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Processing speed is limited

Physical Limits

e Electrical signal speed (RS)
e Cooling the heat

Workarounds from Hardware manufactures

e Multiple CPU Cores <+
e Advanced IS
e MMX etc
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Types of computing problems

Problems that can be seperated Problems that can‘t be seperated

o Compression e File 1/0
e LempelZivMarkov chain algorithm e Network /0

e Simulations e Hardware Access
e Weather e Sound
e Chemical reactions e HDD

e Satelite movements .
e Graphical user Interface

e Sort algorithm e CTK
e Arithmetic * QT



Airthmetic Example

1000

> (P+5-i+5)"
i=0

500 1000
resl =) (+5-i+5)"° res2=» (i"+5-i+5)"
i=0 i=501

Join parts together

int result = resl + res2;
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What are threads

In computer science, a thread of execution is the smallest sequence of programmed
instructions that can be managed independently by an operating system scheduler. [2]

Properties of threads

e Small memory footprint
e OS can map threads to diffrent CPU's



C Grundlagen - Threads
L What are threads

How Unix processes are organized
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With great power comes great responsibillity

Problems that occur by using threads

Race Condition

Communication between threads
Dead locks

Live locks

10/32
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Race Condition
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But there is hope

Locks / Mutex

e primary implementation for thread syncronisation

e mutexes can prevent race conditions

e It's up to the programmer to ensure locking and unlocking mutexes
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But wait...
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Summary

What we now know about threads

e Threads have a small memory footprint
e We've to be careful using threads

e Consistence of shared data
e Syncronisation
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Overview

e pthread <
e OpenMP «+
o cll
e glib
Qt-Threads

® many more...

16 /32
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What is PThread

PThread

e In History each hardware vendor had developed his own implementation of threads
e Pthread is a standardized programming interface
e defined for unix in IEEE POSIX 1003.1c standard (1995)

e Hardware vendors began to offer pthread implementations

17 /32
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Compiling

gce

gce -std=cl1 -Ipthread jfile; -o joutput;

Makefile

1 Account : account.o

2 cc -lpthread -03 account.o -o Account

3 account.o : main.c

4 cc -std=cll -c -1lpthread -1lm -03 main.c -o account.o
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Quick Overview

Data Types for pthread

1 pthread_t thread

Important function calls

1 pthread_create (thread,attributes,start_routine,bargument)
2 pthread_exit (status)
3 pthread_cancel (thread)
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pthread Example

Hello World

1 void * sayhello(void * arg)
2 {

3 long threadID = (long) arg;
4 fprintf (stdout,"Hello from Thread #Jd\n",threadID);
5 return 0;

6 }

7 int main(int argc, char*x argv[])

8 {

9 pthread_t thread[20];

10 for(long threadid = 1; threadid < 20; threadid++)
11 pthread_create (&thread [threadid], NULL,

12 sayhello, (void *)threadid);

13 pthread_exit (NULL) ;

14 }
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passing Arguments & Joining

Job Structure

1 struct job {

2 int start;

3 int end;

4 unsigned long long int result;
5 15

void * function(void *ptr) {

struct job *myJob = (struct job*) ptr;
for(int i = myJob->start ; i <= myJob->end ; i++)
{

myJob->result += (5*(i*i) + 5);

(S PO SR

}
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passing Arguments & Joining
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int main() {

struct job jobl = {0,500,0};
struct job job2 = {501,1000,0};
pthread_t workeril;

pthread_t worker2;

pthread_create (&workerl ,NULL,function,(void *) &jobl);

pthread_create (&worker2 ,NULL, function,(void *) &job2);

pthread_join(workerl ,NULL) ;

pthread_join(worker2 ,NULL) ;

fprintf (stdout ,"Result: %1llu + %1llu = %1lu \n", jobl.result, job2.result,(
jobl.result+job2.result));
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Mutex

Data Types for pthread

1 pthread_mutex_t mutex

Create and Destroy

1 pthread_mutex_init (mutex,attr)
2 pthread_mutex_destroy (mutex)

Locking

1 pthread_mutex_lock (mutex)
2 pthread_mutex_trylock (mutex)
3 pthread_mutex_unlock (mutex)
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int transfer(struct account *from, struct account *to, int ammount)

pthread_mutex_lock (&from->lock);
if (from->balance > ammount) {
if (pthread_mutex_trylock (&to->lock) == 0) {
from->balance -= ammount;
to->balance += ammount ;
pthread_mutex_unlock (&to->1lock);
} else {
pthread_mutex_unlock (&from->1lock) ;
return transfer (from,to,ammount);

}
pthread_mutex_unlock (&from->1lock) ;
fprintf (stdout,"| %s\t | %d\t [\n",to->name,to->balance) ;
return O;
} else {

pthread_mutex_unlock (&from->lock) ;
return -1;
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OpenMP

What is OpenMP

e API for using multiple threads on MPM
e Supports C / C++ and Fortran
e |s a set of compile directives

e Easy to use

gce -std=cl1 -fopenmp jfile; -o joutputfile;



Example

Hello World

#include <stdio.h>

int main(void)
{
#pragma omp parallel
printf ("Hello, world.\n");
return 0;

[ N e I N N

}
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Summary

What we've learned

With threads we can access multiple CPU's
Corecctly used they offer more Performance on MPM
We have to syncronize access to shared data

Take care of Race Conditions, Dead locks and Live Locks
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Thank you for your attention
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Blaise Barney.
Posix threads programming.
https://computing.llnl.gov/tutorials/pthreads/.

Many.
Thread (computing).
http://en.wikipedia.org/wiki/Thread_(computing).
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