SwarmFlocking

64-149 Praktikum Parallele Programmierung

Fabian Besner, Dominik Lohmann, Jakob Rieck {2besner,2lohmann,2rieck}@informatik.uni-hamburg.de

github.com/dominiklohmann/PAPO14-SwarmFlocking

Flocking Behavior

Parallelization

- Cut the world into vertical areas and distribute the swarm into partial swarms
- Each partial swarm is aware of its possibly relevant neighbors
- Neighbors communicate their local updates after each step
- Root also calculates the predator movement and therefore needs to have everything

Optimization

- SSE(2) instructions for 75% better performance in Vector.h
- Custom Datatype for MPI to reduce communication overhead
- Algorithm optimizations to only view boids in a neighbored PartialSwarm so boid density actually influences the performance

Command Line Interface

```
% ./bin/simulation --help
Options:
 -h [ --help ]
                           Print this help message
 -b [ --boid-count ] arg Number of boids to simulate
 -p [ --predator-count ] arg Number of predators to simulate
 -s [ --steps ] arg Number of steps to simulate
 -o [ --output ] arg Specify an output file
% ./bin/visualisation --help
Options:
 -h [ --help ]
                             Print this help message
 -i [ --input ] arg
                             input file source
 --fps arg
                             Set a custom number of frames to be displayed
                             each second (defaults to 30)
 -s [ --single-stepping ]
                             Control execution of the visualisation by
                             pressing 'space'
  --stdin
                             use stdin as source (overwrites --input)
 -b [ --boid-count ] arg Number of boids per frame
  -p [ --predator-count ] arg Number of predators per frame
```

Performance Report

Performance Report

mpirun -np x time simulation -s 100 -b 65536 -p 0 -o /dev/null

Implementation Problems

 Outdated versions of g++, libstdc++, boost and most notably MPI on cluster coupled with local development and testing

- Trial and error development with OpenGL
- Indeterministic results (due to optimizations)
 make testing a lot harder

Demo