C Grundlagen - Threads

Michael Strassberger
saremox@linux.com

Proseminar C Grundlagen
Fachbereich Informatik
Fakultaet fuer Mathematik, Informatik und Naturwissenschaften
Universitaet Hamburg

3. Juli 2014

1form
i'h‘ Universitat Hamburg dle ZUKunft

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Table of Contents

@ Introduction

® What are threads

® How to use threads in C
O Summary

@ Literature

C Grundlagen - Threads
L Motivation

Table of Contents

® Introduction

32

C Grundlagen - Threads
L Motivation

Processing speed is limited

Physical Limits

e Electrical signal speed (RS)
e Cooling the heat

Workarounds from Hardware manufactures

e Multiple CPU Cores <+
e Advanced IS
e MMX etc

C Grundlagen - Threads
L Motivation

Types of computing problems

Problems that can be seperated Problems that can‘t be seperated

o Compression e File 1/0
e LempelZivMarkov chain algorithm e Network /0

e Simulations e Hardware Access
e Weather e Sound
e Chemical reactions e HDD

e Satelite movements .
e Graphical user Interface

e Sort algorithm e CTK
e Arithmetic * QT

Airthmetic Example

1000

> (P+5-i+5)"
i=0

500 1000
resl =) (+5-i+5)"° res2=» (i"+5-i+5)"
i=0 i=501

Join parts together

int result = resl + res2;

C Grundlagen - Threads
L What are threads

Table of Contents

® What are threads
With great power comes great responsibilitty

32

C Grundlagen - Threads
L What are threads

What are threads

In computer science, a thread of execution is the smallest sequence of programmed
instructions that can be managed independently by an operating system scheduler. [2]

Properties of threads

e Small memory footprint
e OS can map threads to diffrent CPU's

C Grundlagen - Threads
L What are threads

How Unix processes are organized

OxfFFFFFF —
1GB

0xf9999999 —

3GB

0x00000000 —

M1

Kernel Space

Stack
4

Stack
1

Shared Libraries

/I\
Heap

Data
Text (elf)

[

‘ Qtarclk naint

Stack pointer
Progr. Counter

ter

Register
Files Process ID
Locks User ID
Sockets | | Group ID

C Grundlagen - Threads
L What are threads

With great power comes great responsibillity

Problems that occur by using threads

Race Condition

Communication between threads
Dead locks

Live locks

10/32

C Grundlagen - Threads
L What are threads
LWith great power comes great responsibilitty

Race Condition

—] Thread #1 — Thread #2
I

|
— Read balance l
Add 200 $ Read balance

: Add 350 §

' S
ave Balance
4‘ Save Balance } v

Balance 1000 § |

Balance 1200 § |

Read Balance
Withdraw 1550 $

LT L T T

Balance -350 $ ‘

C Grundlagen - Threads
L What are threads
LWith great power comes great responsibilitty

But there is hope

Locks / Mutex

e primary implementation for thread syncronisation

e mutexes can prevent race conditions

e It's up to the programmer to ensure locking and unlocking mutexes

12/32

C Grundlagen - Threads
L What are threads
LWith great power comes great responsibilitty

But wait...
—] Thread #1 Thread #2
| |
[[
— Lock A Lock B
— Read A Read B
— Lock B Lock A

— Wait for lock B

Wait for lock A

C Grundlagen - Threads
L What are threads
LWith great power comes great responsibilitty

Summary

What we now know about threads

e Threads have a small memory footprint
e We've to be careful using threads

e Consistence of shared data
e Syncronisation

14 /32

C Grundlagen - Threads
I—Usage

Table of Contents

©® How to use threads in C
pthread
OpenMP

15/32

C Grundlagen - Threads
I—Usage

Overview

e pthread <
e OpenMP «+
o cll
e glib
Qt-Threads

® many more...

16 /32

C Grundlagen - Threads
I—Usage
Lpthread

What is PThread

PThread

e In History each hardware vendor had developed his own implementation of threads
e Pthread is a standardized programming interface
e defined for unix in IEEE POSIX 1003.1c standard (1995)

e Hardware vendors began to offer pthread implementations

17 /32

C Grundlagen - Threads
I—Usage
Lpthread

Compiling

gce

gce -std=cl1 -Ipthread jfile; -o joutput;

Makefile

1 Account : account.o

2 cc -lpthread -03 account.o -o Account

3 account.o : main.c

4 cc -std=cll -c -1lpthread -1lm -03 main.c -o account.o

18 /32

C Grundlagen - Threads
I—Usage
Lpthread

Quick Overview

Data Types for pthread

1 pthread_t thread

Important function calls

1 pthread_create (thread,attributes,start_routine,bargument)
2 pthread_exit (status)
3 pthread_cancel (thread)

