
C Grundlagen - Threads

Michael Strassberger

saremox@linux.com

3. Juli 2014

1

Inhaltsverzeichnis

1 Introduction 3
1.1 Problems that can be seperated . 3
1.2 problems that canno‘t be seperated . 3

2 What are threads 3
2.1 With great power comes great responsibilitty 4

3 How to use threads in C 5
3.1 pthread . 5

3.1.1 Compiling . 5
3.1.2 Creating threads . 6
3.1.3 passing Arguments & Joining . 7
3.1.4 Pthread Mutexes . 8

3.2 openmp . 10
3.2.1 Hello World . 10

4 Literature 10

2

1 Introduction

We are hitting pysical limits of computing speed on single core machines. Since we‘re
hitting these limits hardware manufactuerer began to invent additional instructions sets
to optimize cpu cycles like the MMX IS. But we‘re also facing a new trend to Multicore
systems even on mobile devices. To take advantage of these developments we should first
take a look at what general computing problems we face.

1.1 Problems that can be seperated

These are generally problems we can split into smaller autonomous task. Like simulating
the weather of a specific chunk of the world. We can split this chunk into smaller ones
and compute each chunk on a processing core. But we have also make sure that every
processor gets all results to compute the next iteration. Every problem that can be
processed like this can benefit from multiple core manchines.

1.2 problems that canno‘t be seperated

These are usually task that don‘t need much processing power or depend previous results
to compute. But also hardware access is limited to be done with only one processor (In
some cases it‘s possible, but we‘ll assume that it‘s not for easier understanding). But
it‘s not unlikely to split these task across processing units. Let‘s take a look at a 4 core
processing unit and an example scenario

1. Hardware Access hard drive - saving / reading file

2. Sorting and preparing data from 1.

3. Do computing with the data

4. Showing graphical user interface

2 What are threads

In computer science, a thread of execution is the smallest sequence of pro-
grammed instructions that can be managed independently by an operating
system scheduler. [2]

That implies that a thread only contains the minimum requirements to run independent
from the main prcoesss. They also share their Memory so we can easily access the data
of an other thread.

3

0x00000000

3 GB

0xf9999999
1 GB

0xffffffff
Kernel Space

U
se
r
S
p
ac
e

Process ID
User ID
Group ID

Files
Locks
Sockets

Shared Libraries

Data
Text (elf)

Heap

Stack / Thread
Stack pointer
Progr. Counter
Register

Stack / Thread Stack pointer
Progr. Counter
Register

[1]
In general a process consists of a Process ID and the UID GID with which it is running.
It also has File descriptors, sockets and locks. The programm code and static variables
maped to the bottom of our example memory model. In the middle the growing heap
for dynamic memory allocation and the shared library code get loaded. At the very top
of the memory we have after an random offset the Stack of our main thread. If we start
another thread we‘ll only create a another stack. Starting a new thread requires only a
mimimum memory allocation that makes it not only very lightweight in memory, it also
is very fast to create a thread. It‘s about 4-20 times faster than creating a new process.
[1]

2.1 With great power comes great responsibilitty

Since we now know that threads share their heap memory, they can both aceess and
write to it. This could lead to inconsistent data then we have to write operations at
the same time on the same memory segment. This is a race condition. Take a look at a
banking example.

Thread #1 Thread #2

Read balance
Read balance

Balance 1000 $

Add 200 $
Add 350 $

Save Balance
Save Balance

Balance 1200 $

Read Balance
Withdraw 1550 $

Balance -350 $

We‘ve lost 350 $ because we try to write to the same memory at the same time. This
can be prevented by using locking mechanism like Mutual exclusions. Mutexes can only

4

be obtained by one thread at a time, that makes it a very good solution for mananing
access to shared memory. But we‘ve to ensure that we lock and unlock the mutexes.
We have also to take into mind that this technique bring up some new problem: The
deadlock.

Thread #1 Thread #2

Lock A Lock B
Read A Read B
Lock B Lock A

Wait for lock B Wait for lock A

We‘re now locking our re-
sources that we use, but if so-
meone else also wanting the-
se Resources it could happen
that both threads will wait for
each other to release a speci-
fic resource they need to ful-
lify their task. This can be
prevented by using techniques
for looking if a lock is allrea-
dy obtained by someone else
and using this for addiontio-
nal logic to prevent a dead
lock

3 How to use threads in C

8 There exist several threading libraries that can make your live more or less easy with
threads. We‘ve allready heard about c11 threads and glib threads. We‘ll take a look at
the Posix thread implementation and the easy to use openmp library.

