowski Page 8 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

4 Results

After implementing the simulation I took some time to play around with the

4.1 Performance

For performance measurement, I implemented a special simulator mode (-M/–measure) in
which the processes do not write their data to the hard disk. The graphs in Figure 5 are
created using this mode.

The speedup by increasing the number of processes is very much the expected result. There
is of course some communications overhead added by increasing from one to two processes,
which explains why two processes take noticably longer than half the time of one. However,
from there on, the speedup is proportional to the number of processes used.

An interesting measurement was the time by grid size. Figure 5b shows some difference between
a 1x8 grid and an 8x1 grid. Even though the communications scheme does not differentiate
between the two axis, the 8x1 grid is much slower. This is due to the particles moving mainly
in horizontal direction, and particles that cross the boundaries of grid cells have to be removed
from one set and inserted into another, both of which takes more time than just updating
its position.

(a) Time by number of processes (b) Time by number of columns

Figure 5: Performance measurements on the student cluster

Paul Bienkowski Page 9 of 10

Praktikum “Parallele Programmierung” 2014 FluidSim

4.2 Difficulties

In general, there were not many problems creating and realising this project. However, there
were a few pitfalls I encountered, both implementation and modelling difficulties.

It was somewhat difficult to get MPI-IO working, especially when I miscalculated some seek
offsets and confused absolute with relative offsets. This led to some weird artifacts in the
visualizer, since the data was offset and velocities and positions were mixed up. It took some
time to realize the problem was in the output routines of the simulator, not the actual model
or the visualizer.

I also happend to make some mistakes when initializing buffers, resulting in bad pointers or
values. I could detect that this was my mistake when I printed some pointer values as hex
and received 0xdeafbeed. This is a variation on deadbeef, which happens to be the value
uninitialized memory cells get on some systems. Until I figured this out, many assertion errors
and segmentation faults were thrown.

On the mathematical part, I thought that 2D collisions of simple particles with polygons were
going to be trivial, but it took quite a lot of time to get working, too. Linear algebra is often
more complex than it looks.

4.3 Problems

There are still some problems with the software. Especially on the performance part, while the
simulator is optimized for run-time (and this is further enhanced by the compiler). However,
the memory usage of the simulator is way from optimal, there are lots of buffers that are not
required or could be used more efficiently. This makes it impossible for me to test with more
than 6 processes on my 8GB machine.

The set implementation I created for my particle collection uses memcpy. While this is the best
possible way I found to manage dynamic collections, it is still a very slow process, especially
when changing multiple items (inserting/deleting). There might be complex and specialized
structures that could work better, but these would most probably not result in a coherent
dataset, which would slow down transmission via MPI.

5 Conclusion

The most important fact to consider wrapping up is that I have reached my goal. The simulation
works, I was able to implement the model in a sufficiently fast way, and simulate an aircraft
wing with it. The simulation is even faster than the transmission to my visualizer, so I consider
the simulation able to run in real-time.

While the software I wrote is not flawless and has some space for optimization left (such as
load balancing and SIMD instructions), I learned a great deal about parallelization and how to
structure a project of this kind.

Paul Bienkowski Page 10 of 10

	Introduction
	Motivation
	Particle Model
	Magnitude of force

	Meshes

	The Simulator
	Set implementation
	Parallelization
	Synchronization
	Data output

	The Visualizer
	Basic Technology
	Data Transfer

	Results
	Performance
	Difficulties
	Problems

	Conclusion