19/32

C Grundlagen - Threads
I—Usage
Lpthread

pthread Example

Hello World

1 void * sayhello(void * arg)
2 {

3 long threadID = (long) arg;
4 fprintf (stdout,"Hello from Thread #Jd\n",threadID);
5 return 0;

6 }

7 int main(int argc, char*x argv[])

8 {

9 pthread_t thread[20];

10 for(long threadid = 1; threadid < 20; threadid++)
11 pthread_create (&thread [threadid], NULL,

12 sayhello, (void *)threadid);

13 pthread_exit (NULL) ;

14 }

C Grundlagen - Threads

Lus
L

age

pthread

Output

© 0 N oA W N R

=
= o

12
13
14

Hello World

Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello
Hello

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

#4
#5
#6
#7
#9
#10
#8
#11
#12
#13
#14
#19
#18
#16
#17

C Grundlagen - Threads
I—Usage
Lpthread

passing Arguments & Joining

Job Structure

1 struct job {

2 int start;

3 int end;

4 unsigned long long int result;
5 15

void * function(void *ptr) {

struct job *myJob = (struct job*) ptr;
for(int i = myJob->start ; i <= myJob->end ; i++)
{

myJob->result += (5*(i*i) + 5);

(S PO SR

}

C Grundlagen - Threads
I—Usage
Lpthread

passing Arguments & Joining

© 0N oA W N R

=
o

int main() {

struct job jobl = {0,500,0};
struct job job2 = {501,1000,0};
pthread_t workeril;

pthread_t worker2;

pthread_create (&workerl ,NULL,function,(void *) &jobl);

pthread_create (&worker2 ,NULL, function,(void *) &job2);

pthread_join(workerl ,NULL) ;

pthread_join(worker2 ,NULL) ;

fprintf (stdout ,"Result: %1llu + %1llu = %1lu \n", jobl.result, job2.result,(
jobl.result+job2.result));

C Grundlagen - Threads
I—Usage
Lpthread

Mutex

Data Types for pthread

1 pthread_mutex_t mutex

Create and Destroy

1 pthread_mutex_init (mutex,attr)
2 pthread_mutex_destroy (mutex)

Locking

1 pthread_mutex_lock (mutex)
2 pthread_mutex_trylock (mutex)
3 pthread_mutex_unlock (mutex)

C Grundlagen - Threads
I—Usage
Lpthread

© 0N OGO R W N

11
12
13
14
15
16
17

int transfer(struct account *from, struct account *to, int ammount)

pthread_mutex_lock (&from->lock);
if (from->balance > ammount) {
if (pthread_mutex_trylock (&to->lock) == 0) {
from->balance -= ammount;
to->balance += ammount ;
pthread_mutex_unlock (&to->1lock);
} else {
pthread_mutex_unlock (&from->1lock) ;
return transfer (from,to,ammount);

}
pthread_mutex_unlock (&from->1lock) ;
fprintf (stdout,"| %s\t | %d\t [\n",to->name,to->balance) ;
return O;
} else {

pthread_mutex_unlock (&from->lock) ;
return -1;

C Grundlagen - Threads
I—Usage
LOpenMP

OpenMP

What is OpenMP

e API for using multiple threads on MPM
e Supports C / C++ and Fortran
e |s a set of compile directives

e Easy to use

gce -std=cl1 -fopenmp jfile; -o joutputfile;

Example

Hello World

#include <stdio.h>

int main(void)
{
#pragma omp parallel
printf ("Hello, world.\n");
return 0;

[N e I N N

}

C Grundlagen - Threads
I—Summary

Table of Contents

O Summary /

28 /32

C Grundlagen - Threads

I—Summary

Summary

What we've learned

With threads we can access multiple CPU's
Corecctly used they offer more Performance on MPM
We have to syncronize access to shared data

Take care of Race Conditions, Dead locks and Live Locks

C Grundlagen - Threads
I—Summary

Thank you for your attention

C Grundlagen - Threads
L Literature

Table of Contents

@ Literature

31/32

Blaise Barney.
Posix threads programming.
https://computing.llnl.gov/tutorials/pthreads/.

Many.
Thread (computing).
http://en.wikipedia.org/wiki/Thread_(computing).

32/32

https://computing.llnl.gov/tutorials/pthreads/
http://en.wikipedia.org/wiki/Thread_(computing)

	Introduction
	What are threads
	With great power comes great responsibilitty

	How to use threads in C
	pthread
	OpenMP

	Summary
	Literature