3.1 pthread

3.1.1 Compiling

GCC

gcc -std=c11 -lpthread ¡file¿ -o ¡output¿

MakeFile

1 Account : account.o

2 cc -lpthread -O3 account.o -o Account

3 account.o : main.c

4 cc -std=c11 -c -lpthread -lm -O3 main.c -o account.o

5

3.1.2 Creating threads

Quick overview

Pthread types

1 pthread_t thread

Pthread function calls

1 pthread_create (thread ,attributes ,start_routine ,argument)

2 pthread_exit (status)

3 pthread_cancel (thread)

This is the minimum set of types and function calls to create threads and shut them
down. To create a thread we have to pass a pthread t typed variable that represents
the thread and we also have to pass an function pointer (see presentation of Phillip
Gawehn). Arguments and attributes are optional and you‘ll don‘t need them to create
a thread. With pthread cancel we can shut down a thread in our main thread, if the
thread is hanging or doing wrong things. pthread exit is used in a main thread to wait
for all threads to terminate, otherwise then the main thread exits, all threads get killed

Hello world - Pthread Example

1 void * sayhello(void * arg)

2 {

3 long threadID = (long) arg;

4 fprintf(stdout ,"Hello from Thread #%d\n",threadID);

5 return 0;

6 }

7 int main(int argc , char* argv [])

8 {

9 pthread_t thread [20];

10 for(long threadid = 1; threadid < 20; threadid ++)

11 pthread_create (& thread[threadid], NULL ,

12 sayhello ,(void *) threadid);

13 pthread_exit(NULL);

14 }

We‘ll create in this example 20 Threads and each of them will print on screen ”Hello
from Thread #xẍın nearly random order. In this example we can see that we can‘t
determine then a thread gets executed.

Ausgabe

1 Hello from Thread #6

2 Hello from Thread #7

3 Hello from Thread #9

4 Hello from Thread #10

5 Hello from Thread #8

6

3.1.3 passing Arguments & Joining

Job Struct & Worker Function

1 struct job {

2 int start;

3 int end;

4 unsigned long long int result;

5 };

6

7 void * function(void *ptr) {

8 struct job *myJob = (struct job*) ptr;

9 for(int i = myJob ->start ; i <= myJob ->end ; i++)

10 {

11 myJob ->result += (5*(i*i) + 5);

12 }

13 }

This is a typical setup in programming with threads. We‘ve a data structure that re-
presents all data needed for the thread to do a specific job. And a function that executes
this job.

Main Function

1 int main() {

2 struct job job1 = {0 ,500 ,0};

3 struct job job2 = {501 ,1000 ,0};

4 pthread_t worker1;

5 pthread_t worker2;

6

7 pthread_create (&worker1 ,NULL ,function ,(void *) &job1);

8 pthread_create (&worker2 ,NULL ,function ,(void *) &job2);

9 pthread_join(worker1 ,NULL);

10 pthread_join(worker2 ,NULL);

11 fprintf(stdout ,"Result: %llu + %llu = %llu \n",job1.result ,job2.result ,(job1.

result+job2.result));

12 }

We declare and initialize 2 jobs and declare 2 threads. Then we create the 2 worker
threads to process our 2 jobs data structures. With pthread join we‘ll wait until the
given thread has finished excuting. Now we can be shure that, no worker is working on
the results and we can sum up the 2 sums to get our final result.

7

3.1.4 Pthread Mutexes

Quick Overview

Data types

1 pthread_mutex_t mutex

Creating Mutexes

1 pthread_mutex_init (mutex ,attr)

2 pthread_mutex_destroy (mutex)

Locking and unlocking

1 pthread_mutex_lock (mutex)

2 pthread_mutex_trylock (mutex)

3 pthread_mutex_unlock (mutex)

With pthread mutex init we initialize a mutex, we can set attributes for this mutex, but
we‘ll use the dafault behavior of our mutex thereforce we can also use
PTHREAD MUTEX INITIALIZER constant to get a Mutex. The locking and unlocking
functions just locks and unlocks a mutex. With trylock we have a non blocking func-
tion call. Trylock returns instantly and if it‘s return value is zero we locked the mutex
overwise the mutex was allready lock by another Thread. This is useful for preventing
deadlocks.

Bank transfer

1 #include <stdio.h>

2 #include <pthread.h>

3 #include <unistd.h>

4 #include <time.h>

5 #include <stdlib.h>

6 struct account{

7 char* name;

8 int acountNumber;

9 int balance;

10 pthread_mutex_t lock;

11 };

12

13 struct transferJob{

14 struct account *from;

15 struct account *to;

16 int ammount;

17 };

We‘ve a bank account and transferjob data structure. We‘ll now simulate with them
various transactions by using the mutex mechanics.

8

Bank transfer

1 int transfer(struct account *from , struct account *to , int ammount) {

2 pthread_mutex_lock (&from ->lock);

3 if(from ->balance > ammount) {

4 if(pthread_mutex_trylock (&to->lock) == 0) {

5 from ->balance -= ammount;

6 to->balance += ammount;

7 pthread_mutex_unlock (&to->lock);

8 } else {

9 pthread_mutex_unlock (&from ->lock);

10 return transfer(from ,to,ammount);

11 }

12 pthread_mutex_unlock (&from ->lock);

13 fprintf(stdout ,"| %s\t | %d\t | > %d > | %s\t | %d\t |\n",from ->name ,from

->balance ,ammount ,to->name ,to->balance);

14 return 0;

15 } else {

16 pthread_mutex_unlock (&from ->lock);

17 return -1;

18 }

19 }

This Function takes 2 banking accounts and transfers the given ammount from one to
the other. First we acquire the Mutex of *from and we check if the account is covered.
If the account is enough funded we try to acquire the lock of *to if we suceed we‘ll sub-
stracts ammont from *from and add it to *to. After this we‘ll free our *to lock and free
the *from lock, printing a log message to the console and return. If we can‘t acquire the
lock we free the *from lock to prevent deadlocks and recursivly try to do the transaction
again. If the account is not covered we‘ll free the *from lock and return with -1 to inform
the caller that we transaction was not executed.

Bank transfer

1 int main(int argc , char **argv)

2 {

3 srand(time(NULL));

4

5 pthread_t thread1 , thread2;

6 struct account accA = {"Max Mustermann", 1340005 ,

7 1000, PTHREAD_MUTEX_INITIALIZER };

8 struct account accB = {"Franz Mustermann", 1340005 ,

9 1000, PTHREAD_MUTEX_INITIALIZER };

10 struct transferJob job1 = {&accA , &accB , 20};

11 struct transferJob job2 = {&accB , &accA , 20};

12

13 pthread_create (&thread1 ,NULL ,worker , &job1);

14 pthread_create (&thread2 ,NULL ,worker , &job2);

15 pthread_join(thread1 ,NULL);

16 pthread_join(thread2 ,NULL);

17 fprintf(stdout ,"%s account is at %d\n%s account is at %d\n",accA.name ,accA.

balance ,accB.name ,accB.balance);

18 pthread_exit(NULL);

19 }

We initialize 2 bank accounts each with a mutex and we also create 2 jobs for our 2

9

worker thread model. We create these Thread and then wait with pthread join until
they finished. Then we print out the current account balances if they both are at 1000
nothing wrong had happened.

3.2 openmp

OpenMP is an easy to use API for using threads in your programs. You can use them
in C / C++ and fortran applications. OpenMP is used by writing compiler directives
where your application can be parralized.

3.2.1 Hello World

OpenMP Hello World

1 #include <stdio.h>

2

3 int main(void)

4 {

5 #pragma omp parallel

6 printf("Hello , world.\n");

7 return 0;

8 }

With #pragma omp parrallel we say openmp that we following can be parralized.

4 Afterword

You got an overview of that threads are and their concepts and how to use them in C
with pthread. We also took a short look at, how we can easily take advantage of more
thread by using the OpenMP API. There are plenty more implementations for using
thread in C. But we‘ve focused on the main concepts of threads and how to handle
problem that can occur by using threads. you should now be able to experiment with
diffrent Implementations and have a understanding how threads work.

5 Literature

[1] Blaise Barney. Posix threads programming. https://computing.llnl.gov/

tutorials/pthreads/.

[2] Many. Thread (computing). http://en.wikipedia.org/wiki/Thread_

(computing).

10

https://computing.llnl.gov/tutorials/pthreads/
https://computing.llnl.gov/tutorials/pthreads/
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Thread_(computing)

	Introduction
	Problems that can be seperated
	problems that canno`t be seperated

	What are threads
	With great power comes great responsibilitty

	How to use threads in C
	pthread
	Compiling
	Creating threads
	passing Arguments & Joining
	Pthread Mutexes

	openmp
	Hello World

	Literature

